CA4685: TRAFFIC AND HIGHWAY ENGINEERING

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Traffic and Highway Engineering

Subject Code

CA - Civil and Architectural Engineering

Course Number

4685

Academic Unit

Architecture and Civil Engineering (CA)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

CA2676 Transportation Engineering

Students must have attempted (including class attendance, coursework submission, and examination) the precursor course(s) so identified.

Equivalent Courses

BC4685 Traffic and Highway Engineering; CA4710 Highway Engineering

Exclusive Courses

Nil

Part II Course Details

Abstract

The course provides some advance information on solving traffic modeling and highway engineering problems. The course content is intended to equip students advance knowledge of traffic modeling and highway design methods. The course covers detailed demand modeling procedures using the four-step models, pavement material testing methods and data, empirical design method for flexible and rigid pavement structure, detailed design procedures for signal-controlled and roundabout junctions. Simple transport economics for analyzing traffic demand and supply.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Apply advanced technique for traffic demand modeling including trip generation/attraction model, trip distribution model, mode choice model, and route choice model;	25	x		
2	Design of highway flexible and rigid pavement;	25			X
3	Design calculations of signal-controlled and roundabout junctions;	30		X	
4	Apply theory in transport economics to analyze traffic demand and supply characteristics.	20	X		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Explain the key principles, theories and tools for traffic and highway engineering	1, 2, 3, 4	
2	Hand-on exercise	Require students to discuss the concepts and solve the problems in traffic and highway engineering individually or in a group basis	2, 3	

3	Project	Require students to take	1, 4	
		on a role as a traffic and		
		highway engineering		
		for operating a highway		
		related project; and		
		to apply the taught		
		concept to accomplish the		
		relevant designs		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Assignment	3, 4	30	
2	Quiz (mid-term test)	1, 2	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

3

Additional Information for ATs

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%.

Assessment Rubrics (AR)

Assessment Task

Assignment

Criterion

1. ABILITY to APPLY suitable techniques to operate a highway engineering project

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Quiz (mid-term test)

4 CA4685: Traffic and Highway Engineering

Criterion

- 1. CAPACITY to DISCUSS the roles, functions and responsibilities of highway engineers
- 2. ABILITY to USE the scientific techniques in solving the design and operation problems

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

- 1. CAPACITY to RELATE and EXPLAIN the theories and principles to highway engineering projects, and DISCUSS the roles, functions and responsibilities of highway engineers
- 2. ABILITY to USE the scientific techniques in solving the design and operation problems

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Basic concepts of traffic flow theory; transportation planning and modeling; highway system and geometric design; pavement design;; traffic surveys and data collection; intersection control and design.

Reading List

Compulsory Readings

	Title	
1	Nil	

Additional Readings

	Title
1	Khisty C.J. and Lall B.K. 2003, Transportation Engineering An Introduction, 3rd edition, Prentice Hall, New Jersey.
2	Wright P.H. and Dixon K.K. 2004, Highway Engineering, 7th edition, John Wiley.
3	Hong Kong Transport Department, Transport Planning and Design Manuals.
4	Hong Kong Highways Department, Guidance Notes on Pavement Design.