PHY4233: IMAGING PHYSICS

Effective Term

Semester A 2023/24

Part I Course Overview

Course Title

Imaging Physics

Subject Code

PHY - Physics

Course Number

4233

Academic Unit

Physics (PHY)

College/School

College of Science (SI)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

AP4275/PHY4275 Radiological Physics and Dosimetry

Equivalent Courses

AP4233 Imaging Physics

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to lay down the foundation knowledge for X-ray medical imaging and for nuclear medicine medical imaging.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain and appreciate X-ray medical imaging			X	
2	Explain and appreciate other medical imaging			X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Presentation of course material	1, 2	2 hours/week
2	Tutorial	Review of recent assignments	1, 2	1 hour/week

Additional Information for TLAs

Scheduled activities: 2 hrs lecture + 1 hr tutorial

Lecture activities: Delivery of the course will be achieved through a series of formal lectures supported by practical case studies and laboratory demonstrations.

Tutorial activities: Students will be given problems to solve and will be expected to participate in discussion and/or presentation.

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks
1	Continuous Assessment	1, 2	30	Homework assignments
2	Examination	1, 2		Duration: 2 hours

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained

Assessment Rubrics (AR)

Assessment Task

1. Exam

Criterion

The student can thoroughly identify and explain how the principles are applied to science and technology for solving physics and engineering problems.

Excellent (A+, A, A-)

The student can, at a high level, identify and explain how the principles are applied to solving the problems.

Good (B+, B, B-)

The student can significantly identify and explain how the principles are applied to solving the problems.

Fair (C+, C, C-)

The student can moderately identify and explain how the principles are applied to solving the problems.

Marginal (D)

The student can, at a basic level, identify and explain how the principles are applied to solving the problems.

Failure (F)

The student cannot, even at a basic level, identify and explain how the principles are applied to solving the problems.

Assessment Task

2. Assignments

Criterion

The student can thoroughly identify and explain how the principles are applied to science and technology for solving physics and engineering problems.

Excellent (A+, A, A-)

The student can, at a high level, identify and explain how the principles are applied to solving the problems.

Good (B+, B, B-)

The student can significantly identify and explain how the principles are applied to solving the problems.

Fair (C+, C, C-)

The student can moderately identify and explain how the principles are applied to solving the problems.

Marginal (D)

The student can, at a basic level, identify and explain how the principles are applied to solving the problems.

Failure (F)

The student cannot, even at a basic level, identify and explain how the principles are applied to solving the problems.

Part III Other Information

Keyword Syllabus

· X-ray Imaging Physics:-Conventional X-ray systems

4 PHY4233: Imaging Physics

Radiographic X-ray image formation and image quality Scatter radiation and contrast Film screen systems and characteristics Fluoroscopic imaging & image quality Digital radiography and computed radiography Mamography Digital subtraction systems Computed tomography Quality assurance Nuclear Medicine Imaging Physics:-

Nuclear Medicine Imaging Physics:-Gamma camera, SPECT and PET Image quality Patient dose Quality assurance

Reading List

Compulsory Readings

	l'itle
1	Nil

Additional Readings

	Title
1	Selman, Joseph, The fundamentals of imaging physics and radiobiology, Springfield, Ill., U.S.A.: Charles C Thomas, 2000. (9th ed.)
2	Yves Lemoigne, Alessandra Caner, and Ghita Rahal (Eds.) Physics for medical imaging applications, NATO Advanced Study Institute on Optimising Detectors, Imaging and Computing Technologies from Nuclear Physics in General and Security Applications (2005: Archamps, France) Dordrecht: Springer, c2007.