MNE2036: ENGINEERING COMPUTING

Effective Term

Semester A 2024/25

Part I Course Overview

Course Title

Engineering Computing

Subject Code

MNE - Mechanical Engineering

Course Number

2036

Academic Unit

Mechanical Engineering (MNE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

The course aims to equip students with the fundamental principles of engineering modelling and computation.

The objectives of the course are to develop skills for formulating engineering problems into mathematical models and to study numerical methods for solving the former. In addition, to cultivate mathematical skills to estimate the error between numerical and analytical solutions, and how to improve the model.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the basic principles for engineering problem analysing and modelling.		X		
2	Apply analytical methods to analyse some engineering problems and translate them into appropriate mathematical models or equations.			х	x
3	Apply appropriate numerical algorithms to solve the derived mathematical models or equations.				X
4	Implement a given analytical or numerical algorithm in a software program for finding solutions for a given engineering problem.			x	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Explain the fundamental principle of engineering modelling and computation, such as optimization, root finding, curve fitting, etc.Explain how to solve the engineering problem by mathematical and numerical methods. Students need to apply the learned knowledge to solve engineering problems.	1, 2, 3	2 hrs/week

2	Laboratory Work	Require students	2, 3, 4	3 hrs/week for 6 weeks
		to formulate the		
		engineering problems		
		into mathematical		
		models and execute as		
		projects.Require students		
		to solve the former		
		mathematical models by		
		numerical methods.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Quiz	1, 2, 3	10	
2	Project Reports	2, 3, 4	35	2 reports to be submitted
3	Skill Test**	2, 3, 4	10	

Continuous Assessment (%)

55

Examination (%)

45

Examination Duration (Hours)

2

Additional Information for ATs

**Skill Test - Programming tasks will be given to students to test their basic programming skill.

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Quiz

Criterion

1.1 Ability to explain the fundamental principle of engineering modelling and computation with the necessary Details.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

MNE2036: Engineering Computing

4

Assessment Task

2. Project Reports

Criterion

2.1 Ability to solve the "Root Finding" problem by numerical method.2.2 Ability to develop numerical algorithms to solve the derived mathematical models or equations.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

3. Skill Test

Criterion

3.1 Ability to solve an engineering problem by software programming.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

4. Examination

Criterion

4.1 Ability to solve the engineering problems by mathematics equations.4.2 Ability to formulate the engineering problems into mathematical models and solve the former by numerical methods.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

Engineering Modelling and Analysis, Engineering Computation, Numerical Methods, Round-off Error, Truncation Error, Taylor Series, Differential Equations, Finite Difference Equations, Roots of Equations, One-Dimensional Unconstrained Optimisation, Fourier transformation.

Reading List

Compulsory Readings

	Title
1	Steven C. Chapra and Raymond P. Canale, Numerical Methods For Engineers, 7th edition, 2016, McGraw Hill Higher Education, ISBN-10: 9352602137

Additional Readings

	Title
1	Bohdan T. Kulakowski, John F. Gardner and J. Lowen Shearer, Dynamic Modeling and Control of Engineering Systems, 3rd Edition, Cambridge University Press, ISBN-10: 1107650445.
2	R. W. Hamming, Numerical Methods for Scientists and Engineers (Dover Books on Mathematics) 2nd Revised ed. Edition, Dover Publications, ISBN-10: 0486652416.