EE2800: SEMICONDUCTOR PHYSICS FOR ENGINEERS

Effective Term Semester B 2024/25

Part I Course Overview

Course Title Semiconductor Physics for Engineers

Subject Code EE - Electrical Engineering Course Number 2800

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites EE2005 Electronic Devices and Circuits AND MA1200 Calculus and Basic Linear Algebra I or MA1201 Calculus and Basic Linear Algebra II OR MA1300 Enhanced Calculus and Linear Algebra I or MA1301 Enhanced Calculus and Linear Algebra II

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses Nil

Additional Information

Nil

Part II Course Details

Abstract

The course aims to give students a fundamental understanding of semiconductor physic and its applications to realize various semiconductor devices. The working mechanism of the selected devices will be studied.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe physical and chemical structures of commonly used semiconductor materials.		X	x	
2	Describe the physical properties of semiconductors with energy band diagrams.		Х	X	
3	Describe and solve for the carrier distributions and carrier transport in semiconductors.		х	X	
4	Describe the working mechanisms of selected semiconductor devices.		Х	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

LTAS **Brief Description** CILO No. Hours/week (if applicable) Lectures Students will participate 1 1, 2, 3, 4 3 hrs/wk in lectures where they will learn various fundamental knowledge and concepts in semiconductor physics, which they will apply in subsequent activities to deepen their understanding and practical skills.

Learning and Teaching Activities (LTAs)

2	Laboratories	Students will engage in lab sessions designed to reinforce key concepts covered in lectures and tutorials, enabling them to apply theoretical knowledge through hands-on practice and collaborative problem- solving.	1, 2, 4	3 hrs/wk (3 weeks)
3	Tutorials	Students will work through key concepts by solving practical problems, enhancing their ability to apply theoretical knowledge to real-world scenarios.	1, 2, 3, 4	1 hr/wk

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min.: 2)	1, 2, 3, 4	30	
2	#Assignments (min.: 3)	1, 2, 3, 4	20	
3	Lab Exercises/Reports (min.: 2)	1, 2, 4	10	

Continuous Assessment (%)

60

Examination (%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task Examination

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task Coursework

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Introduction to Semiconductors physics

Basic crystal structures of semiconductors. Energy bands and energy gap. Fundamentals of band structure and statistical carrier distribution. The density of states. Fermi-Dirac distribution functions, doping and intrinsic carrier concentration.

Physical Properties of Semiconductors

Physical properties of semiconductors. Carrier-transport phenomena, drift and mobility, resistivity. Drift-diffusion and trap statistics. Current continuity equation. Phonon, optical, and thermal properties of semiconductors.

Basic Devices based on Semiconductors

Basis structure of p–n junctions. Biased and non-biased junction properties. Charge storage and transient behavior: junction capacitors and junction breakdown. Zener diodes. Schottky diodes. Bipolar Junction Transistor (BJT), Metal-oxide-semiconductor field-effect transistors (MOSFETs).

Laboratory Experiment:

Unit 1 Characterization of p-n junction Unit 2 Characterization of bipolar junction transistor

Unit 3 Characterization of MOSFET

Reading List

Compulsory Readings

	Title	
1	Ben G Streetman: Solid State Electronic Devices (Prentice-Hall), 2016	

Additional Readings

		Title
1	L	S. M. Sze: Physics of Semiconductor Devices (John Wiley & Sons, Inc), 4th Edition, 2021
2	2	Chenming Hu: Modern Semiconductor Devices for Integrated Circuits (Pearson Education) 2021