CS2310: COMPUTER PROGRAMMING

Effective Term Semester A 2023/24

Part I Course Overview

Course Title Computer Programming

Subject Code CS - Computer Science Course Number 2310

Academic Unit Computer Science (CS)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites

Nil

Precursors CS1102 Introduction to Computer Studies or CS1302 Introduction to Computer Programming or equivalent

Equivalent Courses CS2311 Computer Programming CS2315 Computer Programming

Exclusive Courses CS1315 Introduction to Computer Programming CS2313 Computer Programming CS2360 Java Programming

Part II Course Details

Abstract

This course aims to equip students with essential programming skills for object-oriented (OO) programming, so as to lay a solid foundation for other computer science related courses. After finishing this course, students should be able to articulate and write an object-oriented program, and have adequately grasped the necessary fundamental computer programming knowledge on which other computer science courses are built.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe and explain the fundamental concepts, syntax, style and structure of object-oriented programs.	10		х	
2	Create and develop solutions to simple problems / tasks and implement solutions with good programming practice in an object- oriented programming language.	60			
3	Trace, analyse, validate and deduce the output of given program code of different complexities.	15	Х	X	
4	Demonstrate working knowledge on advanced programming features such as object initialization, inheritance, overloading and polymorphism.	15		x	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	The lecture will focus on the introduction to the programming concepts and techniques, explained and demonstrated with examples.	1, 2, 3, 4	3 hours per week

2	Laboratory	Laboratory exercises,	1, 2, 3, 4	1 hour per week
		consisting of programming problems, are designed for students to put theory into practice and be proficient in an OO programming language. Students are required to create computer programs using a program development tool that supports an OO programming language.		
3	Assignment	Assignments are intended to require students to solve more challenging problems compared with laboratory exercises. Students have to analyse the problems, break them down into manageable sub-problems, and apply (and possibly combine) various techniques learnt from lectures and laboratory exercises in order to create and develop solutions. Then they are required to implement the solutions as computer programs which conform to good programming practice, and to explain their solutions using suitable presentation methods (e.g., using a report, flowchart, etc.).	1, 2, 3, 4	After class
4	Quiz	The quizzes provide opportunities for students to reflect on their understanding of various programming concepts and problem solving techniques. They are required to develop and implement programs or program segments to solve problems; and to predict and explain the behaviour of programs involving various programming concepts and techniques.	1, 2, 3	

4 CS2310: Computer Programming

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks
1	Assignments	1, 2, 3, 4	25	Students are required to work on assignments at least once every four weeks
2	Lab assessment	1, 2, 3, 4	10	
3	Quiz	1, 2, 3	15	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 40% of the maximum mark for the continuous assessment and 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

Assignment

Criterion

ABILITY to WRITE PROGRAM to solve simple problems with good programming practices DEMONSTRATE working knowledge on object oriented programming

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Quiz

Criterion

ABILITY to ANALYZE requirements to derive the correct logic and process to solve problems ABILITY to WRITE PROGRAM to solve simple problems with good programming practices

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

ABILITY to DESCRIBE and EXPLAIN the fundamental concepts, syntax, style and structure of object-oriented programs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

ABILITY to WRITE PROGRAM to solve simple problems with good programming practices

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion ABILITY to TRACE and VALIDATE computer program

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion DEMONSTRATE working knowledge on object oriented programming

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Programming language, program development, control structures, data types, arrays, files, recursion, pointers and dynamic variables. Object-oriented programming: class and object, inheritance, overloading, polymorphism. Scoping, programming style and tools.

Syllabus:

· Computers and programming

Hardware/software hierarchy, the computer as a multi-level language machine. Program development process and environments.

· Programming techniques and the development of algorithms

Algorithms, programming language, modular decomposition and procedural abstraction, automatic and dynamic variables, parameter-passing by reference and by value for atomic data, objects, arrays, control structures, iteration, recursion.

- Data types and manipulation
 Concept of data types. Simple data types. Arrays. Strings. Files. Encapsulation and information hiding. Defining and using classes. Class library. Pointers. Input/output, arithmetic, logical and string operations.
- Program development practice Professional programming styles. Program testing. Program documentation.

Reading List

Compulsory Readings

	Fitle	
1	Nil	

Additional Readings

	Title	
1	H.M. Deitel & P.J. Deitel (2013). C++ How to Program. Pearson Int. Edition, 7th edition.	
2	Stanley B. Lippman, Josee Lajoie, Barbara E. Moo (2013). C++ Primer. Addison-Wesley, 15th edition.	
3	Chip Weems, Mark R. Headington, and Nell B. Dale (2013). Programming And Problem Solving With C++: Comprehensive, 6th Edition	
4	Walter Savitch (2014). Problem Solving with C++, 9th Edition	