EE3115: APPLIED OPTOELECTRONIC DEVICES

Effective Term

Semester B 2022/23

Part I Course Overview

Course Title

Applied Optoelectronic Devices

Subject Code

EE - Electrical Engineering

Course Number

3115

Academic Unit

Electrical Engineering (EE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

EE2005 Electronic Devices and Circuits

or

EE2301 Basic Electronic Circuits

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

The course aims to provide students with the basic concepts of semiconductor physics and the technology of semiconductor optoelectronic devices such as light-emitting diodes, laser diodes, and photodiodes. These devices are the essential components in today's consumer optoelectronics, IT communication, robotic control, industrial instrumentation, etc.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	To understand and identify the characteristics of semiconductor and optoelectronic materials and the basic semiconductor physic concepts, such as band structure, Fermi function, the density of state, and carrier concentration.		X	X	
2	To understand and describe the doping and conductivity of semiconductors, p-n junctions, and metal-semiconductor junctions.		х	x	
3	To describe the operation mechanisms of semiconductors under different conditions, such as recombination, light absorption, and generation.		X	X	
4	To describe the basic concepts and the underlying operation principles of commonly used optoelectronics devices and their applications.		x	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Key concepts are described and illustrated Key concepts are worked out based on problems	1, 2, 3, 4	3 hrs/wk
2	Laboratories	Key concepts are applied to build practical circuits	1, 2, 4	3 hrs/wk(3 weeks)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min.: 2)	1, 2, 3, 4	30	
2	#Assignments (min.: 3)	1, 2, 3, 4	10	
3	Lab Exercises/Reports	1, 2, 4	10	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task

Examination

Criterion

Achievements in CILOs

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Coursework

Criterion

Achievements in CILOs

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Introduction to Semiconductor Physics and Optoelectronic Materials

Introduction to semiconductor physics. Metals, insulating and semiconductor. Formation of band gap and band structure. Properties of common direct and indirect band gap semiconductors. Fermi-Dirac distribution function. Carrier concentrations.

Introduction to Carrier (Electrons and Holes) Behaviors in Semiconductors

Doping of Semiconductors. Conductivity and mobility of carriers. Drift and diffusion of carriers. Injection, generation, and recombination of carriers.

Junction Devices

PN-junction under equilibrium, forward and reverse bias conditions. Charge storage and transient behaviors: depletion layer and diffusion capacitances. Junction breakdown-Zener and avalanche effects. Schottky diode. Rectifying and ohmic contacts. Interaction of photons with a semiconductor (light generation and recombination)

Principles of Commonly used Optoelectronic Devices

Introduction to the basic concepts and working principles of commonly used optoelectronic devices like Photodetectors. Solar cells. Light emitting diode. Laser diodes. Display.

Laboratory Experiment:

Unit 1 Photoresistor Sensor Experiment

Unit 2 Solar Cell Experiment

Reading List

Compulsory Readings

	Title
1	S.O. Kasap: Optoelectronic and Photonics. (Prentice-Hall)

Additional Readings

	Title
1	Ben G Streetman: Solid State Electronic Devices. (Prentice Hall)
2	Robert F. Pierret: Semiconductor Device Fundamentals. (Addison Wesley)