EE4209: DIGITAL AUDIO TECHNOLOGY

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Digital Audio Technology

Subject Code

EE - Electrical Engineering

Course Number

4209

Academic Unit

Electrical Engineering (EE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

EE3210 Signals and Systems

Precursors

Nil

Equivalent Courses

EE4207 Digital Speech And Audio Processing

Exclusive Courses

Nil

Part II Course Details

Abstract

The aim of this course is to provide students with a solid foundation in digital audio technology.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the characteristics of audio signals and explain the principles of over-sampling analogue to digital conversion		Х	X	
2	Develop basic skills for coding audio signals digitally in time and frequency domains		X	X	
3	Describe the concept and internal functioning of modern audio coding standards		X	X	
4	Develop basic skills on the processing and synthesis of music signals		X	X	
5	Describe the design parameters for multi- channel home audio systems		X	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Key concepts are described and illustrate	1, 2, 3, 4, 5	3 hrs/week
		Key concepts are worked out based on problems.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min: 2)	1, 2, 3, 4, 5	30	
2	# Assignments (min: 3)	1, 2, 3, 4, 5	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Remarks:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task

Examination

Criterion

Achievements in CILOs

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Coursework

Criterion

Achievements in CILOs

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Introduction

Characteristics of audio and music signals; digitization of audio signal; bandwidth; precision, and signal-to-quantization noise ratio; over-sampling A/D conversion; digital processing of audio signals; digital filtering; microphone and loudspeaker characteristics; sound propagation in different environments; human auditory perception; loudness and frequency masking; critical band.

Audio coding

Fundamental of data compression: lossy and lossless compression, Huffman and arithmetic coding, model-based predictive coding, time- and frequency-domain approaches.

Audio coding formats: WAV; coding formats for CD.Waveform coding: PCM, ADPCM, Dolby DTS, Linear prediction.

Pyschoacoustic coding: Transform coding, QMF and MDCT, MPEG I, II, IV Audio, Advanced audio coding and MP3.

Lossless coding: Meridean Lossless Packing coding for DVD-Audio, Direct Stream Digital for Sony/Philips Super Audio CD, MPEG-IV ALS Predictive Lossless Coding.

Music synthesis

Musical acoustic; Time- and frequency-domain representation of sound; sinusoidal and harmonic signal; additive synthesis and non-linear synthesis; FM synthesis and Chebyshev techniques; physical modelling; wavetable synthesis; MIDI format; instrument and sequencing.

Room Acoustics and 3D Sound

Concert hall, studio and home listening room acoustics; absorption, reverberation time and Sabin calculations; room design for good acoustics; 3D Sound effects: reverberaton; depth perception, Sound localization/spatialization, Head-Related Transfer Function, Surround sound; Compression and expansion; Digital mixing; filtering; Dolby ProLogic; THX; Dynamic EQ; Common DSP techniques for audio processing.

Multimedia applications

Internet and digital audio broadcast; music jukebox.

Reading List

Compulsory Readings

	Title	
1	Ken C. Pohlmann, Ken C. Pohlman: Principles of Digital Audio, McGraw H ASIN: 0070504695	ill Text; 3rd edition (September 1995),

Additional Readings

	Title		
1	Dai Tracy Yang, Chris Kyriakakis, and CC. Jay Kuo: High-Fidelity Multichannel Audio Coding, EURASIP Book Series on Signal Processing and Communications, Hindawi Publishing Corporation, 2004. ISBN 977-5945-13-5		
2	Udo Zolzer: Digital Audio Signal Processing 2nd Edition, Wiley (August 2008), ISBN 978-0-470-99785-7		
3	Marina Bosi, Richard E. Goldberg, Leonardo Chiariglione: Introduction to Digital Audio Coding and Standards, Kluwer Academic Publishers; (December 2002), ISBN: 1402073577		
4	John Watkinson: Introduction to Digital Audio, Focal Press; 2nd edition (November 13, 2002), ISBN: 0240516435		
5	F. Alton Everest: Master Handbook of Acoustics, McGraw-Hill/TAB Electronics; 4th edition (September 22, 2000), ISBN: 0071360972		
6	John Watkinson: Art of Digital Audio, Third Edition, Focal Press; 3rd edition (December 2000), ISBN: 0240515870		
7	Jerry Whitaker and Blair Benson: Standard Handbook of Audio and Radio Engineering, McGraw-Hill Professional, ISBN: 0070067171		
8	John Watkinson: MPEG Handbook, Focal Press; 1st edition (September 2001), ISBN: 0240516567		
9	Eberhard Zwicker, H. Fastl, and H. Frater: Psychoacoustics: Facts and Models, Springer Verlag; 2nd edition (April 1999), ISBN: 3540650636		

10

David Howard and James Angus: Acoustics and Psychoacoustics (Music Technology), Focal Press; 2nd edition (January 3, 2001), ISBN: 0240516095