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J.T. Oden and J.N. Reddy, “On dual-complementary variational
principles in mathematical physics,” Int. J. Engng Science, 
12, 1-29 (1974). Supported by AFOSR

• Variational principles for 

• 14 Variational principles of elasticity: 7 primal and 7 dual;
• Fluid mechanics, electrostatics, magnetostatics; and

nonlinear operators

* ( ) 0 in andT ET u f+ = Ω
* ( ) 0 inS CS c h+ = Ω

All conventional as well as mixed variational principles are 
derived. Several of these principles formed the basis of the 
mixed, hybrid, and assumed strain finite element models 
(they were not cited often because our work was a bit 
mathematical and buried in the literature). 
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J.N. Reddy, “A simple higher-order theory for 
laminated composite plates,” J. of Applied Mechanics, 
51, 745-752 (1984). (over 2000 citations)

J.N. Reddy and C.F. Liu, “A higher-order shear 
deformation theory for  laminated elastic shells,” Int.
J. of Engng. Sci., 23(3), 319-330 (1985). (800 citations)

CLPT FSDT

TSDT
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Bending of a symmetric cross-ply (0/90)s laminate 
(SS-1)under uniformly distributed load
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Third-order laminate theory:  13

E1=25E2 , G12=G13=0.5E2
G23=0.2E2 , n12=0.25

E2 = 106 psi (7 GPa)3D

CLPT 
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Equilibrium of 
interlaminar
stresses
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Single-Layer Theories

Equilibrium Requirements
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Layerwise 2D + 1D

(1a)

(2a)

Cubic
serendipity
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(in-plane) (through
  thickness)
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Lagrange
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  thickness)

Quadratic
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(1b)

(2b)J.N. Reddy 12
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Table: Comparison of the number of operations needed to
form the element stiffness matrices for equivalent el-
ements in the conventional 3-D format and the lay-
erwise 2-D format. Full quadrature is used in all.

Element Type† Multipli. Addition Assignments

1a (3-D) 1,116,000 677,000 511,000
1b (LWPT) 423,000 370,000 106,000

2a (3-D) 1,182,000 819,000 374,000
2b (LWPT) 284,000 270,000 69,000

† Element 1a: 72 degrees of freedom, 24-node 3-D isopara-
metric hexahedron with cubic in-plane interpolation and
linear transverse interpolation.
Element 1b: 72 degrees of freedom, E12—L1 layerwise
element.
Element 2a: 81 degrees of freedom, 27-node 3-D isopara-
metric hexahedron with quadratic interpolation in all
three directions.
Element 2b: 81 degrees of freedom, E9—Q1 layerwise el-
ement.

13



Layerwise Kinematic Model
3D modeling with 2D & 1D elements

J.N. Reddy

E1 = 25× 106 psi, E2 = E3 = 10
6 psi

G12 = 0.5×106 psi, G13 = G23 = 0.2×106 psi, ν12 = ν13 = ν23 = 0.25

u(x, a/2, z) =u(a/2, y, z) = 0

v(a/2, y, z) =u(x, a/2, z) = 0

w(x, a, z) =u(a, y, z) = 0

x

y

2-D quadratic
Lagrangian element

three quadratic layers
through the thickness

y
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z
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In-plane Stresses predicted by the 
Layerwise Theory
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Transverse shear stresses predicted 
by the Layerwise Theory
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uESL1 (x, y, z) = u0(x, y) + zφx(x, y)

uESL2 (x, y, z) = v0(x, y) + zφy(x, y)

uESL3 (x, y, z) = w0(x, y)

Variable Kinematic Model
for Global-Local Analysis

Composite displacement field:

ESL Displacement field:

LWT Displacement field:

uLWT
1 (x, y, z) =

N

I=1

UI(x, y)Φ
I(z)

uLWT
2 (x, y, z) =

N
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VI(x, y)Φ
I(z)

uLWT
3 (x, y, z) =

M

I=1

WI(x, y)Ψ
I(z)

ui(x, y, z) = u
ESL
i (x, y, z) + uLWT

i (x, y, z)

25
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An Efficient  Shell Finite Element
Objective: Develop a robust shell element for the
linear and nonlinear analysis of shell structures
made of multilayered composites and functionally
graded materials that is computationally efficient
(i.e., accurate and computationally inexpensive).
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Thickness stretch 
is included

32



 Notable features of the 7-parameter formulation
 Thickness stretching is considered 
 Three-dimensional constitutive equations are 

used
 Consistent displacement finite element 

formulation
 Notable features of present implementation
 Utilization of spectral/hp finite element 

technology to represent the differential 
geometry and avoid locking

 Static condensation of degrees of freedom 
internal to the element

 Applicability to geometrically nonlinear 
analysis of FGM and laminated structures

NOTABLE FEATURES



Spectral/hp Finite Element Technology
Improving Numerical Efficiency: Static Condensation

Figure: A high-order spectral/hp finite
element discretization (p-level of 4) of a
2-D region: (a) finite element mesh
showing elements and nodes and (b) a
statically condensed version of the same
mesh showing the elements and nodes.

p = 7

28% of 
the original 

number of 
equations

21% of original 
nonzeros

(b)

(a)

Figure: Sparsity patterns for: (a) a
high-order finite element mesh and
(b) the same high-order mesh using
static condensation.

