SDSC4001: FOUNDATION OF REINFORCEMENT LEARNING

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Foundation of Reinforcement Learning

Subject Code SDSC - School of Data Science Course Number 4001

Academic Unit School of Data Science (DS)

College/School School of Data Science (DS)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites SDSC2002 Convex Optimization or MA3515 Introduction to Optimization AND MA2506 Probability and Statistics or MA2510 Probability and Statistics

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain clearly basic concepts in reinforcement learning and dynamic programming.	10	X		
2	Theorize the concept, theory and properties of Markov Decision Process and the fundamentals of dynamic programming	25	Х	x	
3	Explain and apply the methods and theories of Markov decision process and dynamic programming to the reinforcement learning context.	25	х	х	
4	Explain algorithms of reinforcement learning in the context of data science and machine learning.	20		x	X
5	Apply reinforcement learning to formulating and solving real-life problems	20		X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Learning through interactive teaching is primarily based on lectures.	1, 2, 3, 4, 5	33 hours in total
2	Tutorials	Learning through tutorials helps students to solve a range of problems		6 hours in total

Learning and Teaching Activities (LTAs)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Test	1, 2, 4	10	Questions are designed for the part of the course to see how well the students have learned basic concepts and their applications in solving problems.
2	Assignments	1, 2, 3, 4	10	The assignments provide students chances to demonstrate their achievements on techniques of dynamic programming and reinforcement learning learned in this course.
3	Project(s)	1, 2, 3, 4	30	The projects provide students chances to explore their interests and focus on the particular problem/ application/theory that they are interested in. Possible topics include state-of-the-art reinforcement learning algorithms and theories, as well as advanced topics in reinforcement learning that are not covered in lectures.

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

Assessment Rubrics (AR)

Assessment Task

Test

Criterion

Ability to understand the basic concepts of methods and recognize their applications in solving application problems

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Assignments

Criterion

Ability to apply the techniques in a diversity of problems

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Ability to explain the basic concepts of methods and recognize their applications Ability to solve problems of reinforcement learning and Markov decision process with fundamental methods.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Project(s)

Criterion

Ability to demonstrate students' achievements on techniques learned in this course

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Basics of dynamic programming, the shortest path problem, Markov decision processes, value iteration, policy iteration, linear programming, temporal-difference learning, Monte Carlo method, Q-learning, policy gradient, function approximation, bandit problem

Reading List

Compulsory Readings

		Title
1	L	Lecture note
2	<u>)</u>	Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto, The MIT Press 2017.

Additional Readings

	Title
1	Introduction to Stochastic dynamic programming By Sheldon Ross, 1983.
2	"Optimal Control Theory: An Introduction" (Dover Books on Electrical Engineering), by Donald E. Kirk. 2004.
3	Deterministic and Stochastic Optimal Control by W. Fleming and R. Rishel. Springer. 1975.