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ON PRIMAL-DUAL VARIATIONAL

PRINCIPLES IN MECHANICS

J.T. Oden and J.N. Reddy, “On dual-complementary variational
principles in mathematical physics,” Int. J. Engng Science,
12, 1-29 (1974). Supported by AFOSR

e Variational principles for T°ET(u)+f=0 in Q and
S'CS(x)+n=0 in Q
* 14 Variational principles of elasticity: 7 primal and 7 dual;
* Fluid mechanics, electrostatics, magnetostatics; and
nonlinear operators

All conventional as well as mixed variational principles are
derived. Several of these principles formed the basis of the
mixed, hybrid, and assumed strain finite element models
(they were not cited often because our work was a bit
mathematical and buried in the literature).

JN Reddy S



THIRD-ORDER SHEAR
DEFORMATION THEORIES

CLPT, FSDT J.N. Reddy, “A simple higher-order theory for
z ) / laminated composite plates,” J. of Applied Mechanics,
51, 745-752 (1984). (over 2000 citations)

!{/ J.N. Reddy and C.F. Liu, “A higher-order shear
| deformation theory for laminated elastic shells,” Int.
J. of Engng. Sci., 23(3), 319-330 (1985). (800 citations)

/ Transverse shear stress
/' - O'xz(x,y,Z)
du Jw v Jw
- - T T T
Displacement field < 0X z 0y

w(x,y,2) = u,(x,y) + 29, (x,y) + 2°0_(x, ) + 2°A_(x,y)
v(x,y,2) = U, (x,y) + 20, (x,5) + 270 (x,y) + 2°X (x,¥)

JN Reddy LU(x,y,Z) = wo(xay) 12



'S THIRD-ORDER SHEAR

DEFORMATION THEORY

Z | Transverse shear strains

au ouw = ¢ (x,y)+ 220 (x,y) + 3z°)_(x, y)+8_w

Bz 0x 0x
8v+8w =, (x,y) +220, (x,y) + 32"\ (x, y)+a—w
0z dy dy
o Vanishing of transverse shear stresses on the
/ -** bounding planes

0.(x,y,th/2)=0 (x,y,£h/2)=0 =0 (x,y) =0 (x,y)=0

fy.’XJZ

/}/yz —

N LT

TSDT 4 Y
)\x(xay): h2 |:¢x(x7y)+a_:|7)\y(x’y): |:¢ (.’XI y) :|
X dy

v(x,y,Z) - UO(x’y) o ngy(X,y) — g;z [¢y +?)_;ljj

JN Reddy w(x,y,z) = wo(x,y)



Bending of a symmetric cross-ply (0/90), laminate
(SS-1)under uniformly distributed load
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Bending of a symmetric cross-ply (0/90), laminate
(SS-1)under uniformly distributed load
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JN Reddy Third-Order Laminate Theory 16



LAYERWISE LAMINATE PLATE THEORY
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LAYERWISE LAMINATE PLATE THEORY

Equilibrium Requirements
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LAYERWISE THEORY KINEMATICS

4

Ith layer N
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LAYERWISE KINEMATIC MODEL
Conventional 3D Layerwise 2D + 1D
o o ¢
//‘. --e- % Linear
” serendipity Lagrange
- le ° element element
o o ®
o ool
(1b)
. ®
//:_ - % Quadratic
o, serendipity @ Lagrange
~ 2o element element
.
o
(2a) (n-plane) (tt}}lllizllilgl}elss)

J.N. Reddy (2b) 12



JN Reddy

Table: Comparison of the number of operations needed to
form the element stiffness matrices for equivalent el-
ements in the conventional 3-D format and the lay-
erwise 2-D format. Full quadrature is used in all.

Element TypeT Multipli.  Addition  Assignments
la (3-D) 1,116,000 677,000 511,000
b (LWPT) 423,000 370,000 106,000
2a (3-D) 1,182,000 819,000 374,000
2b (LWPT) 284,000 270,000 69,000

T Element 1a: 72 degrees of freedom, 24-node 3-D isopara-
metric hexahedron with cubic in-plane interpolation and
linear transverse interpolation.

Element 1b: 72 degrees of freedom, E12-L1 layerwise
element.

Element 2a: 81 degrees of freedom, 27-node 3-D isopara-
metric hexahedron with quadratic interpolation in all
three directions.

Element 2b: 81 degrees of freedom, E9—Q1 layerwise el-
ement.

