SEE4216: COMBUSTION AND AIR POLLUTION CONTROL

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Combustion and Air Pollution Control

Subject Code SEE - School of Energy and Environment Course Number 4216

Academic Unit School of Energy and Environment (E2)

College/School School of Energy and Environment (E2)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites PHY1201 General Physics I; AND SEE2101 Engineering Thermofluids I; AND SEE3101 Engineering Thermofluids II

Precursors

CHEM2004 Principles of Analytical Chemistry; AND SEE3203 Air Pollution

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

The course is designed for the senior undergraduate students to understand the basics of air pollution control approaches and technologies. The course will provide the students with the fundamental knowledge of the air pollution sources and properties, the currently available air pollution control technologies and devices, including the theory behind the control methods, their design and efficiency analysis, as well as their applications.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the fundamentals of combustion and air pollution generation	20		Х	
2	Describe the operational principles of air pollution control devices and discover their respective application	30	x	x	
3	Apply the knowledge innovatively in the calculation, design and engineering of the air pollution control processes	50		x	x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Students will learn the fundamental of combustion and air pollution and the operational principles of air pollution control devices and their practical design considerations for different application.	1, 2, 3	
2	Tutorials	Students will develop understanding of key concepts and principles via practice and tackling difficulties encountered in the lectures and exercises.	1, 2, 3	

Learning and Teaching Activities (LTAs)

Assessment Tasks / Activities (ATs)

A'	Ts	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1 A Ti bo se co to th fu co po po po co th co di	Assignments Three assignments will be given throughout the emester. Students will omplete the assignments of demonstrate their understanding undamentals of ombustion and air collution, the operational principles of air pollution ontrol devices, and their practical design onsiderations for ifferent applications.	1, 2, 3	40	

Continuous Assessment (%)

40

```
Examination (%)
```

60

Examination Duration (Hours)

2

Additional Information for ATs

Final exam will test students' comprehensive understanding of fundamentals of combustion and air pollution, the operational principles of air pollution control devices, and their practical design considerations for different applications. Examination duration: 2 hrs

Percentage of continuous assessment, examination, etc.: 40% by continuous assessment; 60% by exam

To pass a course, a student must do ALL of the following:

- a. obtain at least 30% of the total marks allocated towards continuous assessment (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- b. obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- c. meet the criteria listed in the section on Assessment Rubrics.

Assessment Rubrics (AR)

Assessment Task

1. Assignments

Criterion

Ability to explain the fundamentals of combustion and air pollution and provide control solutions to air pollution due to combustion processes

Excellent (A+, A, A-)

Excellent understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Good (B+, B, B-)

Good understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Fair (C+, C, C-)

Acceptable understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Marginal (D)

Marginally acceptable understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Failure (F)

Poor understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Assessment Task

2. Examination

Criterion

Ability to explain the fundamentals of combustion and air pollution and provide control solutions to air pollution due to combustion processes

Excellent (A+, A, A-)

Excellent understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Good (B+, B, B-)

Good understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Fair (C+, C, C-)

Acceptable understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Marginal (D)

Marginally acceptable understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Failure (F)

Poor understanding of fundamentals of combustion and air pollution and ability to provide air pollution control solutions

Part III Other Information

Keyword Syllabus

- a. Introduction to air pollution
- b. Basics of gas combustion
- c. Combustion process and air emissions formation
- d. Air pollution control approaches
 - i. Pre-combustion control
 - ii. In-combustion control
 - iii. Post-combustion control
- e. Key air pollution control technologies

Reading List

Compulsory Readings

	fitle
1	Nil

Additional Readings

	Title
1	Zhongchao Tan, Air Pollution and Greenhouse Gases from Basic Concepts to Engineering Applications for Air Emission Control Springer Science+Business Media Singapore, 2014. ISBN: 978-981-287-211-1
2	David Cooper, F. C. Alley Air Pollution Control (3rd Edition), Waveland Press, 2002. ISBN: 978-1577662181
3	Kenneth W. Ragland & Kenneth M. Bryden, Combustion Engineering, 2nd ed. Boca Raton, FL : CRC Press, c2011, ISBN: 9781420092509