CHEN, Xi

CHEN, Xi (陳曦)

Assistant Professor (Department of Biomedical Sciences & Department of Neuroscience)

PhD (PolyU)

BSc (USTC)

  • Y7306, 7/F, Yeung Kin Man Academic Building
  • +852 3442-9754
  • +852 3442-9754
  • CityU Scholars
  • Lab Website
  • higher order cortex • primary sensory cortex • neural circuit • innate responses • associative memory

Prof. Xi Chen received his BSc in Biosciences from University of Science and Technology of China and PhD in Neuroscience from The Hong Kong Polytechnic University, studying how the auditory cortex encodes a cross-modality associative memory. He received the postdoctoral training at The Hong Kong Polytechnic University and later at City University of Hong Kong, focusing on the mechanism of a neuropeptide (Cholecystokinin) induced neural plasticity. In 2019, he was appointed as a Research Assistant Professor in the Department of Neuroscience at City University of Hong Kong, exploring how the anterior cingulate cortex encodes the negative valence and then enhances auditory cortical responses. In 2024, he joined the Departments of Biomedical Sciences and Neuroscience at City University of Hong Kong.

Research Interests

Prof. Chen’s research interests are studying how the higher-order cortical areas encode information with high valence and how these areas modulate activities in sensory or other regions. By anatomical examination, physiological recordings, optogenetic/chemogenetic manipulations and behavioural tests, he will extend his research into three directions.

  1. Having elucidated the critical role of the anterior cingulate cortex (ACC) in the flight behaviour, he will further explore the function of the ACC – intra-laminar nucleus circuit (a cortical-thalamic circuit) in this innate behaviour, especially how the thalamic nucleus amplifies activities in the cortex.
  2. Considering the important role of the ACC in processing stimuli with high valence, he will further study how the ACC encodes negative valence and then guides the animals to make correct reactions when punishment is involved in a learning process.
  3. Given his results showing that the ACC can induce a long-term plastic change in the auditory cortex through the rhinal cortex, he plans to demonstrate further how the rhinal cortex is involved in the formation of the cue-reward associative memory.

