Skip to main content
header image

RESEARCH

Selected Publications

Selected Publications

Raymond CHAN

X.H. Cai, R.H. Chan, and T.Y. Zeng, A Two-stage Image Segmentation Method using a Convex Variant of the Mumford-Shah Model and Thresholding, SIAM J. Imag. Sci., 6 (2013), 368-390.

C.H. Chen, R. Chan, J.F. Yang, and S.Q. Ma, Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization, SIAM J. Imag. Sci., 8 (2015), 2239-2267.

X. Guo, R.H. Chan, A. Wong and L. Zhu, Mean-Variance, Mean-VaR, and Mean-CVaR Models for Portfolio Selection With Background Risk, Risk Management, 21 (2019), 73-98.

R. Chan, K. Kan, M. Nikolova, and R. Plemmons, A Two-stage Method for Spectral-spatial Classification of Hyperspectral Images, Journal of Mathematical Imaging and Vision, 62 (2020), 790-807.

H.S. Wong, L. Wang, R.H. Chan and T.Y. Zeng, Deep Tensor CCA for Multi-view Learning, IEEE Transactions on Big Data, doi: 10.1109/TBDATA.2021.3079234.

Philippe G. CIARLET

CIARLET, P.G., Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadephia, 2013.

CIARLET, P.G.; MARDARE, C., Nonlinear Korn inequalities, J. Math. Pures Appl. 104 (2015), 1119-1134.

CIARLET, P.G.; IOSIFESCU, O., Nonlinear Donati compatibility conditions on a surface - Application to the intrinsic approach for Koiter’s model of a nonlinearly elastic shallow shell, Math. Models Methods Appl. Sci. 27 (2017), 347-384.

CIARLET, P.G.; MALIN, M.; MARDARE, C., Continuity in Fre´chet topologies of a surface as a function of its fundamental forms, J. Math. Pures Appl. 142 (2020), 243-265.

CIARLET, P.G., Locally Convex Spaces and Harmonic Analysis: An Introduction, SIAM, Philadelphia, 2021.

Felipe CUCKER

  • Probabilistic Analysis of Condition Numbers, Acta Numerica, 25, pp. 321-382, 2016.
  • On a Problem Posed by Steve Smale (with P. Bürgisser). Annals of Mathematics174, pp. 1785-1836, 2011.
  • Coverage Processes on Spheres and Condition Numbers for Linear Programming (with P. Bürgisser and M. Lotz). Annals of Probability38, pp. 570-604, 2010.
  • Emergent Behavior in Flocks, (with S. Smale). IEEE Trans. Autom. Control52, pp. 852-862, 2007.
  • On the mathematical foundations of learning, (with S. Smale). Bulletin Amer. Math. Soc. 39, pp. 1-49, 2002.

Dan DAI

  • S.X. Xu and D. Dai, Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painleve II system. Communications in Mathematical Physics, 365(2019), no. 2, 515-567.
  • D. Dai, M.E.H. Ismail and X.S. Wang, Doubly infinite Jacobi matrices revisited: Resolvent and spectral measure, Advances in Mathematics, 343 (2019), 157-192.
  • D. Dai, S.X. Xu and L. Zhang, Gap probability at the hard edge for random matrix ensembles with pole singularities in the potential, SIAM Journal on Mathematical Analysis, 50 (2018), no.2, 2233-2279.
  • S.X. Xu, D. Dai and Y.Q. Zhao, Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble, Communications in Mathematical Physics, 332 (2014), no. 3, 1257-1296.
  • D. Dai, M.E.H. Ismail and X.S. Wang, Plancherel-Rotach asymptotic expansion for some polynominals from indeterminate moment problems, Consturctive Approximation, 40 (2014), no. 1, 61-104.

Han FENG

  • Feng Dai and Han Feng, Riesz Transforms and Fractional Integration for Orthogonal Expansions on Spheres, Balls and Simplexes, Advance in Mathematics, 301(2016), 549-614.
  • Feng Dai and Han Feng, Chebyshev quadrature formulas on spheres, balls and simplexes, Trans. Amer. Math. Soc. 372 (2019), 7425-7460.
  • Han Feng, Christian Krattenthaler and Yuan Xu, Best Approximation on the triangle, Journal of Approximation, 241 (2019), 63-78.
  • Feng Dai, Han Feng and Sergey Tikhonov, Reverse Holder's inequality for spherical harmonics, Proceedings of American Mathematical Society, 144 (2016), no. 3, 1041-1051.
  • Han Feng, Uncertainty principles on weighted spheres, balls and simplexes, Canadian Mathematical Bulletin 59 (2016), no. 1, 62-72.

