Collaboration Institutes
  • Chinese Academy of Sciences
  • Tsinghua University
  • Zhejiang University
  • Southeast University
  • Shanghai University
  • Chongqing University
  • Xiamen University
  • Jilin University
  • Northeastern University
  • Central South University
  • Shanghai Jiao Tong University
  • Harbin Engineering University
  • Harbin Institute of Technology
  • Beijing University of Technology
  • Dalian University of Technology
  • South China University of Technology
  • Southern University of Science and Tech
  • Jiangsu University Of Science And Tech
  • University of Hong Kong
  • The Hong Kong Polytechnic University
  • Chinese University of Hong Kong
  • Hong Kong University of Science and Tech
  • National Tsing Hua University
  • Northwestern University
  • ......

Publications(Google Scholar/JH LUAN)

[64] A highly distorted ultraelastic chemically complex Elinvar alloy

Q. F. He, J. G. Wang, H. A. Chen, Z. Y. Ding, Z. Q. Zhou, L. H. Xiong, J. H. Luan,...C. T. Liu, C. W. Pao, D. J. Srolovitz, Y. Yang. Nature  602, 251-257, 2022.

[63] In situ design of advanced titanium alloy with concentration modulations by additive manufacturing

T. L. Zhang, Z Huang, T Yang, H Kong, J.H. Luan, ... W Kuo, Y Wang, C.T. Liu. Science 374(6566), 478-482, 2021.

[62] Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces

T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, C.T. Liu. Science 369, 427-332, 2020.

[61 Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys

T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu. Science 362, 933-937, 2018.

[60] Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations

T. Li, T.W. Liu, S. Zhao, Y. Chen, J.H. Luan, Z.B. Jiao, R. O Ritchie, L.H. Dai.  Nature Communications 14(1): 3006, 2023.

[59] Oxidation-induced superelasticity in metallic glass nanotubes

F.C. Li, Z. Zhang, H. Liu, W. Zhu, ... J.H. Luan, Y.H. Liu, P.F. Guan, Y. Yang.  Nature Materials 1-6, 2023.

[58] Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion

B. Xiao, J.H. Luan, S.J. Zhao, L.J. Zhang, S. Chen, Y.L. Zhao, L. Xu, C.T. Liu, J.J. Kai, T. Yang. Nature Communications 13(1): 4870, 2022.

[57] High-entropy induced a glass-to-glass transition in a metallic glass

H.W. Luan, X. Zhang, H. Ding, F. Zhang, J.H. Luan, Z.B. Jiao, ... C.T. Liu, K.F. Yao. Nature Communications 13(1): 2183, 2022.

[56] Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures

L. Fan, T. Yang, Y.L. Zhao, J.H. Luan, G. Zhou, H. Wang, Z.B. Jiao, C.T. Liu. Nature Communications 11, 6240, 2020.

[55] Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity

G. Wu, C. Liu, L. Sun, Q. Wang, B. Sun, B. Han, J.J. Kai, J.H. Luan, C.T. Liu, K. Cao, Y. Lu, L. Cheng, J. Lu. Nature communications 10 (1), 1-8, 2019.

[54] Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability

H. Li, A.D .Wang, T. Liu, P. Chen, A. He, Q. Li, J.H. Luan, C.T. Liu. Materials Today 42, 49-56, 2021.

[53] Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning

B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao. Acta Materialia 205, 116561, 2021.

[52] Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates

M.C. Niu, L.C. Yin, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao. Acta Materialia 209, 116788, 2021.

[51] Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys

Z.Y. Ding, B.X. Cao, J.H. Luan, Z.B. Jiao. Corrosion Science 184, 109365, 2021.

[50] Precipitation behavior in G-phase strengthened ferritic stainless steels

M. Yang, DJM King, I. Povstugar, Y. Wen, J. Luan, B. Kuhn, Z. Jiao, C. Wang, MR Wenman, X. Liu. Acta Materialia 205, 116542, 2021.

[49] A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ′-solvus temperature and superior high-temperature strength

B.X. Cao, H.J. Kong, Z.Y. Ding, S.W. Wu, J.H. Luan, Z.B. Jiao, J. Lu, C.T. Liu, T. Yang. Scripta Materialia 199, 113826, 2021.

[48] Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement

B.X. Cao, H.J. Kong, L. Fan, J.H. Luan, Z.B. Jiao, J.J. Kai, T. Yang, C.T. Liu. Scripta Materialia 194, 113622, 2021.

[47] Thermal stability and high-temperature mechanical performance of nanostructured W–Cu–Cr–ZrC composite

L. Cao, C. Hou, F. Tang, S. Liang, J. Luan, Z. Jiao, C. Liu, X. Song, Z. Nie. Composites Part B: Engineering 208, 108600, 2021.

[46] Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures

W. Li, T.H. Chou, T. Yang, W.S. Chuang, J.C. Huang, J. Luan, X. Zhang, X. Huo, J. Hao, Q. He, X. Du, C.Liu, F. Chen. Applied Materials Today 23, 101037, 2021.

