City University of Hong Kong Course Syllabus

offered by Department of Mathematics with effect from Semester A = 20 16 / 17

Part I Course Over	view								
Course Title:	Elementary Numerical Methods								
Course Code:	MA3513								
Course Duration:	One semester								
Credit Units:	4								
Level:	B3								
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology								
Medium of Instruction:	English								
Medium of Assessment:	English								
Prerequisites: (Course Code and Title)	MA2503 Linear Algebra								
Precursors: (Course Code and Title)	Nil								
Equivalent Courses : (Course Code and Title)	Nil								
Exclusive Courses: (Course Code and Title)	MA3004 Numerical Methods								

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course aims to give an introduction of elementary numerical methods. It trains students to apply numerical methods in solving problems in calculus, linear algebra and differential equations, as well as to use software packages in writing computer programs and analyzing solutions of problems. The course also serves to give students practice in clear and concise written and spoken communication of the results of an investigation.

Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs#	Weighting*		ery-eni	
		(if		ılum rel	
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	manipulate computing software packages, such as	0%			
	MATLAB, as tools in solving and analyzing solutions of problems.				
2.	design programs of numerical computation with	0%			
	MATLAB.				
3.	explain clearly mathematical concepts of basic numerical	10%	*		
	methods.				
4.	apply computational techniques in linear algebra, such as	40%	*	*	*
	solving a linear system, matrix eigenvalue problem and the				
	least squares problem.				
5.	evaluate integrals and interpolating polynomials	20%	*	*	
	numerically.				
6.	solve nonlinear equations by using an algorithmic approach	20%	*	*	*
	technique.				
7.	the combination of CILOs 1-6	10%	*	*	*
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

^{**} Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No	Э.				Hours/week (if	
		1	2	3	4	5	6	7	applicable)
Lecture	Learning through teaching	Y	Y	Y	Y	Y	Y	Y	39 hours in total
	is primarily based on								
	lectures.								
Take-home	Learning through tutorials	Y	Y						2 hours
assignments	is primarily based on			Y					1 hour
	interactive problem solving				Y				4 hours
	and hand-on computer					Y			3 hours
	exercises allowing instant						Y		3 hours
	feedback.								
Online							Y		after-class
applications							3 7		C. 1
Math Help Centre		Y	Y	Y	Y		Y		after-class

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment		CII	LON	lo.					Weighting*	Remarks
Tasks/Activi	ities	1	2	3	4	5	6	7		
	Continuous Asse	essm	ent:	_30	9	6				
Test				Y	Y	Y			15-30%	Questions are designed for the first part of the course to see how well the students have learned the basic concepts of numerical methods and their applications in solving problems of linear algebra and polynomial interpolation.

Hand-in assignments	Y	Y	Y	Y	Y	Y		0-15%	These are skills
Trand-in assignments	1	1	1	1	1	1		0-1370	based assessment to
									enable students to
									approach
									mathematical
									problems via
									numerical means
									and to analyze solutions with the
									aid of computing
D : (()	3.7			3.7	3.7	3.7		0.150/	software packages.
Project(s)	Y			Y	Y	Y		0-15%	Students are
									assessed on their
									ability in applying
									numerical and
									computational
									methods to solve
									mathematical
									problems, as well as
									on the presentation
									of numerical results
									with analysis.
Examination							Y	70%	Examination
									questions are
									designed to see how
									far students have
									achieved their
									intended learning
									outcomes.
									Questions will
									primarily be skills
									and understanding
									based to assess the
									student's versatility
									in basic numerical
									methods.
Formative take-home	Y	Y	Y	Y	Y	Y		0%	The assignments
assignments									provide students
									chances to
									demonstrate their
									achievements on
L	1	l	l	l					I .

										numerical methods
										learned in this
										course.
Examination: _7	′0	_% (dura	tion:	3 h	ours	, if a	applicable	e)	

* The weightings should add up to 100%.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Adequate (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	ABILITY to APPLY and EXPLAIN the basic concepts and methodology of numerical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	CAPACITY for LEARNING to understand the principles of numerical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Projects	N.A.					
4. Examination	ABILITY to ANALYZE and DEVELOP numerical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
5. Formative take-home assignments	CAPACITY for LEARNING to understand the principles of numerical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

MATLAB for numerical computation, Computer Arithmetics. Linear System of Equations. Polynomial Interpolation and Splines. Numerical Integration. Least Squares Problems. Matrix Eigenvalue Problem. Root-finding Methods.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	