13



Layerwise Kinematic Model
3D modeling with 2D & 1D elements

z

z

T ® ® o—») e €

[ [ o

° ° y
[ J [
. St oo
a
h o _& /2 I 2-D quadratic ? $
> - x Lagrangian element

Yy 7 &% .
three quadratic layers
through the thickness

Fy =25 x10% psi, FE, = F3 = 10° psi
Gia = 0.5x10°% psi, G135 = Ga3 = 0.2x10° psi, 149 = v13 = a3 = 0.25

u(x,a/2,z) =u(a/2,y,z) =0
v(a/2,y,z) =u(x,a/2,z) =0
J.N. Reddy w(z, a,z) =u(a,y,2z) =0 22



In-plane Stresses predicted by the

JN Reddy

Layerwise Theory
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Transverse shear stresses predicted
by the Layerwise Theory

—
O

0.8 /

Exact 3-D Elasticity
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z/h - | ——— FsDT
0.4 B
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JN Reddy Transverse shear stress, 6, 24
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Variable Kinematic Model

for Global-Local Analysis

Composite displacement field:
ui(z,y,2) = uf > (x,y, 2) + w7 (2,y, 2)
ESL Displacement field:
uy*H(x,y, 2) = uo(2,y) + 2¢(2,y)
ud (2, y, 2) = vo(z,y) + 20y(z,y)
ug**(z,y,2) = wo(x,y)

LWT Displacement field:
N

u{/WT('ra Y, Z) - Z UI(xa y)(I)I(z)
I=1

N
wy" T (2,y,2) =Y Vi(z,y)®'(2)
I=1

M
ug "V (@,y,2) =) Wiz, y) ¥ (2)
JN Reddy I=1

25
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An Efficient Shell Finite Element

Objective: Develop a robust shell element for the
linear and nonlinear analysis of shell structures
made of multilayered composites and functionally
graded materials that is computationally efficient
(i.e., accurate and computationally inexpensive).

Thickness stretch
o 7-parameter displacementfield isincluded

u(X(&nd))=u(&n)+¢ iLq)(éin) W 44‘15/(5,77)13
2 9

e F.E. approximation of displacement field

u=iwk(§,n{ +§ <p+ LS k}

JN Reddy 32



NOTABLE FEATURES

> Notable features of the 7-parameter formulation
= Thickness stretching is considered

= Three-dimensional constitutive equations are
used

= Consistent displacement finite element
formulation

> Notable features of present implementation

= Utilization of spectral/hp finite element
technology to represent the differential
geometry and avoid locking

= Static condensation of degrees of freedom
internal to the element

= Applicability to geometrically nonlinear
analysis of FGM and laminated structures



Spectral/Ap Finite Element Technology

Improving Numerical Efficiency: Static Condensation
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Benchmark Problem 1: Isotropic cylindrical

shell subjected to internal pressure

n L=052m, R=0.15m, h
0.03 m

s E=198 x10° Pa, v=0.3
= g=12x10° Pa
O 8X1,p:4

JN Reddy
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Thickness deformation vs. axial coordinate
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Point load Pvs. stress, 0., at point A
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Computational time

7-parameter 4 289 2023 66
12-parameter 4 289 3468 473
ANSYS solid 13824 16807 50421 6488

ABAQUS

) 13824 16807 50421 720
solid



THE LEAST-SQUARES METHOD

Given an operator equation of the form

Aw)=fin Q and B(u)=g¢g in I’
we seek suitable approximation of v as u,. In the
least-squares method, we seek the minimum of the
sum of squares of the residuals in the approximation

of the equations:

0= 61(u,) = 61 [ [A(wy) — fPax + & [Bu,) ol ds!

[ 2

JN Reddy 38



Variational Problem

(based on the least-squares formulation)

0=61(u) =8| [ [Aw,) — Tax + § [Bu,) o] ds|

Thus, the variational problem is to seek u, € H such that
B(6u, ,u, ) = ¢(6u, ) holds for all bu, € H

where

Bsu,u,) = [ 6[Aw,)) Alw,)dx + P 8 [Blu,)|B(w,)ds

Q

(ow) = [olaqw,)]fdx+ ¢ 6[B(u,)]gds

Q

JN Reddy Fluid Flow (LSFEM) 28



LEAST-SQUARES FORMUILATION

OF VISCOUS INCOMPRESSIBLE FLUIDS

Governing equations (Navier-Stokes equations)
1
Re
V-u=0 1In Q

(u-Vu+Vp——V- [(Vu)+(Vu)']=f in Q

u onT

u

u

-k >

no=t onT,

JN Reddy Fluid Flow (LSFEM) 29



VELOCITY-PRESSURE-VORTICITY

+

J(u,p,wf) =

JN Re

FORMULATION
(“W0“+VP—J;me=f in Q
Re

o -Vxu=0 In Q
V.u=0 in Q
V-o=0 in Q

u=u onTl

u

e

o=0 onTl,
1
5

e

(IS oot o

+||‘T-u||ﬁ+||‘~7-m||ﬁ)