[45] A plastic FeNi-based bulk metallic glass and its deformation behavior

J Zhou, Q Wang, Q Zeng, K Yin, A Wang, J Luan, L Sun, B Shen. Journal of Materials Science & Technology 76, 20-32, 2021.

[44] Liquefaction-induced plasticity from entropy-boosted amorphous ceramics

H. Bian, Q. He, J. Luan, Y. Bu, Y. Yang, Z. Xu, J. Lu, Y.Y. Li. Applied Materials Today 23, 101011, 2021.

[43] Zr addition-dependent twin morphology evolution and strengthening response in nanostructured Al thin films

G.Y. Li, Y.Q. Wang, J.D. Zuo, M. Zhang, C. He, X. Feng, J.H. Luan, Y. Lu, J.Y. Zhang, S. Cazottes, D. Kiener, G. Liu, J. Sun. Materialia 16, 101076, 2021.

[42] Effects of minor Si addition on structural heterogeneity and glass formation of GdDyErCoAl high-entropy bulk metallic glass

L. Shao, Q. Wang, L. Xue, M. Zhu, A. Wang, J. Luan, K. Yin, Q. Luo, Q Zeng, L. Sun, B. Shen. Journal of Materials Research and Technology 11, 378-391, 2021.

[41] Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys

Y. Li, X. Jia, W. Zhang, Y. Zhang, G. Xie, Z. Qiu, J. Luan, Z. Jiao. Journal of Materials Science & Technology 65, 171-181, 2021.

[40] Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys

T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu. Acta Materialia 189, 47-59, 2020.

[39] Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions

H.J. Kong, T. Yang, R. Chen, S.Q. Yue, T.L. Zhang B.X.Cao, C.Wang W.H. Liu, J.H. Luan, Z.B. Jiao, B.W.Zhou, L.G.Meng, A.Wang, C.T. Liu. Scripta Materialia 186, 213-218, 2020.

[38] Control of discontinuous and continuous precipitation of γʹ-strengthened high-entropy alloys through nanoscale Nb segregation and partitioning

L Fan, T Yang, J H Luan, Z B Jiao. Journal of Alloys and Compounds 154903, 2020.

[37] Water Splitting: A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution

Z Jia, T Yang, L G Sun, Y L Zhao, W P Li, J H Luan, ...& J. Lu, C T Liu. Advanced Materials 32 (21), 2070166, 2020.

[36] Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions

S S Xu, Y W Liu, Y Zhang, J H Luan, J P Li, L X Sun, Z B Jiao, Z W Zhang, C T Liu. Materials Research Letters 8(5), 187-194, 2020.

[35] A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution

Z Jia, T Yang, L G Sun, Y L Zhao, W P Li, J H Luan, ...& J. Lu, C T Liu. Advanced Materials 32 (21), 2000385, 2020.

[34] Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry

W Zhu, C Zhao, Y Zhang, CT Kwok, J Luan, Z Jiao, F Ren. Acta Materialia 188, 697-710, 2020.

[33] Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel

S S Xu, J P Li, Y Cui, Y Zhang, L X Sun, J Li, J H Luan, Z B Jiao, X L Wang, C T Liu, Z W Zhang. International Journal of Plasticity 128, 102677, 2020.

[32] Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods

J Ruan, W Xu, T Yang, J Yu, S Yang, J Luan, ...& X J Liu. Acta Materialia 186, 425-433, 2020.

[31] Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films

S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh. Journal of Alloys and Compounds 820, 153388, 2020.

[30] Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions

H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu. Acta Materialia 172, 150-160, 2019.

[29] Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy

T. Yang, Y.L. Zhao, J.H. Luan, B. Han, J. Wei, J.J. Kai, C.T. Liu. Scripta Materialia 164, 30-35, 2019.

[28] Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy

Y. Zhao, T. Yang, B. Han, J. Luan, D. Chen, W. Kai, C.T. Liu, J. Kai Materials Research Letters 7 (4), 152-158, 2019.

[27] Attractive In Situ Self‐Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance

Z. Jia, Q. Wang, L. Sun, Q. Wang, L. Zhang, G. Wu, J. Luan, Z. Jiao, A. Wang, S. Liang, M. Gu, J. Lu. Advanced Functional Materials 180785717, 2019.

[26] Attractive In Situ Self‐Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance

Z. Jia, Q. Wang, L. Sun, Q. Wang, L. Zhang, G. Wu, J. Luan, Z. Jiao, A. Wang, S. Liang, M. Gu, J. Lu. Advanced Functional Materials 29 (19), 1970131, 2019.

[25] A novel ferritic steel family hardened by intermetallic compound G-phase

M.J. Yang, J.H. Zhu, T. Yang, J.H. Luan, Z.B. Jiao, ...& C.P. Wang, C.T. Liu, X.J. Liu. Materials Science and Engineering: A 745, 390-399, 2019.