Yukun HE

He, Yukun. Spectral gap and edge universality of dense random regular graphs, arXiv 2203.07317 (2022).

He, Yukun. & Knowles, Antti. Fluctuations of extreme eigenvalues of sparse Erdős-Rényi graphs. Probability Theory and Related Fields, 180 (2021), 985 - 1056.

He, Yukun. Bulk eigenvalue fluctuations of sparse random matrices. Annals of Applied Probability, 30 (2020). 2846 - 2879.

He, Yukun. & Knowles, Antti. Mesoscopic Eigenvalue Density Correlations of Wigner Matrices. Probability Theory and Related Fields, 177 (2020), 147 - 216.

He, Yukun. & Knowles, Antti, Mesoscopic eigenvalue statistics of Wigner matrices. Annals of Applied Probability, 27 (2017), 1510 - 1550.

Daniel W. C. HO

  • Deming Yuan, Daniel W.C. Ho & Yiguang Hong, On Convergence Rate of Distributed Stochastic Gradient Algorithm for Convex Optimization with Inequality Constraints, SIAM Journal on Control and Optimization, 54(5), 2872-2892. (2016). img alt
  • Wenying Xu, Daniel W.C. Ho, Lulu Li and Jinde Cao, Event-Triggere Schemes on Leader-Following Consensus of General Linear Multi-Agent Systems under Different Topologies, IEEE Transactions on Cybernetics, Vol. 47, No. 1, 212-223, (2017). img alt
  • Bo Chen, Daniel W.C. ho, Wen-An Zhang and Li Yu, Networked Fusion Estimation with Bounded Noises, IEEE Transactions of Automatic Control, Vol.62, 10, 5415-5421, (2017). DOI: img alt
  • Xiaodi Li, Daniel W.C. Ho and Jinde Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99, 361-368 (2019). img alt
  • Zhong J. Daniel W.C. Ho, J. Lu & Q. Jiao, Pinning Controllers for Activation Output Tracking of Boolean Network Under One-Bit Perturbation, IEEE Transactions on Cybernetics, Vol: 49, 9, pages 3398-3408, (2019). img alt

Benny Y. C. HON

  1. Zhao W., Lei M. Hon Y.C., An improved finite integration method for nonlocal and nonlinear Schrödinger equations, Computers and Mathematics with Applications, Vol. 113, pp. 24-33, 2022.
  2. Deng Z.C., Hon Y.C., Isakov V., Recovery of time-dependent volatility in option pricing model, Inverse Problems, Vol. 32 (2016) 115010 (30pp)
  3. Hon Y.C. and Schaback R., Direct Meshless Kernel Techniques for Time-Dependent Equations, Applied Mathematics and Computation, Vol. 258, pp. 220-226, 2015.
  4. Zhong M., Hon Y.C. and Lu S., Multiscale support vector approach for solving ill-posed problems, J. Scientific Computing (JOMP), Vol. 64, pp. 317-340, 2015.
  5. Hon Y.C. and Takeuchi T., Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem, Advances in Computational Mathematics, Vol. 34, pp. 167-183, 2011.

 

Xianpeng HU

  • X.Hu & N. Masmoudi, Global solutions to replusive Hookean elastodynamics, Arch. Ration. Mech. Anal. 223 (2017), 543-590.
  • X. Hu, Global existence of weak solutions to compressible viscoelasticity. J. Differential Equations 265 (2018), 3130-3167.
  • X. Hu, & Y. Huang, Well-posedness of the free boundary problem for incompressible elastodynamics. J. Differential Equations 266 (2019), 7844-7889.
  • X. Hu, Hausdorff dimensions of concentrations for isentropic compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 234 (2019), 375-416.
  • X. Hu, W. Zhao, Flobal existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions. Arch. Ration. Mech. Anal. (2019). https://doi.org/10.1007/s00205-019-01443-z.

