City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>B</u> 20_17_ / _18_

Part I Course Over	view
	Engineering Mathematics and Statistics
Course Title:	
Course Code:	MA2177
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	B2
	Arts and Humanities
Proposed Area: (for GE courses only)	☐ Study of Societies, Social and Business Organisations ☐ Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
	MA1200 Calculus and Basic Linear Algebra I /MA1300 Calculus and Basic Linear Algebra II and MA1201 Enhanced Calculus and Linear Algebra I
Prerequisites: (Course Code and Title)	/MA1301 Enhanced Calculus and Linear Algebra I or MA2176 Basic Calculus and Linear Algebra_or equivalent_
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
	MA2506 Probability and Statistics MA2172 Applied Statistics for Science and Engineering
Exclusive Courses: (Course Code and Title)	MA2172 Applied Statistics for Science and Engineering MA2181 Mathematical Methods for Engineering MA3181 Financial Mathematics II

1

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course aims to develop a basic understanding of a range of mathematics tools with emphasis on engineering applications in order to support later courses in mechanical and electronic themes. It is intended for students to solve some statistical problems and ordinary differential equations by analytical methods. Fourier series and Laplace transforms are also introduced. The course will help students develop skills and the ability to think quantitatively and analyse problems critically.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	ery-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	explain at high levels concepts from differential equations, probability and statistics.	10%	V		
2.	implement basic operations in Fourier series, Laplace transforms and probability theory.	20%		1	
3.	solve some differential equations, explicitly or by series and transforms.	30%		1	
4.	perform statistical computations.	30%			
5.	develop statistical models or mathematical models through differential equations and probability theory, and perform computations for some applications.	10%	V	1	V
* IC	-i-l-tiitt	1000/		1	1

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	O No.		Hours/week (if			
		1	2	3	4	5	6	applicable)
Lectures	Learning through teaching is	✓	✓	✓	✓	✓	✓	39 hours in
	primarily based on lectures.							total
Tutorials	Learning through tutorials is		√					2 hours

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

	primarily based on interactive problem solving allowing instant			√	√			2 hours 2 hours
	feedback.					√		1 hour
Take-home assignments	Learning through take-home assignments helps students understand basic concepts and techniques of ordinary differential equations, transforms, statistics, and some engineering applications.	✓	✓	✓	√	√	√	after-class
Online applications	Learning through online examples for applications helps students apply statistical and computational methods to some problems in engineering applications.					✓		after-class
Math Help Centre	Learning activities in Math Help Centre provides students extra help.		√	√	✓	✓		after-class

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4	5	6		
Continuous Assessment: _30	%							
Test		✓	✓				15-30%	Questions are designed for the first part of the course to see how well the students have learned the basic concepts, and techniques of ordinary differential equations and transforms, probability theory and some applications.

	,			,			T
Hand-in assignments	✓	√	√	✓	✓	0-15%	These are skills based
							assessment to see
							whether the students
							are familiar with the
							basic concepts,
							techniques of ordinary
							differential equations,
							transforms, statistics
							and related applications
							in engineering.
P						0%	
Formative take-home	✓	√	√	✓		U 70	The assignments
assignments							provide students
							chances to demonstrate
							their achievements on
							ordinary differential
							equations,
							transforms, and
							statistics and their
							applications learned in
							this course.
Examination: _70% (duration	: 3 hı	s, if	appli	cable	:)		Examination questions are designed to see how
							far students have achieved their intended
							learning outcomes.
							Questions will
							primarily be skills and understanding based to
							assess the student's
							versatility in ordinary
							differential equations,
							transforms, and statistics.
* The weightings should add up to 1	00%.					100%	statistics.
0 0 · · · · · · · · · · · · · · · · · ·							.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	Ability to apply the methodology and procedure for solving some ordinary differential equations and statistical problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Ability to apply the methodology and procedure for solving some ordinary differential equations and statistical problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Formative take-home assignments	Ability to apply the methodology and procedure for solving some ordinary differential equations and statistical problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	Ability to apply the methodology and procedure for solving some ordinary differential equations and statistical problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Ordinary differential equations. Fourier series. Laplace transforms. Random variables. Probability. Distributions. Data and sample description. Estimation of parameters. Test of hypothesis. Simple linear regression.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	For further detailed information, please refer to
	http://www6.cityu.edu.hk/ma/ug/serv/ma2177.htm
2.	
3.	
•••	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Nil
2.	
3.	