City University of Hong Kong Course Syllabus

offered by Department of Information Systems with effect from Semester A 2022 / 2023

Part I Course Overv	riew
Course Title:	Introduction to Business Programming in Python
Course Code:	CB2240
Course Duration:	One Semester
Credit Units:	_3
Level:	B2
Proposed Area: (for GE courses only)	 ☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	IS2240 Python Programming for Business
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course will introduce fundamental programming concepts and applications in business services. The main topics include basic concepts of expressions, variables, functions, logic, and conditional statements. Python modules will be used to solve business problems through data analyses and visualizations.

After completing the course, students will be able to write simple Python programs to solve real and practical problems in various business disciplines. As an introductory programming course, the concepts and skills will help students understand how information technologies (Python programming) facilitate data-driven decision-making processes in modern organizations.

With the looming transformative impacts of AI and machine learning in areas such as auditing, FinTech, digital marketing, and supply chain 4.0, this introductory Python course will pave ways for all business students to pursue more advanced skills necessary to adapt to the changing labor market. Students wishing to advance their programming skills in Python and basic machine learning can take the advanced course of IS2240 Python Programming for Business.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting* (if applicable)	Discov curricu learnin (please approp	lum rel g outco tick	lated omes
			A1	A2	A3
1.	Explain the structure of a Python program and understand the	20%	✓		
	basics of computer programming.				
2.	Read, analyze, test and debug Python programs.	20%	✓	✓	
3.	Identify, characterize, and analyze a problem, and write	30%		✓	✓
	Python programs to solve the business problem.				
4.	Apply Python programming knowledge and techniques to	30%		✓	✓
	facilitate data-driven decision-making through data analyses				
	and visualization.				
T.C		1.000/			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA Brief Description		CILO No.				Hours/week (if	
		1	2	3	4	applicable)	
TLA1:	Concepts and general knowledge of	✓	✓	✓	✓	Seminar:	
Lecture	programming techniques in Python are					3 Hours/Week	
	explained.						
TLA2:	Hands-on computer exercises related with		✓	✓	✓		
Laboratory	business domains are designed to help						
Exercise	students apply what they have learned in						
	lectures. Assignments involve individual work						
	or teamwork by a group of students in the						
	same laboratory group to solve a specific						
	business problem.						
TLA3:	Concepts, techniques, and good practices of	✓	✓	✓	✓		
Tutorial	programming are discussed.						
TLA4:	Perform online quizzes in lectures, tutorials,	✓	✓	✓	✓		
Class	and laboratory sessions to get immediate						
Discussion and	feedback from students. These are followed by						
Presentation	discussions of quizzes to reinforce the						
	learning of the materials tested. Presentation						
	of laboratory results and assignments may be						
	required.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		O No.			Weighting*	Remarks#
	1	2	3	4		
Continuous Assessment: <u>60%</u>						
AT1: Participation and Laboratory Exercises	✓	✓	✓	✓	20%	
Each laboratory has in-class exercises to assess students' hands-on programming skills of the topics covered.						
AT2: Individual Assignment		✓	✓	✓	20%	
The individual assignment, including programme codes, results, written reports and presentation, is required to assess the technical analysis and implementation skill sets of the students.						
AT3: Weekly Quiz	✓	✓	✓	√	20%	
The quizzes serve the purpose of continuous assessment of students' understanding of the critical domain areas and as an indicator of how well the students have performed.						
Examination: 40% (duration: one 2-hour exam)		•	•	•		
AT4. Final Examination Students will be assessed via the examination on their understanding of concepts learned in class, textbooks, reading materials, and their ability to apply subject-related knowledge.	√	√	√	√	40%	
* The weightings should add up to 100%.		1	I	1	100%	

^{*}Remark: Students must pass BOTH coursework and examination in order to get an overall pass in this course.

5. Assessment Rubrics

 $(Grading\ of\ student\ achievements\ is\ based\ on\ student\ performance\ in\ assessment\ tasks/activities\ with\ the\ following\ rubrics.)$

Assessment	Criterion	Excellent	Good	Fair	Marginal	Failure
Task (AT)		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
AT1: Participation and Laboratory	Ability to accurately describe and understand the basic concepts in Python programming	High	Significant	Moderate	Basic	Not even reaching marginal levels
Exercises	Ability to quickly understand and analyze a Python program	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively and efficiently write Python programs	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT2: Individual Assignment	Ability to effectively test and debug Python programs	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively and efficiently write Python programs	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT3: Weekly Quiz	Ability to accurately describe and understand the basic concepts in Python programming	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to accurately understand and analyze a Python program	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively and efficiently write Python programs	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
AT4: Final Examination	Ability to accurately describe and understand the basic concepts in Python programming	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to accurately understand and analyze a Python program	High	Significant	Moderate	Basic	Not even reaching marginal levels
	Ability to creatively, effectively and efficiently write Python programs	High	Significant	Moderate	Basic	Not even reaching marginal levels

Capability to creatively and	High	Significant	Moderate	Basic	Not even
effectively develop applications					reaching
that involve advanced techniques					marginal
to solve business problems					levels

Part III Other Information

1. Keyword Syllabus

(An indication of the key topics of the course.)

This is an introductory course, and basic concepts of expressions, variables, functions, logic and conditional statements, and modules will be covered. The course will focus on programming skills with practical applications to business disciplines.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. David I. Schneider, <u>An Introduction to Programming Using Python</u>, 1st edition, Pearson, 2016.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Cay S. Horstmann, Rance D. Necaise, <u>Python for Everyone</u> , 2nd Edition, Wiley, 2016.
2.	Mark Lutz, <u>Learning Python</u> , 5 th Edition, O'Reilly Media, 2013.
3.	Eric Matthes, Python Crash Course: A Hands-On, Project-Based Introduction to Programming, 1st Edition, No Starch Press, 2015.
4.	Al Sweigart, <u>Automate the Boring Stuff with Python: Practical Programming for Total Beginners</u> , 1 st Edition, No Starch Press, 2015.
5.	Mahesh Venkitachalam, <u>Python Playground: Geeky Projects for the Curious Programmer</u> , 1 st Edition. No Starch Press, 2015.
6.	Data Visualization with Python for Beginners: Visualize Your Data using Pandas, Matplotlib and Seaborn, AI Publishing LLC, 2020.