Jongchon KIM

L2 bounds for a maximal directional Hilbert transform (with M. Pramanik), Analysis & PDE 15 (2022), 753–794

Lower bounds for estimates of the Schrodinger maximal function (with X. Du, H. Wang, R. Zhang), Math. Res. Lett. 27 (2020), 687-692

Riesz means of Fourier series and integrals: Strong summability at the critical index (with A. Seeger), Trans. Amer. Math. Soc. 372 (2019), 2959-2999

On the averaged Green’s function of an elliptic equation with random coefficients (with M. Lemm), Arch. Rational Mech. Anal. 234 (2019), 1121-1166

Endpoint bounds for a class of spectral multipliers on compact manifolds, Indiana Univ. Math. J. 67 (2018), 937-969

A characterization of maximal operators associated with radial Fourier multipliers, Proc. Amer. Math. Soc. 145 (2017), 1077-1085

LEUNG Wing Tat

  1. Chung, E. T., Efendiev, Y., & Leung, W. T. (2015). Residual-driven online generalized multiscale finite element methods. Journal of Computational Physics302, 176-190.
  2. Chung, E. T., Efendiev, Y., & Leung, W. T. (2018). Constraint energy minimizing generalized multiscale finite element method. Computer Methods in Applied Mechanics and Engineering339, 298-319.
  3. Chung, E. T., Efendiev, Y., Leung, W. T., & Vasilyeva, M. (2021). Nonlocal multicontinua with representative volume elements. Bridging separable and non-separable scales. Computer Methods in Applied Mechanics and Engineering377, 113687.
  4. Chung, E. T., Efendiev, Y., Leung, W. T., & Vabishchevich, P. N. (2021). Contrast-independent partially explicit time discretizations for multiscale flow problems. Journal of Computational Physics445, 110578.
  5. Leung, W. T., Lin, G., & Zhang, Z. (2022). NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems. Journal of Computational Physics470, 111539.

Heng LIAN

  • Heng Lian, Kaifeng Zhao and Shaogao Lv, Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data, Annals of Statistics, 47, 2922-2949, (2019).
  • Heng Lian and Zengyan Fan, Divide-and-conquer for debiased 1-norm support vector machine in ultra-high dimensions, Journal of Machine Learning Research, 18, 1-26, (2018).
  • Shaogao Lv, Huazhen Lin, Heng Lian and Jian Huang, Oracle inequalities for sparse additive quantile regression in reproducing kernel Hilbert space, Annals of Statistics, 46, 781-813, (2018).
  • Kejun He, Heng Lian, Shujie Ma and Jianhua Huang, Dimensionality reduction and variable selection in multivariate varying-coefficient models with a large number of covariates, Journal of the American Statistical Association, 113, 746-754, (2018).
  • Heng Lian, Hua Liang and Raymond, J. Carroll, Variance Function Partially Linear Single-Index Models, Journal of the Royal Statistical Society, Series B, 77(1), 171-194, (2015).

Hongyu LIU

  • H. Liu, L. Rondi and J. Xiao, Mosco convergence for H(curl) spaces, higher integrability for Maxwell's equations, and stability in direct and inverse EM scattering problems,
    Journal of the European Mathematical Society (JEMS), 21 (2019), no. 10, 2945--2993.
  • Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Archive for Rational Mechanics and Analysis, 231 (2019), no. 1, 153--187.
  • H. Li, J. Li and H. Liu, On novel elastic structures inducing polariton resonances with finite frequencies and cloaking due to anomalous localized resonance, Journal de Math ematiques Pures et Appliqu ees, 120 (2018), 195--219. 
  • E. Bl asten and H. Liu, On vanishing near corners of transmission eigenfunctions, Journal of Functional Analysis, 273 (2017), 3616--3632.
  • J. Li, H. Liu, L. Rondi and G. Uhlmann, Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak, Communications in Mathematical Physics, 335 (2015), 671--712.

