ADSE4001: DIGITAL MANUFACTURING AND OPERATIONS

Effective Term Semester A 2023/24

Part I Course Overview

Course Title Digital Manufacturing and Operations

Subject Code ADSE - Advanced Design and System Engineering Course Number 4001

Academic Unit Systems Engineering (SYE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

The ongoing digital innovation have brought profound opportunities to manufacturing services, supply chains, and business operations. By harnessing the power of data and the newly added digital connectivity to physical assets, factories and business operators have been able to save costs, improve productivity, and foster new sources of revenue.

This course provides basics of digitalization of manufacturing activities and operations. The students will acquire knowledge in manufacturing systems, cyber-physical systems, big data, industry 4.0 technologies and industrial internet of things. The students will also work on digital manufacturing case studies and laboratory projects.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Acquire skills in data mining and analytics related to digital manufacturing and operations	30		Х	х
2	Gain experiences in applied research of case studies and projects	30	Х	Х	
3	Deepen understanding in successful implement of smart digital technologies in manufacturing and business operations.	40	x	x	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Formal lectures to introduce key knowledge points, methods, and techniques	1, 3	39 hours/semester
2	Laboratory	There will be four laboratory sessions, in which the students will complete the required laboratory works. The sessions will provide hands-on experience to the students.	1, 2, 3	12 hours/semester

Teaching and Learning Activities (TLAs)

3	Final Project		1, 2, 3	15 hours/semester
		complete a final project		
		in groups to implement		
		the knowledge and		
		techniques learned in		
		lectures to real-world		
		cases and explore related		
		topics in-depth.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks
1	In-class Assignments	1, 3	10	
2	Laboratory & reports	1, 2, 3	20	
3	Final Project	1, 2, 3	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Class Discussion

Criterion

Mastering of concept, theories in smart manufacturing and digital connectivity.

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task Laboratory work

Criterion

Levels of data analytical skill and understanding in its application in manufacturing and industrial operations

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Final Project

Criterion

Levels of skillsets and experience in applied research related to example industries.

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Levels of understanding of concepts and practices learned in the class, reading materials and their ability to apply subject-related knowledge.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

- · Digital manufacturing systems
- · Industry 4.0
- · Cyber-physical Systems
- · Industrial internet of things
- · Supervisory control and data acquisition
- · Remote terminal unit
- · Human machine interface
- · Digital manufacturing case studies

Reading List

Compulsory Readings

	Title
1	Industry 4.0: The Industrial Internet of Things, Alasdair Gilchrist, 2016, Apress.
2	Handbook of Industry 4.0 and SMART Systems, Diego Galar Pascual, Pasquale Daponte, Uday Kumar, 2020, CRC Press

Additional Readings

	Title
1	vil