City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20 <u>20</u> / <u>21</u>

Part I Course Overview

Course Title:	Calculus and Basic Linear Algebra II							
Course Code:	MA1201							
Course Duration:	1 semester							
Credit Units:	3 CUs							
Level:	B1							
	Arts and Humanities							
Proposed Area:	L Study of Societies, Social and Business Organisations							
(for GE courses only)	└└ Science and Technology							
Medium of Instruction:	English							
Medium of Assessment:	English							
Prerequisites : (Course Code and Title)	(i) MA1200 Calculus and Basic Linear Algebra I, or (ii) MA1300 Enhanced Calculus and Linear Algebra I							
Precursors : (Course Code and Title)	Nil							
Equivalent Courses : (Course Code and Title)	MA1301 Enhanced Calculus and Linear Algebra II							
Exclusive Courses: (Course Code and Title)	MA1006 Calculus and Linear Algebra for Business MA1508 Calculus							

Part II **Course Details**

1. Abstract

(A 150-word description about the course)

This is the second of two required courses designed for students pursuing studies in **engineering** or **science**. The

course aims to

- develop fluency in concepts and techniques from integral calculus, linear algebra and complex numbers, • and
- provide students with mathematical training for all further study in science/engineering and its applications.

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs [#]	Weighting*	Discov	ery-enr	riched
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	perform techniques of integration to evaluate integrals	24		\checkmark	
	of functions.	24			
2.	explain clearly concepts from vector and matrix	0	\checkmark		
	algebra.	8			
3.	manipulate expressions and solve geometric problems				\checkmark
	with vector arithmetic.	15			
4.	implement techniques of matrix arithmetic and of	22		\checkmark	
	solving systems of linear equations.	23			
5.	perform basic operations and solve equations	15		\checkmark	
	involving complex numbers.	15			
6.	apply methods of integral calculus, linear algebra and		\checkmark		
	complex numbers to model problems in science and	15			
	engineering.				
* If we	highting is assigned to CILOs, they should add up to 100%.	100%			

* If weighting is assigned to CILOs, they should add up to 100%.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1:Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

Ability A2:

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: *Accomplishments* Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	O No.					Hours/week (if
	-	1	2	3	4	5	6	applicable)
Lectures		√	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	39 hours in
	Learning through teaching is							total (A/B);
	primarily based on lectures.							46 hours in
								total (C/D)
Tutorials		\checkmark						3 hours in
								total (A/B);
								4 hours in
								total (C/D)
			\checkmark	\checkmark				3 hours in
								total (A/B);
								4 hours in
								total (C/D)
	Learning through tutorials is		\checkmark		\checkmark			3 hours in
	primarily based on interactive							total (A/B);
	problem solving allowing							4 hours in
	instant feedback.							total (C/D)
						\checkmark		2 hours in
								total (A/B);
								4 hours in
								total (C/D)
							√	2 hours in
								total (A/B);
								3 hours in
								total (C/D)
Assignments	Learning through take-home	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	
	assignments helps students							
	implement concepts and							
	methods of integral calculus,							
	linear algebra and complex							after class
	numbers, as well as apply							
	knowledge of which to							
	problems in science and							
	engineering.							
Online	Learning through online						\checkmark	
applications	examples for applications							
	helps students apply methods							after alass
	of integral calculus, linear							aner class
	algebra and complex numbers							
	to problems in science and							

		engineering.							
Math	Help	Learning activities in Math	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	after-class,
Centre		Help Centre provides students							depending on
		extra assistance in study.							need

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration:3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities	vities CILO No.				Weighting*	Remarks		
	1	2	3	4	5	6		
Continuous Assessment: _30	%		1		1		1	1
	✓	✓	\checkmark	✓	\checkmark	\checkmark		Questions are
								designed to see how
								well students have
								learned techniques of
								integral calculus, as
								well as concepts and
Quizzes/Test(s)							15 - 30%	arithmetic of linear
								algebra and complex
								numbers. These
								assessment tasks
								monitor students'
								progress and reveal
								gaps in knowledge.
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		These are skills based
								assessment to see
								whether students are
								familiar with
Hand-in assignment(s)							0-15%	essential methods and
								applications of
								integral calculus,
								linear algebra and
								complex numbers.
Examination: (duration: 3 hrs)	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark	70%	Examination
								designed to see how
								far students have
								achieved their

* The unightings should add up to 1	0.09/		100%	intended learning outcomes. Questions will primarily be skills based to assess the extent to which students have mastered methods of the course and synthesized mathematical knowledge in practical applications.
" The weightings should add up to 1	00%.		100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Quizzes/Test(s)	Ability to use basic skills of integral calculus linear algebra and complex numbers.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignment(s)	Ability to apply the methods of integral calculus, linear algebra and complex numbers to physical / engineering applications.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Ability to master the mathematical techniques learned in the course.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- A) Definite and indefinite integrals; Techniques of integration, integration of rational functions, integration by substitution, integration by parts
- B) Physical and geometric applications of integration
- C) Vectors in R^2 and R^3 ; Scalar products, cross products, triple scalar products; Linear (in)dependence
- D) Arithmetic of complex numbers; Polar and Euler forms; De Moivre's theorem and its applications
- E) Matrices; Determinants, cofactor expansion; Systems of linear equations, Gaussian elimination, Cramer's rule; Matrix inverses, Gauss-Jordan elimination method

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	For further detailed information, please refer to
	http://www6.cityu.edu.hk/ma/ug/serv/ma1201.htm
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Nil
2.	
3.	