City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2019 / 2020

Part I Course Overview

Course Title:	Basic Engineering Materials and Processing
Course Code:	MNE2106
Course Duration:	1 semester
Credit Units:	2 credits
Level:	B2
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites [#] : (Course Code and Title)	AP1201/PHY1201 General Physics I or BCH1100 Chemistry
Precursors : <i>(Course Code and Title)</i>	HKDSE Physics or Design and Applied Technology or equivalent
Equivalent Courses : <i>(Course Code and Title)</i>	MBE2106 Basic Engineering Materials and Processing
Exclusive Courses : (Course Code and Title)	MBE2034/MNE2034 Engineering Materials and Processing

[#]Waived for students admitted through Advanced Standing route if the course is not part of College Requirement

Part II **Course Details**

1. Abstract

(A 150-word description about the course)

The aims of this course are to equip students:

- with basic knowledge of the structure and properties of engineering materials, both metallic and non-٠ metallic type, used in engineering applications; and
- with ability to identify the typical processes and operations involved for conversion and shaping of materials into discrete mechanical components of various products.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No		Weighting*	Discov	erv-enr	iched
110.		(;f		lum nol	atad
		(11	curricu	ium rei	aled
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Describe the basic structure and behaviour of some		✓	✓	
	engineering materials				
2.	Apply basic knowledge of materials to select suitable			✓	
	engineering materials for mechanical components/products				
3.	Outline the basic configurational features and operational			✓	
	principles of commonly available important manufacturing				
	processes				
4.	Select manufacturing processes for producing various			✓	
	components of a mechanical product				
* If we	ighting is assigned to CILOs, they should add up to 100%.	N.A.			

* If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: **Accomplishments**

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	LA Brief Description		LO N	0.		Hours/week (if applicable)	
		1	2	3	4		
Lecture	Explain the fundamental concepts involved with: (i) the basic structure	~	~	~	~	2 hrs/week for 13 weeks	
	and mechanical behaviour of some						
	commonly available engineering						
	materials; (ii) the selection of						
	appropriate materials for specific and						
	major components of products, (iii)						
	the operational features and						
	capabilities of some commonly used						
	manufacturing processes; and (iv) the						
	selection of suitable processes to						
	produce given components/products.						
Laboratory	Practical demonstration to show the	\checkmark		\checkmark	\checkmark	2 hrs total	
Work	students about the configurational						
	features and operational aspects of						
	several manufacturing processes/						
	equipment.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks
		2	3	4		
Continuous Assessment: 40%						
Tests	\checkmark	✓	✓	✓	30%	2 tests
Laboratory Report(s)			✓	✓	10%	1-2 report(s)
Examination: 60% (duration: 2 hours)						
* The weightings should add up to 100%.					100%	

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Tests	 1.1 Describe the basic structure and behaviour of commonly used engineering materials, and to select the materials for mechanical components or products. 1.2 Outline the features and operational principles of some commonly available manufacturing processes, and to select processes for producing a designed mechanical product or component. 	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Laboratory Report(s)	2.1 Evidence of understanding the features and working principles of various manufacturing processes demonstrated.2.2 Evidence of self-learning and information searching.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	 3.1 Describe the basic structure and behaviour of commonly used engineering materials. 3.2 Apply knowledge of materials to select appropriate engineering materials for mechanical components or products. 3.3 Outline the key features and operational principles of manufacturing processes for making mechanical components or products. 3.4 Ability to select manufacturing processes for products. a.4 Ability to select manufacturing processes for products. 	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- (i) Introduction to Engineering Materials
 - Structure and Properties of Metals and Plastics: Structure of metals and plastics, deformation, strain hardening, recovery, cold, warm and hot working.
 - Mechanical Behaviour: Stress-strain curves, ductility, and failure.
- (ii) Introduction to Manufacturing Processes
 - Metal Casting Processes: Common casting processes and types of products produced.
 - Bulk Forming: Basic flat and shape rolling, forging, extrusion, drawing processes.
 - Sheet Metal Forming: Blanking and shearing, bending, deep drawing processes.
 - Processing of metal powders and ceramics: Common powder metallurgy processes.
 - Plastics Processing: Types of engineering plastics, extrusion, injection molding, blow molding, thermoforming, vacuum forming, and compression molding.
 - Material Removal: Machining processes for different shapes, turning, milling, drilling, grinding, and some unconventional processes.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. "Manufacturing Engineering and Technology", Serope Kalpakjian and Steven R. Schmid, Prentice Hall, 4th or later edition.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	"Introduction to Manufacturing Processes", John A. Schey, McGraw-Hill International 2 nd or later
	edition.
2.	"Manufacturing Processes for Engineering Materials", Serope Kalpakjian, Addison Wesley
	Publishing Co., 3rd or later edition.
3.	"Introduction to Materials Science for Engineers", James F. Shackelford, Prentice Hall, 5th or later
1	edition.