System memory requirements
for low-order and high-order
problems are similar. 34



JN Reddy

 L = 0.52 m,     R = 0.15 m, h = 
0.03 m

 E = 198 x 109 Pa,  ν = 0.3
 q = 12 x 109 Pa
 8 x 1, p = 4 

Benchmark Problem 1: Isotropic cylindrical 
shell subjected to internal pressure



Deformed shape



Thickness deformation vs. axial coordinate

* M. Amabili, “Non-linearities in rotation and thickness deformation in 
a new third-order thickness deformation theory for static and dynamic 
analysis of isotropic and laminated doubly curved shells " International

*
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Benchmark Problem 2:  Pinched 
cylindrical shell

Finite element solution of deformed mid-surface of pinched
cylinder. Deformation magnified by a factor of 5×106 (a) un-
deformed shell configuration (b) deformed shell configuration.

(a) (b)

63 10  psi, =0.3E ν= ×

f4 1.0 lbP = =
2 600 in, 3 ina R h= = =



Point load P vs. stress, σxx, at point A



Computational time
Elements Nodes Degrees of  

freedom Time (s)

7-parameter 4 289 2023 66

12-parameter 4 289 3468 473

ANSYS solid 13824 16807 50421 6488

ABAQUS
solid 13824 16807 50421 720
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W G

Given an operator equation of the form

in and in

we seek suitable approximation of  as . In the 

least-squares method, we seek the minimum of the

sum of squares of the residuals in the appr

( ) ( )
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THE  LEAST-SQUARES METHOD

38
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Variational Problem
(based on the least-squares formulation)
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Thus, the variational problem is to seek such that
holds for all

where

x

[ ]d
W G
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Fluid Flow (LSFEM)    28
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OF VISCOUS INCOMPRESSIBLE FLUIDS

Governing equations (Navier-Stokes equations)

Fluid Flow (LSFEM)    29
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4Re 10=

Streamlines

Pressure contours Dilatation contours

40

Lid-Driven Cavity Problem
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RESULTS OF OTHER NON-TRIVIAL 
FLOW PROBLEMS
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Mesh (501 elements; p=4)
Close-up of mesh around 

the cylinder

Flow of a Viscous Incompressible Fluid 
around a Cylinder-1

Fluid Flow (LSFEM)    33
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Robust at moderately high Reynolds numbers: Re = 100 – 104

High p-level solution: p = 4, 6, 8, 10

No filters or stabilization are needed

2D Flows Past a Circular Cylinder-2

Fluid Flow (LSFEM)    35
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Flow of a viscous fluid past a 
circular cylinder-3

Fluid Flow (LSFEM)    36
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Non-locality can arise from the way we 
choose to model physical phenomena.
Some of the ways the non-locality is 
modeled are:
 Cosserat or micropolar continuum,
 Strain gradient theories and Modified 

couple stress theories,
 Eringen’s integral, differential, and 

integro-differential models, and
 Peridynamics, which is an integral 

representation of balance laws 
accounting for long-range forces.

43
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Normalized bending stiffness increases as the 
cantilever beam thickness decreases. Measurable at 
micron-order thicknesses. (McFarland & Colton, 
2005) 3 3

3 3

2

3
3 4

( 1 for plane stress; 1 for plane strain)

PL P EI Ewhk
EI L L

,

δ
δ ϕ ϕ

ϕ ϕ ν

=  = = =

= = −

MICRO- AND NANO-ELECTRO-
MECHANICAL SYSTEMS

45
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Biomechanics – Bones

Osteons, d = 0.1 or 0.2 mm

Journal of 
Biomechanical 
Engineering (1982)

Specimen diameter

Ef
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LAKE’s USE OF MICROPOLAR  THEORY
TO EXPLAIN NONLOCAL EFFECTS

2ij ij ij kkσ μ ε λδ ε= +

( )2

and are micropolar constants.

