MA1301: ENHANCED CALCULUS AND LINEAR ALGEBRA II

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Enhanced Calculus and Linear Algebra II

Subject Code

MA - Mathematics

Course Number

1301

Academic Unit

Mathematics (MA)

College/School

College of Science (SI)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

- (i) MA1300 Enhanced Calculus and Linear Algebra I; or
- (ii) Grade B or above in MA1200 Calculus and Basic Linear Algebra I (approval from MA must be obtained)

Precursors

Nil

Equivalent Courses

MA1201 Calculus and Basic Linear Algebra II

Exclusive Courses

MA1006 Calculus and Linear Algebra for Business

MA1508 Calculus

Part II Course Details

Abstract

This is the second of two required courses designed for students pursuing studies in **mathematics**, or **engineering/science** students requiring solid background in mathematics. It aims to

- · develop fluency in concepts and techniques from integral calculus, linear algebra and complex numbers,
- · introduce elementary theory of differential and integral calculus, and
- · foster skills in implementing methods of calculus and linear algebra to mathematical and physical applications.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	explain elementary theory of differential and integral calculus.	15	X		
2	perform techniques of integration to evaluate integrals of functions.	30		Х	
3	explain at high level concepts from vector and matrix algebra.	10	X		
4	manipulate expressions and solve geometric problems with vector arithmetic.	10		Х	
5	implement techniques of matrix arithmetic and of solving linear systems.	15		Х	
6	perform operations and solve equations involving complex numbers.	10		Х	
7	develop mathematical models through calculus and linear algebra, and appropriately apply to problems in science and engineering.	10	Х	X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Learning through teaching is primarily based on lectures.	1, 2, 3, 4, 5, 6, 7	39 hours in total (A);46 hours in total (B)

2	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	1	3 hours in total (A);4 hours in total (B)
3	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	2	2 hours in total (A);3 hours in total (B)
4	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	3, 4	2 hours in total (A);3 hours in total (B)
5	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	3, 5	2 hours in total (A);3 hours in total (B)
6	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	6	2 hours in total (A);3 hours in total (B)
7	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	7	2 hours in total (A);3 hours in total (B)
8	Take-home assignments	Learning through take- home assignments helps students implement theory of calculus, methods of integral calculus, linear algebra and complex numbers, as well as apply knowledge of which to mathematical and physical problems.	1, 2, 3, 4, 5, 6, 7	after class
9	Online applications	Learning through online examples for applications helps students apply methods of calculus, linear algebra and complex numbers to problems in science and engineering.	7	after class
10	Math Help Centre	Learning activities in Math Help Centre provides students extra assistance in study.	1, 2, 3, 4, 5, 6, 7	after-class,depending on need

4

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Quizzes/Test(s)	1, 2, 3, 4, 5, 6, 7	21	Questions are designed to see how well students have learned theory of calculus, techniques of integral calculus, as well as concepts and methods of linear algebra and complex numbers. These assessment tasks monitor students' progress and reveal gaps in knowledge.
2	Hand-in assignment(s)	1, 2, 3, 4, 5, 6, 7	9	These are skills based assessment to see whether students are familiar with elementary theory of calculus as well as essential methods and applications of integral calculus, linear algebra and complex numbers.

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

3

Additional Information for ATs

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Quizzes/Test(s)

Criterion

ABILITY to APPLY and EXPLAIN the methodology of integral calculus and linear algebra

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Hand-in assignment(s)

Criterion

CAPACITY for SELF-DIRECTEDLEARNING to understandthe principles of integral calculus and linear algebra

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

3. Examination

Criterion

ABILITY to DEVELOP mathematical models through calculus and linear algebra and SOLVE problems with different methods

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

- A) Basic theorems of differentiation
- B) Applications of differentiation: rate of change, local extrema, optimization problems, power and Taylor series, l'Hôpital rule
- C) Definite and indefinite integrals; Techniques of integration, integration by substitution, integration by parts; Improper integrals
- D) Physical and geometric applications of integration
- E) Vectors in and ; Scalar products, cross products, triple scalar products; Linear (in)dependence; Applications to equations of lines and planes
- F) Matrices; Determinants, cofactor expansion; Systems of linear equations, Gaussian elimination, Cramer's rule; Matrix inverses, Gauss-Jordan elimination method
- G) Arithmetic of complex numbers; Polar and Euler forms; De Moivre's theorem and its applications

Reading List

Compulsory Readings

		Title
1		Basic Calculus and Linear Algebra (Compiled by Department of Mathematics, City University of Hong Kong), Pearson Custom Publishing, 2007
2		C. Henry Edwards and David E. Penney, Calculus: Early Transcendentals, 7th ed., Pearson Prentice Hall, 2008
3	}	Robert A. Adams, Calculus: A Complete Course, 6th ed., Pearson Addison Wesley, 2006

Additional Readings

	Title
1	Glyn James et al., Modern engineering mathematics, Harlow : Pearson Prentice Hall, 2008