MNE4205: AVIONIC CONTROL ENGINEERING

Effective Term Semester A 2023/24

Part I Course Overview

Course Title Avionic Control Engineering

Subject Code MNE - Mechanical Engineering Course Number 4205

Academic Unit Mechanical Engineering (MNE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MNE2029 Electrical and Electronic Principles I

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses Nil

Additional Information

#Prerequisites which are not part of the Major Requirement are waived for students admitted with Advanced Standing.

Part II Course Details

Abstract

This course introduces the student to the core principles and basic theory for avionics systems in aircraft. The integration and implementation is described together with the safety and integrity requirements. Display technology, fly by wire and digital control systems, Autopilots and Unmanned air vehicles are covered and the use of simple models based on the underlying physics are used to allow students to gain an understanding of the design criteria.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Understand the basic principles and underlying theory of avionic systems in aircraft, flight management, modern flight control systems, autopilots, UAV's, safety and fault tolerance requirements.			X	
2	To be able to explain how avionics plays a role in allowing the crew to perform the aircraft mission and its role in safety, environmental conditions and general aircraft performance.			x	
3	To be able to solve problems using the underlying theory relating to the design and performance of avionics systems.			x	
4	Present results, analyses and conclusions from experiments or simulations in a written report such that a technically qualified person can obtain a clear understanding of the findings.			x	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	This includes a combination of lectures and tutorial classes on avionics and the principles and theory relating to modern avionics and avionic systems.	1, 2, 3	3 hrs/week

Teaching and Learning Activities (TLAs)

2	Laboratory	Students will carry	3, 4	3 hrs/week for 2 weeks
		out exercises to study		
		avionics systems and		
		their performance. These		
		will be reported in the		
		form of a short and		
		concise technical report.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Test and Assignments	1, 2, 3	20	2-3 assignments to be submitted.
2	Laboratory Reports	3, 4	20	2 reports to be submitted

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

3

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Test and Assignments

Criterion

To be able to describe and explain the major functions and processes involved in avionics systems and assess the performance in terms of the roles of avionics.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Laboratory Reports

Criterion

Ability to explain the methodology and procedures used and analyse the data, discuss the findings with concise conclusions.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Demonstrate an understanding of the principles of avionic systems covering aspects such as air traffic control, flight management, fly by wire and digital control, autopilots and UAVs, safety and fault tolerance.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

To understand conventional aircraft control and navigation systems flight and air traffic control, Avionics and control integration, Flight management and data systems, Fly by wire and digital flight control, Autopilots and Unmanned air vehicles, Safety, fault tolerance and mission integrity.

In addition to the examination and in-class test, students are required to learn through collaborative lab sessions in order to improve their understanding on strategic thinking, problem solving, team working processes, the relationships and interactions between the fields of knowledge that they have learnt in this and other courses.

Reading List

Compulsory Readings

	Title	
1	Introduction to Avionics, R Collinson, Springer, 2011.	
Additional Deadings		

Additional Readings

	Title
1	Nil