MNE3115: MICROELECTROMECHANICAL SYSTEMS

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Microelectromechanical Systems

Subject Code MNE - Mechanical Engineering Course Number 3115

Academic Unit Mechanical Engineering (MNE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MBE2003/MNE2003 Mechanics or MBE2109/BME2109/MNE2109 Engineering Mechanics AND MBE2029/BME2029/MNE2029 Electrical and Electronic Principles I or equivalent

Precursors

Nil

Equivalent Courses MBE3115 Microelectromechanical Systems

Exclusive Courses Nil

Part II Course Details

Abstract

The aim of this course is to provide students with the understanding of the functioning and construction of micro-sensors and micro-actuators integrated into micro electro mechanical systems (MEMS). Students will learn about design and fabrication fundamentals for MEMS, including the on-chip implementations for sensors and actuators of micron-scale dimensions. Apart from learning details of microstructure fabrication with the aid of microtooling, mechanics of silicon and thin-film materials will also be covered as well as principles of thermal micromechanics, fluidic damping, electrostatic force, piezoresistivity, and capacitance-based detection of motion. Application examples will focus on micro-sensors (primarily of pressure and acceleration). Characteristics of some of these devices will be determined in laboratory experiments. Students will have the opportunity to discover and innovate in these domains.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	DESCRIBE the mechanics of silicon and thin-film materials, principles of thermal micromechanics, fluidic damping, electrostatic force, piezoresistivity, and capacitance-based detection of motion.			х	
2	IDENTIFY key microstructures related to the MEMS functions and fabrication protocols.			Х	
3	EVALUATE features of micro-transducers.			X	
4	DEVELOP MEMS systems using feasible sensing or/and actuation principles based on theoretical models and analysis of system characteristics for optimal system performance.		x	x	x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description		Hours/week (if applicable)
1	Lecture	Introduction of key	1, 2, 3, 4	3 hrs/week
		concepts, and the project		
		and guidelines.		

2	Laboratory Work	Laboratory work	3, 4	3 hrs/week for two weeks
		will be group activity		
		requiring teamwork. The		
		large- and small-group		
		activities will emphasise		
		opportunities for		
		discovering key concepts		
		in microfabrication and		
		MEMS design.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Laboratory Reports	3, 4	15	Lab reports to be submitted
2	Group Presentation	2, 3, 4	15	Group presentations on selected topic.
3	Test	1, 2	20	20% Marks, 1.5 hours

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Laboratory Reports

Criterion

Ability to explain and analyse the experimental results obtained in the laboratories. Make group presentations on selected topic.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Group Presentation

Criterion

Ability to explain and analyse the experimental results obtained in the laboratories. Make group presentations on selected topic.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Test

Criterion

Answer the questions correctly and properly.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Ability to explain the methodology and procedure related to microfabrication, and to design and model microelectromechanical systems.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

Micro-sensors, micro-actuators, and micro electro mechanical systems (MEMS); design and fabrication for MEMS, on-chip implementations; microtooling; mechanics of silicon and thin-film materials, thermal micromechanics, fluidic damping, electrostatic force, piezoresistivity, and capacitance-based detection of motion; micro-mirror displays and semiconductor and optical micro- sensors.

Reading List

Compulsory Readings

	Title
1	Franssila, S. (2004, and 2010). Introduction to microfabrication. Hoboken, New Jersey, John Wiley & Sons Inc.
2	Schomburg, W. K. (2011). Introduction to Microsystem Design. New York, Springer Press.

Additional Readings

	Title
1	Lee, K. B. (2011). Principles of microelectromechanical systems. Hoboken, New Jersey, John Wiley & Sons Inc.
2	Liu, C. (2011). Foundations of MEMS. Upper Saddle River, New Jersey, Prentice Hall.