CA2560: GEOLOGY FOR ENGINEERS

Effective Term Semester B 2022/23

Part I Course Overview

Course Title Geology for Engineers

Subject Code CA - Civil and Architectural Engineering Course Number 2560

Academic Unit Architecture and Civil Engineering (CA)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses CA3664 Geology for Engineers, BC3664/BC3664P Geology and Rock Mechanics

Exclusive Courses Nil

Part II Course Details

Abstract

The course is intended to introduce geology, especially the structural, physical and mechanical properties of rocks and soils, and its application in civil and construction engineering. In examining the geological origins and subsequent geological

processes soils and rocks undergo the course provides a basis for the better understanding of the mechanical behaviour of these materials. It aims to foster a curiosity and an aptitude towards independent discovery in the geological environment by highlighting the variety of geological processes and hazards that occur and the need for engineers therefore to develop their own geological and ground model of the local environment.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the process of rock formation;			х	
2	Recognize simple mineral and rock types;		х		
3	Determine the strength and deformation of rock/ground mass;			X	
4	Identify potential hazards arising from geological and ground model;			X	
5	Understand the need to develop an enquiring attitude if geological hazards are to be identified.		х		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Taught classes on geological processes, hazards and applications. Case studies.	1, 2, 3, 4	3 hours/week
2	Lab Classes	Lab classes on rock/ soil identification and description, rock behaviour and geological interpretation.	2, 3, 4, 5	1 lab visit
3	Field Trip	Field Trip: Characterisation and structure of sedimentary and volcanic rocks.	1, 2, 3, 4	1 x 8-hour trip in total

Teaching and Learning Activities (TLAs)

3 CA2560: Geology for Engineers

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Field Trip Report	1, 2, 3, 4, 5	15	
2	Assignments & Lab activity	1, 2, 3, 4, 5	15	
3	Mid-Term Test	1, 2, 3, 4	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Students in order to submit "field trip report", they need to attend the field trip. Students who do not attend the field trip will be requested to perform an alternative coursework.

Lab attendance is compulsory; students must attend the lab session they have been assigned by the course Leader.

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%

Assessment Rubrics (AR)

Assessment Task

Field Trip Report

Criterion

ABILITY to APPLY the techniques and discoveries learnt in lectures, lab classes and tutorials to on-site assessment of geology and to RECORD the observations made.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Below standard

Assessment Task

Assignments & Lab activity

Criterion

CAPACITY to ANALYSE rock behaviour through laboratory tests and DISCUSS CRITICALLY the data.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F)

Below standard

Assessment Task

Mid-Term Test

Criterion

ABILITY to APPLY the understanding of processes and techniques of interpretation in geology and rock mechanics that are learnt in lab classes, tutorials, field trip and lectures.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Below standard

Assessment Task

Examination

Criterion

ABILITY to APPLY the understanding of processes and techniques of interpretation in geology and rock mechanics that are learnt in lab classes, tutorials, field trip and lectures.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F)

Below standard

Part III Other Information

Keyword Syllabus

Origin, texture, mineralogy and alteration of igneous, sedimentary and metamorphic rocks, mineral and rock identification and classification, basic structural geology, geological exploration, processes of weathering, rock structure and fault activity, rock/ground deformability and strength, geological hazards, geological field trip and applications.

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

	Title
1	West T.R., (2010). Geology Applied to Engineering. Waveland Press Inc (Original Edition:1995, Reissued:2010)
2	de Vallejo L.I.G. and Ferrer M. (2011). CRC Press Taylor & Francis Group.
3	Price D.G. and de Freitas M.H. (2009). Engineering Geology, Principles and Practice, Springer.
4	Hencher S. (2012). Practical Engineering Geology, Spon Press.
5	Singh B. and Goel R.K. (2011). Engineering Rock Mass Classification, Elsevier.