( )ijm m m

ij k,k ij i, j j

ij ij ij kk

,i

, , ,

e
m

k k w f

af d b

s m e ld e

k a b

f

g

gf

+ + -

=

+

+ +

=

Classical continuum 

Cosserat continuum (Cosserats, 1909)

Professor Karan Surana has a presentation 
on some elements of  non-classical 
continuum mechanics
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PA12 with 6% SWNT (showing network formation) 
introducing distinct microscopic length scale

Nematic elastomer with hard nematic
phase of  random orientation embedded in 

a soft polymer matrix

Why rotational gradient dependent elasticity? 
Presence of very stiff secondary phases giving rise to 
distinct  microscopic length scale. Intuitively, the 
secondary phase “rotates” with the material but does 
not stretch with it; interference between neighbors 
causes it to resist rotational gradients leading to couple 
stresses.
CNT reinforced polymers and nematic elastomers

STRAIN GRADIENT ELASTICITY THEORY 
(Srinivasa & Reddy, JMPS, 2013)
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GRADIENT ELASTICITY THEORY
(Srinivasa & Reddy, JMPS)

Governing equations in terms of stress resultants : 

Gradient
dependent 
terms

33
33

,S S
E Eab

ab

Ψ Ψ¶ ¶
= =

¶ ¶Conventional stress

“Drilling” couple stress

,
a

a

t
w
Ψ¶

=
¶

,

T
wab

ab

Ψ¶
=

¶

“Bending” couple stress

( )
3

33

0

0

, ,

, , ,

N e

M N N w
ab b ag b bg

ab ab ab ab b a

t

d

- =

é ù- + =ê úë û



JN Reddy

TIMOSHENKO BEAM THEORY

( )
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Nonlocal - 43

( ) 0 0

0
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dMd N f Q
dx dx

d d d
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wQ N q
dx dx

- - = - + =
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M

Mindlin model                 Srinivasa-Reddy model
2

11 132 2x xd E dG E
dx dx

= = ++
q q

a lgM M

Needs to be interpreted in the 
context of a specific problem

the square root of the ratio of the 
moduli of curvature to the shear 
(a property measuring the effect of 
the couple stress)
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Microstructure-dependent 
(gradient elasticity) Mindlin plate
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Bending of a solid circular plate
Clamped

Simply-supported

Clamped
plate

Simply-supported
plate



Theoretical Bckground

GraFEA: Dependence of nodal force on edge- strains

Typical Element

Network with
nonlocal forces

Element e
Conventional truss
with local forces

Khodabakhshi, P, Reddy, J.N., Srinivasa, A.R., 2016. GraFEA: a graph-based 
finite element approach for the study of damage and fracture in brittle 
materials, Meccanica, 51 (12): 3129 – 3147.



Capability of GraFEA to Study Fracture
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 Engineers and scientists “model” phenomena 
that occurs in nature.

 Continuum mechanics is a means to an end; that 
is, it provides tools to construct a mathematical 
model, analyze, and make a decision (towards 
designing and building).

 There is no “complete” or “exact” mathematical 
model of anything we like to model & analyze.

 We can only try to “improve” on what we 
already know (often, goal-based thinking).

 Only two things that matter in engineering: (1) 
Reliable functionality (or probability of failure) 
and (2) cost of the product.

Nonlocal  - 4
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 Differentiability of field variables is not an 
inherent attribute; we endowed them so 
that we can gain some insights without 
solving complex problems.

 With the computational tools we have, we can 
account for missing terms, or reformulate the 
classical continuum mechanics with non-
classical continuum mechanics (e.g., strain-
gradient theories, peridynamics, and others).
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In the end, all numerical 
methods involve setting up 
algebraic relations between 
the values of the duality pairs 
(cause and effect) at selected 
points of the continuum.
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 Non-classical continuum mechanics brings 
additional means to address missing effects 
from the classical mechanics and explains 
certain essential mechanisms that are 
observed in experiments.

 Eringen’s differential model is a diffusion type 
stress-gradient model. It shows stiffness 
reduction (flexibility) effect. Thus, it has 
limited application.

 There is experimental as well as modeling 
evidence that indicates the non-locality in 
materials manifests in different forms.
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 Generalized (or non-classical) continuum 
theories are required to model material behavior 
more accurately.  Such theories predict reduction 
in stress concentration factor around holes and 
cracks, which can give rise to improved 
toughness. 

 GraFEA has a great potential and it needs to be 
developed further for inelastic and ductile 
materials.

 Strain gradient and modified coupe stress 
theories are related, and they show stiffening 
effect and allow for multiple length scales. They 
can be used to model large structures without 
using full 3-D models.



JN Reddy

 We must seek physically meaningful 
experimental validations to understand and 
predict the risks of failure (i.e., understand  what 
is happening and use it to assess risk of failure).

 Our works must be built on sound mechanics 
foundation (wisdom to see details).

 We must develop robust computational tools 
that make use of advances made in theoretical 
developments and numerical methods.
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I thank you 
for your interest in my lecture

I thank  
The Committee on 

City U Distinguished  Lecture Series
and 

Professors  C.W. Lim and Q.S. Li

That which is not given is lost


