City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20 <u>20</u> / <u>21</u>

Part I Course Overview

Course Title:	Mathematical Methods for Engineering
Course Code:	MA2181
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	B2
	Arts and Humanities
Proposed Area: <i>(for GE courses only)</i>	 Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	MA1201 Calculus and Basic Linear Algebra II / MA1301 Enhanced Calculus and Linear Algebra II; or equivalent
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	MA2177 Engineering Mathematics and Statistics

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course aims to develop a basic understanding of a range of mathematics tools with emphasis on engineering applications. It is intended for students to solve problems with techniques from advanced linear algebra, ordinary differential equations and multi-variable differentiation. Fourier series and Laplace transforms are also introduced. The course helps students develop skills to think quantitatively and analyse problems critically.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs [#]	Weighting*		very-en	
		(if	curricu	ılum re	lated
		applicable)	learnir	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			Al	A2	A3
1.	explain at high levels concepts from advanced linear	15%	X	X	
	algebra and multi-variable differentiation.				
2.	compute eigenvalues and eigenvectors of matrices, and	25%	X	X	
	solve first- and higher order ordinary differential equations.				
3.	evaluate partial derivatives of multivariate functions.	25%	X	X	
4.	implement basic operations in Fourier series and Laplace	20%	X	X	
	transforms.				
5.	apply mathematical and computational methods to a range	15%	X	X	x
	of problems in science and engineering.				
* 16	aighting is assigned to CHOs, they should add up to 1000/	1000/	1		

* If weighting is assigned to CILOs, they should add up to 100%. 100%

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.				Hours/week (if	
		1	2	3	4	5	applicable)
Lectures	Learning through teaching is	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	39 hours in
	primarily based on lectures.						total
Tutorials	Learning through tutorials is		\checkmark				2 hours
	c c			\checkmark			2 hours
	primarily based on interactive				\checkmark		2 hours
	problem solving allowing instant					\checkmark	1 hour

	feedback.						
Assignments	Learning through take-home assignments helps students understand basic concepts and techniques of advanced linear algebra, ordinary differential equations and multi-variable differentiation, and some applications in science and	×	×	×		✓	after-class
	engineering.						
Online applications	Learning through online examples for applications helps students apply mathematical and computational methods to some problems in engineering applications.					~	after-class
Math Help Centre	Learning activities in Math Help Centre provides students extra help.	 ✓ 	 ✓ 	 ✓ 	✓ 		after-class

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 2 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities CILO No.					Weighting*	Remarks		
	1	2	3	4	5			
Continuous Assessment: _30	_%	-						
Test	\checkmark	\checkmark	\checkmark				15-30%	Questions are designed
								for the first part of the
								course to see how well
								the students have
								learned concepts and
								techniques of advanced
								linear algebra, ordinary
								differential equations
								and multi-variable
								differentiation.

						0-15%	
Hand-in assignments	\checkmark	√	\checkmark	√	\checkmark	0-13%	These are skills based
							assessment to see
							whether the students
							are familiar with
							advanced concepts and
							techniques of linear
							algebra, ordinary
							differential equations,
							multi-variable
							differentiation, Laplace
							transforms, Fourier
							series and some
							applications in
							engineering.
							engineering.
Formative take-home	\checkmark	\checkmark	\checkmark	~	\checkmark	0%	The assignments allow
assignments							students to demonstrate
							their achievements on
							advanced linear
							algebra, ordinary
							differential equations,
							multi-variable
							differentiation and their
							applications in
							engineering learned in
							this course.
Examination: 70% (duration	: 2 h	rs, if	appli	cable)		Examination questions
							are designed to see how
							far students have
							achieved their intended
							learning outcomes.
							Questions will
							primarily be skills and
							understanding based to
							assess the student's
							versatility in advanced
							linear algebra, ordinary
							differential equations,
							multi-variable

		differentiation, Laplace
		transforms and Fourier
		series.
* The weightings should add up to 100%.	100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Ma
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D
1. Test	Utilize concepts from advanced linear algebra, ordinary differential equations and eigenvalues and eigenvectors to solve problems relevant to engineering.	High	Significant	Moderate	Ba
2. Hand-in assignments	Evaluate and implement Fourier series, Laplace transforms and techniques from multivariate calculus.	High	Significant	Moderate	Ba
3. Formative take-home assignments	Select and apply various methods to solve problems relevant to engineering.	High	Significant	Moderate	Ba
4. Examination	Design solution strategies and then utilize appropriate methods to solve science and engineering problems.	High	Significant	Moderate	Ba

Course Syllabus Jun 2017 Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Eigenvalues and eigenvectors. First- and higher order ordinary differential equations. Partial differentiation. Laplace transforms. Fourier series.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Calculus – Early Transcendentals (7th Ed.) by C. Henry Edwards & David E. Penny
2.	Linear Algebra – A Pure and Applied First Course (1st Ed.) by Edgar G. Goodaire
3.	Differential Equations and Boundary Value Problems (4th Ed.) by C. Henry Edwards &
	David E. Penny

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Advanced Engineering Mathematics (9th Ed.) by Erwin Kreyszig
2.	
3.	