[24] Effect of Mo: W ratio on segregation behavior and creep strength of nickel-based single crystal superalloys

L. Zhang, Z. Huang, L. Jiang, J. Luan, Z. Jiao, C.T. Liu. Materials Science and Engineering: A 744, 481-489, 2019.

[23] Atomic-scale heterogeneity in large-plasticity Cu-doped metallic glasses

C.C. Yuan, Z.W. Lu, C.M. Pang, X.L. Wu, S. Lan, C.Y. Lu, L.G. Wang, H.B. Yu, J.H. Luan, W.W. Zhu,... & B.L. Shen. Journal of Alloys and Compounds 798, 517-522, 2019.

[22] High performance Fe-based nanocrystalline alloys with excellent thermal stability

T. Liu, F, A Wang, L Xie, Q He, J, A He, X Wang, C.T. Liu, Y Yang. Journal of Alloys and Compounds 776, 606-613, 2019.

[21] Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography

B. Huang, T.P. Ge, G.L. Liu, J.H. Luan, Q.F. He, ...& C.T. Liu, Y. Yang, W.H. Wang. Acta Materialia 155, 69-79, 2018.

[20] High-Entropy Alloy (HEA)-Coated Nanolattice Structures and Their Mechanical Properties

L.B. Gao, J. Song, Z.B. Jiao, W.B. Liao, J.H. Luan, J.U. Surjadi, J.Y. Li, H.T. Zhang, D. Sun, C.T. Liu, Y. Lu. Advanced Engineering Materials 20 (1), 1700625, 2018.

[19] Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel

Z.B. Jiao, J.H. Luan, W. Guo, J. D. Poplawsky, C.T. Liu. Materials Research Letters 5 (8), 562, 2017.

[18] Ultrahigh-strength steels strengthened by nanoparticles

Z.B. Jiao, C.T. Liu. Science Bulletin 2017.

[17] Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy

Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai. Acta Materialia 138, 72, 2017.

[16] Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era

Z.B. Jiao, J.H. Luan, M.K. Miller, Y. W. Chung, C.T. Liu. Materials Today 20(3), 142, 2017.

[15] Compositional and microstructural optimization and mechanical-property enhancement of cast Ti alloys based on Ti-6Al-4V alloy

J.H. Luan, Z.B. Jiao, W.H. Liu, Z.P. Lu, W.X. Zhao, C.T. Liu. Materials Science and Engineering: A 704, 91-101, 2017.

[14] Polysynthetic twinned TiAl single crystals for high-temperature applications

G.Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, ... & C.T. Liu. Nature materials 15(8), 876-881, 2016.

[13] Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles

Z.B. Jiao, J.H. Luan, W. Guo, J. D. Poplawsky, C.T. Liu. Acta Materialia 120, 216, 2016.

[12] Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels

Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, Y. Liu, C.T. Liu Acta Materialia 110, 31, 2016.

[11] Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, C.T. Liu. Scientific Reports 6, 21364, 2016.  

[10] Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases

W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu. Acta Materialia 116, 332-342, 2016.  

[9] Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles

Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu. Acta Materialia 97, 58, 2015.

[8] Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, C.T. Liu. Acta Materialia 84, 283, 2015.  

[7] Effects of boron on the fracture behavior and ductility of cast Ti–6Al–4V alloys

J.H. Luan, Z.B. Jiao, L. Heatherly, E.P. George, G. Chen, C.T. Liu. Scripta Materialia 100, 90-93, 2015.

[6] Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti-6Al-4V alloys

J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu. Journal of Alloys and Compounds 624, 170–178, 2015.

[5] Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying

J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu. Journal of Alloys and Compounds 602, 235-240, 2014.

[4] High strength steels hardened mainly by nanoscale NiAl precipitates

Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, C.T. Liu. Scripta Materialia 87, 45, 2014.

[3] Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels

Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, C.T. Liu. Acta Materialia 61, 5996, 2013.

[2] Effect of density difference of constituent elements on glass formation in TiCu-based bulk metallic glasses

Z.Y. Zhang, Z.B. Jiao, J. Zhou, Y. Wu, H. Wang, X.J. Liu, Z.P. Lu. Progress in Natural Science: Materials international 23, 469, 2013. 

[1] Research and development of advanced nano-precipitate-strengthened ultra-high strength steels

Z.B. Jiao, C.T. Liu. Materials China 30, 6, 2011.

Book Chapter

[1] Copper-rich nanoclusters: ferritic steels strengthened

C.T. Liu, Z.B. Jiao, J.H. Luan. a chapter in the book Encyclopedia of Iron, Steel, and Their Alloys, edited by Rafael Colás, George E. Totten, Taylor & Francis Group, 2015.

Patents

Super-high strength ferritic steel reinforced with nano-intermetallics and manufacturing method thereof

C.T. Liu, Z.B. Jiao

China Patent 201310080019.7, filed 2013, issued 2017.

Ultrahigh strength ferritic steel strengthened by using Cu-rich nanoclusters and manufacturing thereof

C.T. Liu, Z.B. Jiao

China Patent 201310081053.6, filed 2013, issued 2016.

The below graphics illustrates the growth of Atom Probe Tomography in the word
Adoption by the scientific community and publication rate have grown exponentially over the past 10 years, witnessing the coming of age of Atom Probe Tomography, the only microanaytical technique providing full insight into the nanostructures of materials.