EE4107: 5G CIRCUIT DESIGN

Effective Term Semester A 2023/24

Part I Course Overview

Course Title 5G Circuit Design

Subject Code EE - Electrical Engineering Course Number 4107

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites EE2005 Electronic Devices and Circuits or EE2301 Basic Electronic Circuits

Precursors EE3109 Applied Electromagnetics

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course provides students with an overview understanding and essential techniques for designing electromagnetic circuits at mm-wave, microwave and radio frequencies (RF). These circuits are of importance to the design of 5G wireless products and other applications for cutting-edge mobile and high-speed electronic devices. This course introduces students to theoretical and software tools used to analyse and design the aforementioned circuits, and gain an understanding on the passive and active building blocks to microwave circuits, such as ones used in a 5G mobile phone. This course also gives students exposure to the practical fabrication and testing of such high-frequency microwave circuits.

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe general knowledge of microwave and wireless technologies, and the infrastructure of RF Front-Ends		х	x	
2	Design simple microwave and RF circuits using microwave transmission line theory and network theory		х	X	
3	Analyze basic passive components in microwave and RF		X	X	
4	Describe the general considerations in designs of active circuitry		X	X	
5	Design basic active microwave and RF circuits		х	X	
6	Construct simple RF and microwave circuits based on a given specification.		х	X	

Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Key concepts and approaches of analysis are provided. Problems based teaching and learning.	1, 2, 3, 4, 5, 6	3 hrs/wk
2	Laboratory Session	Practical session involving an experimental approach.	1, 2, 4, 5, 6	3hrs/wk (2 weeks)

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

		ATs	CILO No.	Weighting (%)	Remarks
1	-	Tests (min.: 2)	1, 2, 3, 4, 5	40	
2)	#Assignments (min.: 3)	1, 2, 3, 4, 5, 6	20	

Continuous Assessment (%)

60

Examination (%)

40

Examination Duration (Hours)

2.5

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task

Tests

Criterion Intermediate stage: ability to demonstrate their knowledge in RF circuits for 5G

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Assignments

Criterion

Ability to demonstrate their grasp on course concepts and their ability to apply and/or integrate these concepts.

Excellent (A+, A, A-) High Good (B+, B, B-)

4 EE4107: 5G Circuit Design

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task Examination

Criterion Ability to demonstrate their knowledge in RF circuits for 5G.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Microwave Circuit in a 5G Mobile Device: Overview of a 5G mobile device; power, noise and bandwidth considerations; key components in an RF front end.

Transmission Lines: Types of transmission lines; transmission line theory; terminated transmission lines.

<u>Microwave Network Analysis</u>: Z-matrix, Y-matrix, ABCD matrix, S-matrix, matrix conversion; cascaded networks; signal flow graphs.

Impedance Matching: Power flow; impedance transformation; Smith charts: L-sections, single-stub tuning.

<u>Overview on Filters</u>: Frequency response of microwave circuits, filter topologies, filter functionalities, filter designs and transformations.

<u>Overview on Active Microwave Circuits</u>: Noise and stability analysis; power transfer and gain; microwave amplifiers: classification, biasing, efficiency, gain circles, amplifier design.

<u>Other Topics</u>: Multi-port passive microwave networks (power dividers, circulators, couplers); Oscillators; Fabrication and characterization of microwave circuits.

Reading List

Compulsory Readings

	Title
1	Reinhold Ludwig and Gene Bogdanov: RF Circuit Design: Theory and Applications, (Pearson, 2nd Edition, 2008)

Additional Readings

	Title
1	David Pozar: Microwave Engineering, (Wiley, Hoboken, New Jersey, 4th Edition, 2012)
2	Mathew M Radmanesh: Radio Frequency and Microwave Electronics Illustrated, (Prentice Hall, 2001)
3	S Y Liao: Microwave Devices and Circuits, (Prentice Hall, New Jersey, 3rd Edition, 1990)