SEE4121: GAS ENGINEERING

Effective Term

Semester A 2024/25

Part I Course Overview

Course Title Gas Engineering

Subject Code SEE - School of Energy and Environment Course Number 4121

Academic Unit School of Energy and Environment (E2)

College/School School of Energy and Environment (E2)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites SEE2002 Chemical Sciences for Energy and Environmental Engineers; and SEE2101 Engineering Thermofluids I

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course is mainly related to gas engineering theories and technologies that are commonly used in our society. Operation principles of basic gas production, gas transportation systems and gas utilization systems, their advantages, and major drawbacks will be taught in the course.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the basic principles of different gases (e.g. Interchangeability of gases, gas measurement fundamental, etc.). Familiarize the world gas and energy market and HK gas regulations.	10		X	
2	Describe the production / extraction principle of different types of gas, conventional and unconventional E.g. NG, LPG, SNG, Town Gas, Coal bed methane, Coke Oven Gas, etc. Perform the HAZOP study and risk assessment of a production plant.	30		X	
3	Describe the gas transportation means. Analyses and design the supply and demand network to household. Identify the innovative technologies used in gas industry.	30		X	
4	Describe and compare different gas utilization systems (domestic, commercial and industrial, gas measurement) and their principles in society.	30		X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Through lectures, students will discuss and learn key concepts, including theories related to gas engineering.	1, 2, 3, 4	3

Learning and Teaching Activities (LTAs)

2	Tutorial, class demo, site	Through tutorials, class	1, 2, 3, 4	
	visit	demonstrations, and		
		site visits, students		
		will solidify their		
		understanding through		
		practical experiences.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Assignments Several assignments will be given throughout the semester. Through the assignments, students will demonstrate their understanding of the underlying concepts of the measurements, handling, design, operation, and applications of various gases (gas systems).	1, 2, 3, 4	35	
2	In-class test Students will complete a mid-term test to demonstrate their ability to apply knowledge to analyze and solve problems related to gas engineering.	1, 2, 3, 4	25	

Continuous Assessment (%)

60

```
Examination (%)
```

40

Examination Duration (Hours)

2

Additional Information for ATs

Final exam will test students' ability to integrate knowledge learned throughout the course to analyze and solve problems related to gas engineering.

Examination duration: 2 hrs

Percentage of continuous assessment, examination, etc.: 60% by continuous assessment; 40% by exam

To pass a course, a student must do ALL of the following:

- a. obtain at least 30% of the total marks allocated towards continuous assessment (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- b. obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- c. meet the criteria listed in the section on Assessment Rubrics.

Assessment Rubrics (AR)

Assessment Task

1. Assignment

Criterion

Ability to analyze and solve questions related to gas engineering

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to gas engineering

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to gas engineering

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to gas engineering

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to gas engineering

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to gas engineering

Assessment Task

2. In-class test

Criterion

Ability to analyze and solve practical problems related to gas engineering

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to gas engineering

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to gas engineering

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to gas engineering

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to gas engineering

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to gas engineering

Assessment Task

3. Final exam

Criterion

Ability to analyze and solve practical problems related to gas engineering

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to gas engineering

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to gas engineering

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to gas engineering

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to gas engineering

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to gas engineering

Part III Other Information

Keyword Syllabus

Gas and energy market; interchangeability of gases; gas measurement fundamentals; gas ordinance; gas exploration and production methods; gas plant operation; coal gasification; gas plant maintenance; process safety; gas transportation means; flow properties; gas network development; gas network operation and maintenance; residential gas applications; commercial and industrial gas applications

Reading List

Compulsory Readings

	Title
1	Vil

Additional Readings

	Title
1	Natural Gas Engineering Handbook, Guo, Boyan, Ghalambor, Ali, 2nd ed. Elsevier Science, 2012.
2	Advanced Natural Gas Engineering, Wang, Xiuli, Economides, Michael. Elsevier Science, 2013
3	Natural Gas Engineering and Safety Challenges: Downstream Process, Analysis, Utilization and Safety, Nasr, G.G., Connor, N. E., Springer 2014
4	Combustion Engineering and Gas Utilisation, third edition, edited by J. R. Cornforth, British Gas
5	Gas Engineers Handbook, Industrial Press Inc. (1968)
6	Tolley's Domestic Gas Installation Practice (Gas Service Technology Volume 2), Edited by Frank Saxon