SDSC3008: SYSTEMS DYNAMICS AND CONTROL

Effective Term

Semester A 2024/25

Part I Course Overview

Course Title

Systems Dynamics and Control

Subject Code

SDSC - School of Data Science

Course Number

3008

Academic Unit

School of Data Science (DS)

College/School

School of Data Science (DS)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

MA2508 Multi-variable Calculus and MA1503 Linear Algebra with Applications

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

Students will expand and consolidate their knowledge on the basic knowledge of dynamic systems and controller design methods with background in control, signal processing, artificial intelligence and machine learning, power systems and

financial engineering. They will also gain proficiency in computing algorithms and techniques of applying taught methods to solve practical problems.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain clearly basic concepts in dynamic systems and control.	10	X		
2	Solve some problems of system modelling and controller design with fundamental mathematical methods.	25	X	x	
3	Explain and apply the theories of dynamic systems and controller design.	25	X	X	
4	Explain methods of controller design in the context of data science.	20		X	X
5	Apply mathematical and computational methods of dynamic systems and control in formulating and solving real-life problems	20		x	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
L	Lecture	Students will engage in primarily lectures to gain knowledge.	1, 2, 3, 4, 5	39 hours in total
2	Take-home assignments	Students will explain techniques of basic methods in as well as their applications in solving control problems through take-home assignments.	1, 2, 3, 4	after-class
3	Online applications	Students will design mathematical models and apply to a range of practical problems in engineering/scient through online examples for applications.	4	after-class

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)	
1	Test	2, 4	25	Questions are designed for the part of the course to see how well the students have learned basic concepts of methods in dynamic systems and control and recognized their applications in solving problems. (15-30%)	
2	Hand-in assignments	2, 3, 4	15	These are skills based assessment to enable students to demonstrate the understanding of theories and the ability of applying controller design methods in a diversity of problems. (0-15%)	
3	Formative take-home assignments	2, 3, 4	0	The assignments provide students chances to demonstrate their achievements on techniques of dynamic system modeling and control learned in this course.	

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

Assessment Rubrics (AR)

Assessment Task

Test

Criterion

Ability to explain the basic concepts of methods and identify their applications in solving application problems

Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate Marginal (D) Basic Failure (F) Not even reaching marginal levels **Assessment Task** Hand-in assignments Criterion Ability to apply the techniques in a diversity of problems Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate Marginal (D) Basic Failure (F) Not even reaching marginal levels **Assessment Task** Formative take-home assignments Criterion Ability to demonstrate students' achievements on techniques learned in this course Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-)

SDSC3008: Systems Dynamics and Control

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

Ability to solve control problems with fundamental methods.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Differential equation models, Laplace transform, Block diagram models, State variable models, Transfer function, Transient response analysis, Feedback control systems, Stability analysis, PID controllers, Basic controller design methods, Model predictive control, IIoT.

Reading List

Compulsory Readings

	Title
1	"Modern Control Systems" , by Richard C. Dorf, Robert H. Bishop. 2017.

Additional Readings

	Title
1	Feedback systems by K. J. Åström and R. M. Murray. Princeton University Press. 2010.
2	Modern Control Engineering by K. Ogata. Prentice Hall. 2010.
3	Feedback Control of Dynamics Systems by G. F. Franklin, J. D. Powell, & A. Emami-Naeini. London: Pearson. 2015.