Wing Cheong LO

  • Tsz-Lik Chan, Hsiang-Yu Yuan & Wing-Cheong Lo, Modeling COVID-19 transmission dynamics with self-learning population behavioral change, Frontiers in Public Health, (2021), 9:768852.  
  • Yue Liu, Michael P. Reichel & Wing-Cheong Lo, Combined control evaluation for Neospora caninum infection in dairy: economic point of view coupled with population dynamics, Veterinary Parasitology, (2019), 277:108967. 
  • Wing-Cheong Lo & Shaokun Mao, A hybrid stochastic method with adaptive time step control for reaction-diffusion systems, Journal of Computational Physics, (2019), 379, 392-402. 
  • Yanli Wang* & Wing-Cheong Lo* & Ching-Shan Chou, A modeling study of budding yeast colony formation and its relationship to budding pattern and aging, PLos Computational Biology, (2017), 13(11): E1005843. *Co-first author 
  • Wing-Cheong Lo, Shaohua Zhou, Arthur D. Lander & Qing Nie, Robust and Precise Morphogen-mediated Patterning: Tradeoffs, onstraints and Mechanisms, Journal of Royal Society Interface, (2015), 12(102), 6, p20141041

Ya Yan LU

  • Amgad Abdrabou & Ya Yan Lu, Indirect link between resonant and guided modes on uniform and periodic slabs, Physical Review A, Vol. 99, Art. 063818, June 2019.
  • Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures surrounded by strong resonances, Physical Review A, Vol. 97, Art. 043828, April 2018.
  • Wangtao Lu, Ya Yan Lu, and Jianliang Qian, Perfectly-matched-layer boundary in- tegral equation method for wave scattering in a layered medium, SIAM Journal on Applied Mathematics, Vol. 78, No. 1, pp. 246-265, Jan. 2018.
  • Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures: perturbation theory and robustness, Optics Letters, Vol. 42, No. 21, pp. 4490-4493, Nov. 2017.
  • Lijun Yuan and Ya Yan Lu, Robust iterative method for nonlinear Helmholtz equation, Journal of Computational Physics, Vol. 343, pp. 1-9, Aug. 2017.

Tao LUO

  • Hao, Chengchun &  Luo, Tao, Ill-Posedness of Free Boundary Problem of the Incompressible Ideal MHD. Commun. Math. Phys. (2019) doi:10.1007/s00220-019-03614-1.
  • Luo, Tao. & Zeng, Huihui, Global Existence of Smooth Solutions and Convergence to Barenblatt Solutions for the Pyhsical Vacuum Free Boundary Problem of Compressible Euler Equations with Damping, Comm. Pure Appl. Math. 69 (7), 1354-1396 (2016).
  • Federbush, Paul. , Luo, Tao. & Smoller, Joel, Existence of Magnetic Compressible Fluid Stars. Arch. Ration. Mech. Anal. 215/2.  611 - 631(2015).
  • Luo, Tao. , XIn, Zhouping. & Zeng, Huihui, Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation. Arch. Ration. Mech. Anal. 213/2. 763 - 831(2014).
  • Luo, Tao. & Smoller, Joel. Nonlinear Dynamical Stability of Newtonian Rotating and Non-rotating White Dwarfs and Rotating Supermassive Stars. Commun. Math. Physics. 425 - 457 (2008).

Cristinel MARDARE

  • Ciarlet, P.G., Mardare, C., Piersanti, P., An obstacle problem for elliptic membrane shells, Math. Mech. Dolids 24 (2019) 1503-1529.
  • Mardare, C., Static elasticity in a riemannian manifold, in "Differential Geometry and Continuum Mechanics" (eds. G-Q Chen, M. Grinfeld, R.J. Knops), Springer, 2015, 307-342.
  • Cartlet, P.G., Mardare, C., Existence theorems in intrinsic nonlinear elasticity, J. Math. Pures Appl. 94(2010), 229-243.
  • Mardare, C., C^∞-regularity of a manifold as a function of its metric tensor, Analysis and Applications 4 (2006), 19-30.
  • Lods, V., Mardare, C., Asymptotic justification of the Kirchhoff-Love assumptions for a linearly elastic clamped shell. J Elasticity. 58 (2000), 105-154.

Laurent MERTZ

 

1) Garnier, Josselin; Lu, Ziyu; Mertz Laurent 

A piecewise deterministic Markov process approach modeling a dry friction problem with noise. 

SIAM J. Appl. Math. (2023), to appear.

2) Garnier, Josselin; Mertz, Laurent 

A control variate method driven by diffusion approximation. 

Comm. Pure Appl. Math. 75 (2022), no. 3, 455–492.

3)Laurière, Mathieu; Mertz, Laurent 

Penalization of nonsmooth dynamical systems with noise: ergodicity and asymptotic formulae for threshold crossings probabilities. 

SIAM J. Appl. Dyn. Syst. 18 (2019), no. 2, 853–880.