39



Lid-Driven Cavity Problem

[a)

Streamlines

025

» Pressure contours « Dilatation contours
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RESULTS OF OTHER NON-TRIVIAL
FLOW PROBLEMS

05 r

-0.5

x/H

JN Reddy



Flow of a Viscous Incompressible Fluid
around a Cylinder-1

Close-up of mesh around

Mesh (501 elements; p=4) the cylinder

(a) (b)

|

10 -

-10 -

1 L 1 L 1 L 1 L 1
-10 0 10 20 30

JN Reddy Fluid Flow (LSFEM) 33



Circular Cylinder in Crossflow
Yorticity Contours

MNon-stationary incompressible M-S equations, e = 100

Least-Sguares time f space decoupled formulation

1200 elements with p = 2

JN Reddy Fluid Flow (LSFEM) 34



i 2D Flows Past a Circular Cylinder-2

o 2 . p 4 @
¥ Robust at moderately high Reynolds numbers: Re = 100 - 10*
¥ High p-level solution: p =4, 6, 8,10
B No filters or stabilization are needed

JN Reddy Fluid Flow (LSFEM) 35



Flow of a viscous fluid past a
circular cylinder-3

Incompressible flow past two circular cdinders in a side-ty-side arrangement
surfaceto-suface gap, S0 =085  Re=100
25.000 ricity, o, contours 300.000

vorticity contours

Least -squares finite element formm ulation

p-levels of 45402 in spacedime
JP . Pontaza, 20

JN Reddy Fluid Flow (LSFEM) 36



NON-LOCAL AND NON-CLASSICAL

CONTINUUM MECHANICS

Non-locality can arise from the way we
choose to model physical phenomena.

Some of the ways the non-locality is

modeled are:

» Cosserat or micropolar continuum,

» Strain gradient theories and Modified

couple stress theories,

» Eringen’s integral, differential, and
integro-differential models, and

» Peridynamics, which is an integral
representation of balance laws

accounting for long-range forces.
JN Reddy 43



MICRO- AND NANO-ELECTRO-
MECHANICAL SYSTEMS

—100 ym —
25kV AMRAY #0000

A

Normalized bending stiffness increases as the
cantilever beam thickness decreases. Measurable at

micron-order thicknesses. (McFarland & Colton,
2005) rr’ P 3EI Ewh®
3ET o (pL3 4(pL3

(p =1, for plane stress; ¢ =1—v* for plane strain)

JN Reddy



Biomechanics -Bones

Dynamical Study of Couple Stress
s..akes | Effects in Human Compact Bone

Torsional resonance experiments performed on wet human compact bone disclose

effects due to couple stress. The characteristic length, which is an additional I f
material coefficient which appears in couple-stress theory, is of the order of the size J OU r n a. O
of osteons and appears to be smaller at high frequencies than at low frequencies.

The presence of couple-stress effects implies a reduction in the stress concentration B | OmeCh an | Cal

Jactor around holes, particularly small holes.

Osteons,d = 0.1 or 0.2 mm Engineering (1982)

=009 mm

Eff. shear stiffness

} L ! 1 1 {

S A : e i 5 5 > N 4 5 s
g-5 Transmitted light micrograph of a typical specimen. Specimen d(mm)
ameteris 2.62 mm.

- : Specimen diameter



LAKE'’s USE OF MICROPOLAR THEORY

TO EXPLAIN NONLOCAL EFFECTS
Classical continuum

o, =2UE,; + /wij £,

Cosserat continuum (Cosserats, 1909)

O = (Z,LL + /{)qj + A0y €y + /ieijm(wm — ¢, )
m; — « D1 5ij T B¢i,j T ’Yﬁbj,i

k, o, 0, and v are micropolar constants.

