EE4108: ANTENNAS FOR WIRELESS COMMUNICATIONS AND SENSING CONNECTIVITY

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Antennas for Wireless Communications and Sensing Connectivity

Subject Code

EE - Electrical Engineering

Course Number

4108

Academic Unit

Electrical Engineering (EE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

EE2104 Introduction to Electromagnetics

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to provide students with essential techniques for the analysis and design of popular antennas for modern wireless communications. Emphasis is placed on the understanding of principles of operation. Basic measurement techniques will be learned.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe and analyze some simple radiating systems		X	X	
2	Analyze basic antenna arrays		X	X	
3	Describe the general characteristics of high gain antennas		Х	X	
4	Describe the general characteristics of broadband antennas		X	X	
5	Design dipole antennas, slot antennas and microstrip patch antennas		Х	X	
6	Design small antennas		X	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs	Brief Description	CILO No.	Hours/week (if applicable)
Lecture	Background, basic theory, analysis, measurement techniques. Exercises on basic analysis and practical designs. Simulation on dipole antenna characteristics, design of microstrip	1, 2, 3, 4, 5, 6	3 hrs/wk

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min.: 2)	1, 2, 3, 4	36	
2	#Assignments (min.: 3)	1, 2, 3, 4	9	
3	Lab Exercises/Reports	4, 5, 6	15	

Continuous Assessment (%)

60

Examination (%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task

Examination

Criterion

Achievements in CILOs

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Coursework

Criterion

Achievements in CILOs

4 EE4108: Antennas for Wireless Communications and Sensing Connectivity

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Antenna Fundamentals

Overview, basic EM theory, transmission line theory, inhomogeneous wave equation, Hertzian dipole, transmitting antenna parameters, receiving antenna, antenna polarization, antenna measurement

Wire antennas

Electrically-small dipole, half-wave dipole, monopole, balun, folded dipole, loop antennas, inverted-F antenna

Antenna arrays

Array factors, pattern multiplication, uniform array, mutual coupling, scan blindness, multidimensional array, feed network, switched-beam array

High gain antennas

Yagi-Uda antenna, corner reflector antenna.

Broadband antennas

Travelling-wave antenna, helical antenna, frequency-independent antennas

Aperture antennas

Fields as sources of radiation, Huygen's Principle, horn antenna, slot antenna, reflector antennas

Microstrip antennas

Basic characteristics, transmission line model, cavity model, feed techniques, bandwidth enhancement techniques, size reduction techniques, PIFA.

Reading List

Compulsory Readings

	Title
1	K F Lee: Principles of Antenna Theory, (John Wiley & Sons, New York, 1984)
2	W L Stutzman and G A Thiele: Antenna Theory and Design, (John Wiley & Sons, New York, 2nd Edition, 1998)

Additional Readings

	Title
1	R E Collin: Antennas and Radiowave Propagation, (McGraw-Hill, New York, 1985)
2	C A Balanis: Antenna Theory – Analysis and Design, (John Wiley & Sons, New York, 3rd Edition, 2005)
3	K F Lee and W Chen: Advances in Microstrip and Printed Antennas, (John Wiley & Sons, New York, 1997)
4	D K Cheng: Field and Wave Electromagnetics, (Addison-Wesley, Reading, 2nd Edition 1989)