4)Huang, Jinzi Mac; Zhong, Jin-Qiang; Zhang, Jun; Mertz, Laurent 

Stochastic dynamics of fluid-structure interaction in turbulent thermal convection. 

J. Fluid Mech. 854 (2018), R5.

5)Bensoussan, Alain; Mertz, Laurent.; Yam, Phillip 

Nonlocal boundary value problems of a stochastic variational inequality modeling an elasto-plastic oscillator excited by a filtered noise. 

SIAM J. Math. Anal. 48 (2016), no. 4, 2783–2805.

 

Chenchen MOU

  1. Gangbo, W.; Meszaros, A.; Mou, C.; Zhang, J. Mean field games master equations with non-separable Hamiltonians and displacement monotonicity. accepted in the Ann. Probab..

  2. Mou, C.; Zhang, J. Wellposedness of second order master equations for mean field games with nonsmooth data. accepted in the Memoirs of the AMS.

  3. Gong, R.; Mou, C.; Swiech, A. Stochastic representations for solutions to parabolic Dirichlet problems for nonlocal Bellman equations. Ann. Appl. Probab. 29 (2019), no. 6, 3271–3310.

  4. Guillen, N.; Mou, C.; Swiech, A. Coupling Lévy measures and comparison principles for viscosity solutions. Trans. Amer. Math. Soc. 372 (2019), no. 10, 7327–7370.

  5. Mou, C.; Yi, Y. Interior regularity for regional fractional Laplacian. Comm. Math. Phys. 340 (2015), no. 1, 233–251.

Pierre NOLIN

  • van den Berg, J., Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l' Ecole Normale Superieure. 51, 1017-1084.
  • van den Berg, J. & Nolin, P. (2021). Near-critical 2D percolation with heavy-tailed impurities, forest fires and frozen percolation. Probability Theory and Related Fields. 181, 211-290.
  • Duminil-Copin, H., Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64, 1165-1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22, 791-819.
  • Nolin, P., Tassion, V. & Teixeira, A. (in press). No exceptional words for Bernoulli percolation. Journal of the European Mathematical Society. 26 pp.

QIAN Wei

  1. W. Qian. Conformal restriction: The trichordal case. Probab. Th. Relat. Fields., August 2018, Volume 171, Issue 3-4, pp 709–774.
  2. W. Qian and W. Werner. Decomposition of Brownian loop-soup clusters. J. Europ. Math. Soc., Volume 21, Issue 10 (2019), pp 3225-3253.
  3. W. Qian. Generalized disconnection exponents. Probab. Th. Relat. Fields., February 2021, Volume 179, pp 117-164.
  4. O. McEnteggart, J. Miller and W. Qian. Uniqueness of the welding problem for SLE and Liouville quantum gravity. J. Inst. Math. Jussieu., May 2021, Volume 20, Issue 3, pp 757 - 783.
  5. E. Gwynne, J. Miller and W. Qian. Conformal invariance of CLEκ on the Riemann sphere for κ(4,8). Int. Math. Res. Not., December 2021, Volume 2021, Issue 23, Pages 17971 - 18036.

Frederick W. F. QIU

  • Weifeng Qiu and Lan Tang, (2020), ``A note on the Monge–Ampère type equations with general source terms",  Mathematics of Computation, volume 89 (326), pages 2675-2706.
  • Weifeng Qiu and Shun Zhang, (2020), ``Adaptive First-Order System Least-Squares Finite Element Methods for Second-Order Elliptic Equations in Nondivergence Form", SIAM Journal on Numerical Analysis, volume 58(6), pages 3286-3308.
  • Huadong Gao and Weifeng Qiu, (2019). ``A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations”, Computer Methods in Applied Mechanics and Engineering, volume 36, pages 982-1001.
  • Gusheng Fu, Yanyi Jin and Weifeng Qiu, (2019), `` Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations”, IMA Journal of Numerical Analysis, Volume 39, pages 957-982.
  • Bernardo Cockburn, Weifeng Qiu and Manuel Solano, (2014), `` A priori error analysis for HDG methods using extensions rom subdomains to achieve boundary conformity”, Mathematics of Computation, Volume 83, pages 665-699.

