SEEM3101: BASIC METHODOLOGIES AND TOOLS FOR RISK ENGINEERING

Effective Term

Summer Term 2023

Part I Course Overview

Course Title

Basic Methodologies and Tools for Risk Engineering

Subject Code

SEEM - Systems Engineering and Engineering Management

Course Number

3101

Academic Unit

Systems Engineering (SYE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

MA2172 Applied Statistics for Sciences and Engineering or MA2177 Engineering Mathematics and Statistics

Precursors

Nil

Equivalent Courses

ADSE3101 Basic Methodologies and Tools for Risk Engineering

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to introduce the basic principles, practices, methodologies and tools for analysing risk in a formal and scientific manner required for engineering applications.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the basic principles, methodologies and tools in risk engineering	20		X	
2	Select appropriate tools and methodologies for identifying and measuring risks in engineering problems	40			x
3	Apply quantitative methods for risk assessment of engineering problems	20		X	
4	Demonstrate reflective practice in an engineering context	20	X		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Large Class Activities	Delivery of the course will be achieved through a series of formal lectures supported by practical case studies. A series of lectures will introduce basic elements and importance of risk analysis.	1, 2, 3, 4	26 hours/semester
2	Laboratory activities	Mainly teach the students use of software tools for risk analysis.	1, 2, 3, 4	14 hours/semester

3	Mini-Project	A typical risk analysis task	1, 2, 3, 4	10 hours/semester
		for engineering problem		
		will be given to students		
		to solve. The students		
		are expected to work in		
		teams to tackle the given		
		problems. This learning		
		activity will be mainly		
		student-led but with some		
		structural guidance from		
		the teacher.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Mini-Project	1, 2, 3, 4	25	

Continuous Assessment (%)

25

Examination (%)

75

Examination Duration (Hours)

2

Assessment Rubrics (AR)

Assessment Task

Laboratory Reports

Criterion

_

Excellent (A+, A, A-)

_

Good (B+, B, B-)

-

Fair (C+, C, C-)

_

Marginal (D)

-

Failure (F)

-

Assessment Task

Mini-Project

Criterion

Project is completed in groups and is graded by the course leader.

Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate Marginal (D) Basic Failure (F) Not even reaching marginal levels **Assessment Task** Examination Criterion 2-hour examination Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate Marginal (D) Basic Failure (F) Not even reaching marginal levels Part III Other Information

Keyword Syllabus

Definition of risk and uncertainty; measures of risk

SEEM3101: Basic Methodologies and Tools for Risk Engineering

Steps in managing risk in engineering applications

Methods for risk identification and measurement: Failure mode, effects, and criticality analysis (FMECA), Hazard and operability study (HAZOP)

Quantitative methods for Risk Assessment: Event tree, Fault Tree Analysis (FTA), Probabilistic Risk Assessment

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

	Title
1	Paul R. Garvey, Analytical Methods for Risk Management: A Systems Engineering Perspective, CRC Press, 978-1-58488-637-2.
2	Enrico Zio, An Introduction to the Basics of Reliability and Risk Analysis, World Scientific Publishing Co., ISBN 978-981-270-639-3.
3	Terje Aven, Foundations of Risk Analysis: A Knowledge and Decision-oriented Perspective, John Wiley and Sons, ISBN 978-0-4714-9548-2.
4	Paul Hopkin, Fundamentals of Risk Management: Understanding, Evaluating and Implementing Effective Risk Management, Kogan Page Publishers, 978-0-7494-5942-0.
5	David Vose, Risk Analysis: A Quantitative Guide, John Wiley, 978-0-470-51284-5.