EE4213: HUMAN-COMPUTER INTERACTION

Effective Term Semester B 2022/23

Part I Course Overview

Course Title Human-Computer Interaction

Subject Code EE - Electrical Engineering Course Number 4213

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites CS2311 Computer Programming or equivalent

Precursors Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

The aims of the course are to present essential foundations of human computer interaction and to apply them in the design, implementation and/or evaluation of everyday things.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Identify and recognise important aspects in human-computer interaction and interaction design process.		х	х	
2	Differentiate between a good or bad design.		Х	X	
3	Apply human-computer interaction principles and guidelines to criticise and justify the usability of daily life things, particularly computer-related products.		x	x	
4	Create new design ideas and apply evaluation techniques to examine the usability of the design.				x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Key concepts are described and illustrated. Key concepts are worked out based on problems, in-class Q&A, work-along examplesrated	1, 2, 3, 4	3 hrs/week

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min.: 1)	1, 2, 3, 4	10	
2	#Assignments (min.: 3)	1, 2, 3, 4	60	

Continuous Assessment (%)

70

Examination (%)

30

Examination Duration (Hours)

2

Additional Information for ATs

Remarks: To pass the course, students are required to achieve at least 30% in course work and 30% in the examination.

may include homework, tutorial exercises, projects, presentations

Assessment Rubrics (AR)

Assessment Task Examination

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task Coursework

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Foundations of Human Computer Interaction

Overview of Human Computer Interaction; Psychology; Human factors; Cognitive neuroscience; Sensory system; Attention; Memory; Interaction

Process of Human Computer Interaction Design

Human Computer Interaction Design Activities; User Modelling & Task Analysis; Design Techniques; Prototyping; Evaluation

Human Computer Interaction Design Examples

Interaction styles; Web design; Speech; Haptics; AR/VR; Ubiquitous computing; Inclusive design; Next-generation interface

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

	Title
1	D.Norman, The Design of Everyday Things, Basic Books (2013)
2	J.Preece, Y.Roger and H.Sharp, Interaction Design: Beyond Human-Computer Interaction, 5th Edition, Wiley (2019)