Moritz REINTJES

  • M. R. and B. Temple, “Optimal regularity and Uhlenbeck compactness for General Relativity and Yang-Mills Theory”, Proc. R. Soc. A 479: 20220444. 
  • M. R. and B. Temple, “On the optimal regularity implied by the assumptions of geometry I: Connections on tangent bundles”, to appear: Meth. Appl. Anal. (2023), 100 pages.      
  • M. R. and B. Temple, “Shock wave Interactions and the Riemann-flat condition: The geometry behind metric smoothing and the existence of locally inertial frames in General Relativity”, Arch. Rat. Mech. Anal. 235 (2020), 1873-1904.                                                         
  • M. R., “Spacetime is locally inertial at points of general relativistic shock wave interaction between shocks from different characteristic families”, Adv. Theor. Math. Phys. 21.6 (2017), 1525-1611. 
  • F. Finster and M. R., “A non-perturbative construction of the Fermionic Projector on globally hyperbolic manifolds I - Space-times of finite lifetime”, Adv. Theor. Math. Phys. 19.3 (2015), 761-803.  

Panpan REN

[1] Panpan Ren, (2023)Singular McKean-Vlasov SDEs: Well-posedness, regularities and Wang’s Harnack inequality. Stoc. Proc. and their Appl. no .156: 291-311.

[2] Panpan Ren, (2022)Order Preservation and Positive Correlation for Nonlinear Fokker Planck Equations. Electron. Commun. Probab. no.27, 1-12.

[3] Panpan Ren, Michael Roeckner, Feng-Yu Wang(2022), Linearization of Nonlinear Fokker-Planck Equations and Applications. Journal of Differential Equations. no. 322, 1-37

[4] Panpan Ren, Feng-Yu Wang, (2021) Derivative Formulas in Measure on Riemannian Manifolds. Bullet of London Math. Society. Doi:10.1112/blms.12542.

[5] Panpan Ren, Feng-Yu Wang (2019), Bismut Formula for Lions Derivative of Distribution Dependent SDEs and Applications. Journal of Differential Equations. no.8,4745-4777.

Stephen SMALE

  • M. SHUB and S. SMALEComplexity and Bezout's Theorem IV: Probability of Success, Extensions, to appear in SIAM J. of Numerical Analysis. Feb '96.
  • M. SHUB and S. SMALEComplexity of Bezout's Theorem V: Polynomial time, Theoretical Computer Science, (1994) pp 141–164.
  • M. SHUB and S. SMALEOn the Intractability of Hilbert's Nullellensatz and an Algebraic Version of "NP ≠ P?", to appear in Duke Math. J. (special volume honoring John Nash).

Roderick S. C. WONG

  • W.-Y. QIU and R. WONGUniform Asymptotic Formula for Orthogonal Polynomials with Exponential Weight, SIAM J. Math. Anal., 31 (2000), 992–1029.
  • C.-K. QU and R. WONG"Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function, Trans. Amer. Math. Soc., 351 (1999), 2833–2859.
  • X.-H. JIANG and R. WONGJustification of a Perturbation Approximation of the Klein-Gordon Equation, Studies Appl. Math., 102(1999), 375–417.
  • Y.-Q. ZHAO and R. WONGSmoothing of Stokes Discontinuity for the Generalized Bessel Function II, Proc. Roy. Soc. Lond. Ser. A, 455 (1999), 3065–3804.
  • X.-S. JIN and R. WONGUniform Asymptotic Expansions for Meixner Polynomials, Constr. Approx., 14 (1998), 113–150.

Jonathan WYLIE

  • J. J. Wylie, B. H. Bradshaw-Hajek & Y. M. Stokes "The evolution of a viscous thread pulled with a prescribed speed" Journal of Fluid Mechanics 795, 380 (2016).
  • J. J. Wylie, H. Huang & R. M. Miura "Stretching of viscous threads at low Reynolds numbers" Journal of Fluid Mechanics 683, 212 (2011)
  • S. Ben Hariz, J. J. Wylie & Q. Zhang, "Optimal rate of convergence for nonparametric change-point estimators for non-stationary sequences", Annals of Statistics 35, 1802 (2007).
  • J. J. Wylie, Q. Zhang & X. X. Sun, "Anomalous Ritchmyer-Meshkov Fingering in Dissipative Particle Systems", Physical Review Letters 97, 104501 (2006).
  • J. J. Wylie, B. Voight & J. A. Whitehead, "Instability of magma flow with volatile-dependent viscosity", Science 285, 1883 (1999).

