MS3128: MANAGERIAL DECISION ANALYTICS

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Managerial Decision Analytics

Subject Code MS - Management Sciences Course Number 3128

Academic Unit Management Sciences (MS)

College/School College of Business (CB)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites CB2200 Business Statistics and CB2203 Data-driven Business Modeling

Precursors CB2240 Introduction to Business Programming in Python

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course aims to train students' skills in modelling and optimization that are essential in turning real-world business decision-making problems into mathematical models and developing solution methods using computer packages such

as Python and Gurobi. It serves as a foundation course for business analytics, and covers commonly used optimization methods in business applications, including linear programming and nonlinear optimization. It also introduces application of the optimization methods to a wide range of problems, including statistical estimation, machine learning, and business decision making under uncertainty.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Understand quantitative concepts that are important for practicing managers		x	X	X
2	Define decision problems, formulate and model the problems using quantitative skills studied; apply appropriate methodologies to find solutions and interpret the solutions found			Х	х
3	Handle computer software packages to solve the models built			X	X
4	Discuss information sources related to quantitative methods critically		X	X	X
5	Prepare reports integrating textual and numerical material and make effective oral communication; undertake a set of tasks associated with improving their career prospects		x		x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Students will learn the concepts and general knowledge of quantitative decision methods are explained. The relevant techniques are developed and applied in the context of real business situations. Examples are used to emphasize the crucial skills of describing and defining the problem before conducting any analysis. Whenever available, computer software packages are introduced as a tool for solving the model, so that students can bring what they learnt to their place of work.	1, 2, 3, 4, 5	
2	In-class Discussion	Students will engage in in-class discussions on major issues related to decision models.	1, 2, 3, 4	
3	Technique/coding drilling	Students will be trained to use the techniques and coding by actively engaging in assignments. A case assignment is used to provide training in analysing complex problem situations and solving business problems, for which students are required to work in groups. They are expected to apply methodologies learned or design their solution to solve problems. Findings are presented in a report or through presentation.	1, 2, 3, 4, 5	

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Assignments Enhance students' ability to apply optimization tools, particularly with respect to analysing and solving business problems. Dependent on the nature of the assignments, students will be asked to complete assignments individually or in small groups. In addition, a case assignment will require students to present their findings verbally or via a written report.	1, 2, 3, 4, 5	40	

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

Examination - The examination will assess the students' ability to select and apply the optimization concepts and methods to solve business problems, and to interpret the implications of optimization concepts in real-world decision making.

Assessment Rubrics (AR)

Assessment Task

Assignment

Criterion

Ability to demonstrate and apply the key concepts and the use of appropriate quantitative methods.

Excellent (A+, A, A-)

Strong evidence of understanding the key concepts and definitions of the learned subject; strong evidence of original thinking; capacity to analyse and synthesize; superior grasp of subject matter; evidence of extensive knowledge base.

Good (B+, B, B-)

Evidence of grasp of subject, some evidence of critical capacity and analytic ability; some evidence of original thinking; reasonable understanding of issues; evidence of familiarity with literature.

Fair (C+, C, C-)

Student who is profiting from the university experience; understanding of the subject; ability to show some evidence of familiarity with literature.

Marginal (D)

Sufficient familiarity with the subject matter to enable the student to progress further.

Failure (F)

Little evidence of familiarity with the subject matter; limited or irrelevant use of literature.

Assessment Task

Examination

Criterion

Ability to demonstrate and apply the key concepts and the use of appropriate quantitative methods.

Excellent (A+, A, A-)

Strong evidence of understanding the key concepts and definitions of the learned subject; superior grasp of subject matter; evidence of extensive knowledge base.

Good (B+, B, B-)

Evidence of grasp of subject, some evidence of critical capacity and analytic ability; reasonable understanding of issues; evidence of familiarity with literature.

Fair (C+, C, C-)

Student who is profiting from the university experience; understanding of the subject; ability to show some evidence of familiarity with literature.

Marginal (D)

Sufficient familiarity with the subject matter to enable the student to progress without repeating the course.

Failure (F)

Little evidence of familiarity with the subject matter; weakness in critical and analytic skills; limited or irrelevant use of literature.

Part III Other Information

Keyword Syllabus

Introduction

Introduction to optimization models and methods, and its application in business decision making. Review of elementary calculus, matrices, and probability. Data modeling and decision making under uncertainty.

Optimization Software and Tools

Optimization in Python and Gurobi. Use of Numpy and Pandas.

Linear and Integer Programming

Modeling techniques, applications, theory, and solution methods. Challenges of integer programming and strategies.

Convex Optimization and Nonlinear Optimization.

Convexity and properties. Duality. Methods for convex optimization and challenges of nonlinear optimization.

Data-driven Applications

Optimization in statistics: regression, and maximum likelihood estimation. Decision making under uncertainty: Sample average approximation, and minimax. Statistical/machine learning: supervised learning.

Reading List

Compulsory Readings

	fitle	
1	Nil	

Additional Readings

	Title
1	Griva, I., Nash, S. G., and Sofer, A. Linear and Nonlinear Optimization. SIAM. Latest Edition.
2	Lee, Wei-Meng. Python® Machine Learning. Wiley. 2019.
3	Gurobi Optimization. Gurobi Optimizer Quick Start Guide. Gurobi Optimization, LLC. 2021.
4	Gurobi Optimization. Gurobi Optimizer Reference Manual. Gurobi Optimization, LLC. 2021.