Publication List

  1. Sun, W., Wu, H., Peng, Y., Zheng, X., Li, J., Zeng, D., Tang, P., Zhao, M., Feng, H., Li, H., Liang, Y., Su J., Chen, X.*, Hökfelt, T.*, & He, J.* (2024). Heterosynaptic plasticity of the visuo-auditory projection requires cholecystokinin released from entorhinal cortex afferents. Elife, 13, e83356.
  2. Asim, M., Wang, H., & Chen, X. (2024). Shedding Light on Cholecystokinin’s Role in Hippocampal Neuroplasticity and Memory Formation. Neuroscience & Biobehavioral Reviews, 105615.
  3. Huang, F., Bello, S. T., Baset, A., Chen, X., & He, J. (2024). Protocol for induction of heterosynaptic long-term potentiation in the mouse hippocampus via dual-opsin stimulation technique. STAR protocols, 5(1), 102860.
  4. Asim, M., Wang, H., Chen, X., He, J. (2024) Potentiated GABAergic neuronal activities in the basolateral amygdala alleviate stress‐induced depressive behaviors. CNS Neuroscience & Therapeutics, 30(3), e14422.
  5. Liu, H., Wang, J., Chen, X., & Huang, J. (2024). Neuron-Aware Brain-to-Computer Communication for Wireless Intracortical BCI. In Proceedings of the 25th International Workshop on Mobile Computing Systems and Applications (pp. 107-113).
  6. Bello, S.T., Xu, S., Li, X., Ren, J., Jendrichovsky, P., Jiang, F., Xiao, Z., Wan, X., Chen, X., He, J. (2024) Visually or auditorily induced seizures involve the activation of nonhippocampal brain areas and hippocampal removal does not alleviate seizures in a mouse model of temporal lobe epilepsy. Epilepsia, 65(1): 218-237.
  7. Su, J., Huang, F.*, Tian, Y., Tian, R., Gao, Q., Bello, S.T., Zeng, D., Jendrichovsky, P., Lao, C.G., Xiong, W., Yu, D., Tortorella, M., Chen, X.*, He, J.* (2023) Entorhinohippocampal cholecystokinin modulates spatial learning by facilitating neuroplasticity of hippocampal CA3-CA1 synapses. Cell Reports, 42(12), 113467.
  8. Liang, Y., Li, J., Tian, Y., Tang, P., Liu, C., Chen, X.* (2023) The anterior cingulate cortex promotes long-term auditory cortical responses through an indirect pathway via the rhinal cortex in mice. The Journal of Neuroscience, 43(23), 4262-4278
  9. Li, X., He, L., Hu, X., Huang, F., Wang, X., Chen, M., Yoon, E.G., Bello, S.T., Chen, T., Chen, X., Tang, P., Chen, C., Qu, J., He, J. (2023). Interhemispheric cortical long-term potentiation in the auditory cortex requires heterosynaptic activation of entorhinal projection. iScience, 26: 106542.
  10. He, L., Shi, H., Zhang, G., Peng, Y., Ghosh, A., Zhang, M., Hu, X., Liu, C., Shao, Y., Wang, S., Chen, L., Sun, W., Su, J., Chen, X., Zhang, L., Chan, Y.S., Pei, D., Tortorella, M., Guo, Y., Yan, H., He, J. (2023) A Novel CCK Receptor GPR173 Mediates the Potentiation of GABAergic Inhibition. The Journal of Neuroscience, 43(13): 2305-2325.
  11. Lau, S.H., Young, C.H., Zheng, Y., Chen, X.* (2023) The potential role of the cholecystokinin system in declarative memory. Neurochemistry International, 162: 105440.
  12. Liu, Y.$, Chen, X.$, Liang, Y.$, Song, H., Guan, S., Liu, Z., Yang, A., Tang, M., Deng, Z., Zhou, Y., Zheng, Y., Yang, Z., Jiang, L., He, J., Lin, X. (2022)  Ferromagnetic flexible electronics for brain-wide selective neural recording. Advanced Materials, 2208251.
  13. Lyu, C, Yu, C., Sun, G., Zhao, Y., Cai R., Sun, H., Wang, X., Jia, G., Zhou, L., Chen, X., Zhou, L., Shen, Y., Gao, L., Li, X. (2022) Deconstruction of vermal cerebellum in ramp locomotion in mice. Advanced Science, 202203665.
  14. Malik, A., Eldaly, A.B.M., Agadagba, S.K., Zheng, Y., Chen, X., He, J., Chan, L.L.H. (2022). Neuromodulation in developing visual cortex after long-term monocular deprivation. Cerebral Cortex, bhac448.
  15. Sun, W., Tang, P., Liang, Y., Li, J., Feng, J., Zhang, N., Lu, D., He, J.*, & Chen, X.* (2022). The anterior cingulate cortex directly enhances auditory cortical responses in air-puffing facilitated flight behavior. Cell Reports, 38(10), 110506.
  16. Feng, H., Su, J., Fang, W., Chen, X., & He, J. (2022). The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin. Elife, 10, e69333.
  17. Zhang, Z., Zheng, X., Sun, W., Peng, Y., Guo, Y., Lu, D., Zheng, Y., Li, X., Jendrichovsky, P., Tang, P., He, L., Li, M., Liu, Q., Xu, F., Ng, G., Chen, X., & He, J. (2020). Visuoauditory associative memory established with cholecystokinin under anesthesia is retrieved in behavioral contexts. The Journal of Neuroscience, 40(10): 2025-2037.
  18. Wang, H., Chen, J., Xu, X., Sun, W., Chen, X., Zhao, F., Luo, M., Liu, C., Guo, Y., Xie, W., Zhong, H., Bai, T., Tian, Y., Mao, Y., Ye, C., Tao, W., Li, J., Farzinpour, Z., Li, J., Zhou, J., Wang, K., He, J., Chen, L., & Zhang, Z. (2019). Direct auditory cortical input to the lateral periaqueductal gray controls sound-driven defensive behavior. PLoS Biology, 17(8): e3000417.
  19. Chen, X.$, Li, X.$, Wong, Y.T.$, Zheng, X., Wang, H., Peng, Y., Feng, H., Feng, J., Baibado, J.T., Jesky, R., Wang, Z., Xie, H., Sun, W., Zhang, Z., Zhang, X., He, L., Zhang, N., Zhang, Z., Tang, P., Su J., Hu, L., Liu, Q., He, X., Tan, A., Sun, X., Li, M., Wong, K., Wang, X., Cheung, H., Shum, D.K.Y., Tung K.K.L., Chan, Y., Tortorella, M.D., Guo, Y.P., Xu, F. & He, J. (2019). Cholecystokinin release triggered by NMDA receptors produces LTP and sound-sound associative memory. Proceedings of the National Academy of Sciences of the United States of America, 116(13): 6397-6406.
  20. Lin, X., Chen, X., Zhang, W., Sun, T., Fang, P., Liao, Q., Chen, X., He, J., Liu, M., Wang, F., & Shi, P. (2018). Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Nano Letters, 18(2): 978-956.
  21. Wang, Y.$, Lin, X.$, Chen, X.$, Chen, X., Xu, Z., Zhang, W., Liao, Q., Duan, X., Wang, X., Liu, M., & Wang, F. (2017). Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials. 142:136-148.
  22. Chen, X.$, Liao, Z.$, Wong, Y., Guo, Y., & He, J. (2014). Time course of the dependence of associative memory retrieval on the entorhinal cortex. Neurobiology of Learning and Memory, 116:155-161.
  23. Li, X., Yu, K., Zhang, Z., Sun, W., Yang, Z., Feng, J., Chen, X., Liu, C., Wang, H., Guo, Y., & He, J. (2014). Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex. Cell Research, 24(3): 307-330.
  24. Alam, M., Chen, X., Zhang, Z., Li, Y., & He, J. (2014). A Brain-Machine-Muscle Interface for Restoring Hindlimb Locomotion after Complete Spinal Transection in Rats. PloS one, 9(8): e103764.
  25. Alam, M.$, Chen, X.$, & Fernandez, E. (2013). A low-cost multichannel wireless neural stimulation system for freely roaming animals. Journal of Neural Engineering, 10(6): 066010.
  26. Chen, X., Guo, Y., Feng, J., Liao, Z., Li, X., Wang, H., Li, X., & He, J. (2013). Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex. The Journal of Neuroscience, 33(24): 9963-9974.
  27. Yu, X., Xu, X., Chen, X., He, S., & He, J. (2009). Slow recovery from excitation of thalamic reticular neurons. Journal of Neurophysiology, 101(2): 980-987.

29 April 2024

More Faculty