Wei XIANG

1. Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle. Huang, F., Kuang, J., Wang, D. & Xiang, W., Dec 2021, Annals of PDE. 7, 2, 96 p., 23.

2. Stability of Attached Transonic Shocks in Steady Potential Flow past Three-Dimensional Wedges. Chen, G. G., Chen, J. & Xiang, W., Oct  2021, In: Communications in Mathematical Physics. 387, 1, p. 111–138 28 p.

3. Convexity of Self-Similar Transonic Shocks and Free Boundaries for the Euler Equations for Potential Flow. CHEN, G. G., FELDMAN, M. & XIANG, W., Oct 2020,  Archive for Rational Mechanics and Analysis. 238, 1, p. 47–124

4. Incompressible Jet Flows in a de Laval Nozzle with Smooth Detachment. CHENG, J., DU, L. & XIANG, W., May 2019, Archive for Rational Mechanics and Analysis. 232, 2, p. 1031-1072

5. Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles. Chen, G. G., Huang, F., Wang, T. & Xiang, W., 13 Apr 2019, Advances in Mathematics. 346, p. 946-1008 63 p.

 

Shun ZHANG

  • Z. Cai, C. He, & S. Zhang, (2017), Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates, SIAM Jounral on Numerical Analysis, 55(1), 400-418.
  • J.S. Hesthaven & S. Zhang, (2016), On the Use of ANOVA Expansions in Reduced Basis Methods for Parametric Partial Differential Equations, Journal of Scientific Computing, 69(1), 292-313.
  • J.S. Hesthaven, B. Stamm & S. Zhang, (2014), Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods, ESAIM: Mathematical Modelling and Numerical Analysis, 48(1), 259-283.
  • Z. Cai, X. Ye, & S. Zhang (2011), Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM Journal on Numerical Analysis, 49 (5), 1761-1787.
  • Z, Cai & S. Zhang (2009), Recovery-based error estimator for interface problems: Conforming linear elements, SIAM J. Numer. Anal, 47 (3), 2132-2156.

Lina ZHAO

1. Lina Zhao, Eric T. Chung, Eun-Jae Park and Guanyu Zhou, Staggered DG Method for Coupling of the Stokes and Darcy--Forchheimer Problems, SIAM Journal on Numerical Analysis, 59 (2021), pp.1-31.

2. Lina Zhao, Eric T. Chung and Ming Fai Lam,  A new staggered DG method for the Brinkman problem robust in the Darcy and Stokes limits, Computer Methods in Applied Mechanics and Engineering, 364 (2020),https://doi.org/10.1016/j.cma.2020.112986.

3.Dohyun Kim, Lina Zhao and Eun-Jae ParkStaggered DG Methods for the Pseudostress-Velocity Formulation of the Stokes Equations on General Meshes, SIAM Journal on Scientific Computing, 42 (2020), pp. A2537-A2560

4. Lina Zhao and Eun-Jae ParkA Staggered Cell-Centered DG Method for Linear Elasticity on Polygonal Meshes, SIAM Journal on Scientific Computing, 42 (2020), pp. A2158-A2181

5. Lina Zhao and Eun-Jae ParkA Staggered Discontinuous Galerkin Method of Minimal Dimension on Quadrilateral and Polygonal Meshes, SIAM Journal on Scientific Computing, 40 (2018), pp. A2543-A2567

Xiaosheng ZHUANG

  • Wang, Y. G. & Zhuang, X. (2020), Tight framelets and fast framelet filter bank transforms on manifolds. Applied and Computational Harmonic Analysis, 48(1): 64-95.
  • Han, B., Mo, Q., Zhao, Z. & Zhuang, X. (2019), Directional compactly supported tensor product complex tight framelets with applications to image denoising and inpainting. SIAM Journal on Imaging Sciences, 12 (4): 1739-1771.
  • Han, B., Li, T., & Zhuang, X. (2019), Directional compactly supported box spline tight framelets with simple geometric structure, Applied Mahtematics Letters, 91: 213-219.
  • Che, Z. & Zhuang, X. (2018), Digital affine shear filter banks with 2-Layer structure and their applications in image processing. Transactions on Image Processing, 27(8): 3931-3941.
  • Han, B., Jiang, Q.T., Shen, Z.W. & Zhuang, X. (2018), Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness. Mathematics of Computation. 87 (309): 347-379.