EE3800: SEMICONDUCTOR MATERIALS AND DEVICES

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Semiconductor Materials and Devices

Subject Code EE - Electrical Engineering Course Number 3800

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites EE2800 Semiconductor Physics for Engineers and MA2001 Multi-variable Calculus and Linear Algebra

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

The course aims to give students a deeper understanding of the physical characteristics, structures, and fabrication process of electronic and optoelectronic semiconductor devices involving different semiconductor materials.

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	To describe the crystal structures of semiconductors of different semiconductor material.		x	x	
2	To apply mathematical models to analyze the physical properties of semiconductor materials and working mechanisms of various semiconductor devices.		x	X	
3	To describe the structures of various semiconductor devices.		X	X	
4	To describe the process and key equipment used to fabricate semiconductor devices.		X	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Student will engage in lectures where key concepts are described and illustrated. Key concepts are worked out based on problems.	1, 2, 3, 4	3 hrs/wk
2	Laboratories	Student will engage in applying the key concepts learnt in the lectures and conducting certain device characterization and modeling.	1, 2, 4	3 hrs/wk (2 weeks)

Learning and Teaching Activities (LTAs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min.: 2)	1, 2, 3, 4	20	
2	#Assignments (min.: 2)	1, 2, 3, 4	10	
3	Lab Exercises/Reports (min.: 2)	1, 2, 4	10	

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task

1. Examination

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

2. Coursework

Criterion Achievements in CILOs

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Overview of Semiconductor Materials

Review of the basic properties of semiconductor materials. Introduction of compound semiconductors and 2D materials.

Charge Transport in Semiconductor Materials

Drift and mobility. Generation and recombination. Doping effects. Optical and thermal properties of semiconductor materials. P–N junctions, metal-semiconductor contact.

Semiconductor Devices

Parasitics and switching characteristics of bipolar junction transistor (BJT). Junction field-effect transistors (FET). Metaloxide-semiconductor (MOS) structure, Fin-FET and GAA structures. Phototransistor and detector. Light-emitting diode and laser diode.

Selected topics on other semiconductor devices. Devices such as CMOS sensors and charge-coupled device (CCD), thin film transistors (TFT), power MOS structures.

Micro/Nano Fabrication Technology

Basic microfabrication processes. Thin-film deposition processes. Doping techniques. Photolithography and etching. Backend processes.

Selected topics in advanced micro/nano fabrication technologies such as EUV, complementary field-effect transistor (CFET) structure, heterogeneous integration, 2D material integration.

Laboratory Experiment:

Unit 1 Electrical characterization of various diodes

Unit 2 Transistor characterization

Reading List

Compulsory Readings

	Title
1	Chenming Hu: Modern Semiconductor Devices for Integrated Circuits. (Pearson Education), 2021

Additional Readings

	Title
1	Dieter K. Schroder: Semiconductor Material and Device Characterization. (Wiley), 3rd Edition, 2015
2	S. M. Sze: Physics of Semiconductor Devices. (John Wiley & Sons, Inc), 4th Edition, 2021