Professor Karan Surana has a presentation
on some elements of non-classical
continuum mechanics

JN Reddy



STRAIN GRADIENT ELASTICITY THEORY

(Srinivasa & Reddy, JMPS, 2013)

Why rotational gradient dependent elasticity?
Presence of very stiff secondary phases giving rise to
distinct microscopic length scale. Intuitively, the
secondary phase “rotates” with the material but does
not stretch with it; interference between neighbors
causes It to resist rotational gradients leading to couple

stresses.
CNT reinforced polymers and nematic elastomers

I'I B T _'lr_l."'_

Bl
{

PA12 with 626 SWNT (ShOWing network formation) Nematic elastomer with hard nematic
introducing distinct microscopic length scale phase of random orientation embedded in

JN Reddy a soft polymer matrix



GRADIENT ELASTICITY THEORY

(Srinivasa & Reddy, JMPS)

o S =— — =
Conventional stress a8~ g Eaﬁ B 9F
“Bending” le st _ O
ending”’ couple stress T = v Gradient
“ dependent
“Drilling” couple stress T, = ;—T terms
w

Governing equations in terms of stress resultants :

a2 N\
N5~ sTgs =0

M ;.05 — [(N +N5) ]a:O

3% as
N\ ’ Y,

JN Reddy



TIMOSHENKO BEAM THEORY

0= LL L (0,8 +20 _+0_bc_+2m by, |dAdx

L
—f (qéw+ f bu)dx
0
d dM
——(N,,)-f=0, —=+@Q,=0
d dw dn
——|Q +N — —q=0
Mindlin model Srinivasa-Reddy model
db do
B R St
the square root of the ratio of the : .
moduli of curvature to the shear Neetdsttofbe lntel.‘gretedl;il the
(a property measuring the effect of e e

the couple stress) Nonlocal - 43



Microstructure-dependent
sradient elasticity) Mindlin plate

JN Reddy /—h,/z T2 |: or  orz ( or ) ]




Bending of a solid circular plate

r=a: w=¢=0=0, Clamped
r=a: w=M=P=0 Simply-supported
O_ """"" L e

-
~
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-
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-
-
-
-

-
-
-
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-
1 -
-
—————
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——————

2 L
~
=
4
- Couple—stress |
. Classical
JN Reddy 0 2 4 6 8 10



GraFEA: Dependence of nodal force on edge- strains

@ F3(e1,82,853,84,85)

4

Khodabakhshi, P, Reddy, J.N., Srinivasa, A.R., 2016. GraFEA: a graph-based
finite element approach for the study of damage and fracture in brittle
materials, Meccanica, 51 (12): 3129 — 3147.
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LESSONS LEARNED (WORDS OF WISDOM)

» Engineers and scientists “model” phenomena
that occurs in nature.

» Continuum mechanics iIs a means to an end; that
IS, It provides tools to construct a mathematical
model, analyze, and make a decision (towards
designing and building).

» There is no “complete” or “exact” mathematical
model of anything we like to model & analyze.

» We can only try to “improve” on what we
already know (often, goal-based thinking).

» Only two things that matter in engineering: (1)
Reliable functionality (or probability of failure)
and (2) cost of the product.

JN Reddy Nonlocal - 4



WORDS OF WISDOM (continued)

» Differentiability of field variables is not an
inherent attribute; we endowed them so
that we can gain some insights without
solving complex problems.

» With the computational tools we have, we can
account for missing terms, or reformulate the
classical continuum mechanics with non-
classical continuum mechanics (e.g., strain-
gradient theories, peridynamics, and others).

JN Reddy 49
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CLOSING REMARKS

» There is experimental as well as modeling
evidence that indicates the non-locality in
materials manifests in different forms.

» Non-classical continuum mechanics brings
additional means to address missing effects
from the classical mechanics and explains
certain essential mechanisms that are
observed In experiments.

» Eringen’s differential model is a diffusion type
stress-gradient model. It shows stiffness
reduction (flexibility) effect. Thus, It has
limited application.

JN Reddy
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CLOSING REMARKS (continued)

» Strain gradient and modified coupe stress

theories are related, and they show stiffening
effect and allow for multiple length scales. They
can be used to model large structures without
using full 3-D models.

» Generalized (or non-classical) continuum

theories are required to model material behavior
more accurately. Such theories predict reduction
IN stress concentration factor around holes and
cracks, which can give rise to improved
toughness.

GraFEA has a great potential and it needs to be
developed further for inelastic and ductile
materials.



SUMMARY REMARKS

> Our works must be built on sound mechanics
foundation (wisdom to see details).

» We must develop robust computational tools
that make use of advances made in theoretical
developments and numerical methods.

» We must seek physically meaningful
experimental validations to understand and
predict the risks of failure (i.e., understand what
IS happening and use It to assess risk of failure).

JN Reddy
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