City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20<u>18</u> / <u>19</u>

Part I Course Overview

Course Title:	Enhanced Calculus and Linear Algebra I
Course Code:	MA1300
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	B1
Proposed Area: (for GE courses only)	☐Arts and Humanities ☐Study of Societies, Social and Business Organisations ☐Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
	(i) HKDSE Mathematics Compulsory Part and Extended Part Module 1
	(Level 5), or
Prerequisites : <i>(Course Code and Title)</i>	(ii) HKDSE Mathematics Compulsory Part and Extended Part Module 2 (Levels 3 – 5); or equivalent
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	MA1200 Calculus and Basic Linear Algebra I
	MA1006 Calculus and Linear Algebra for Business
	MA1100 Foundation Mathematics I,
	MA1001 Higher Mathematics I(A)
	MA1002 Higher Mathematics I(B)
Exclusive Courses:	MA1003 Higher Mathematics II(A)
(Course Code and Title)	MA1004 Higher Mathematics II(B)

Part II Course Details

1. Abstract

(A 150-word description about the course)

This is the first of two required courses designed for students pursuing studies in mathematics,

or engineering/science students requiring solid background in mathematics. It aims to

- strengthen skills and methods essential for study of further mathematics,
- develop fluency in concepts of limits and techniques of differential calculus, and
- nurture skills in logical thinking and translation of ideas with formal mathematical language.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting* (if applicable)	Discov curricu learnin (please approp	very-eni ilum rel g outco e tick priate)	riched lated omes where
1.	implement mathematical methods of algebra, trigonometry and coordinate geometry proficiently.	16%	AI	A2 ✓	A5 ✓
2.	explain properties of functions and manipulate expressions involving standard functions and their inverses.	16%	✓		~
3.	apply concepts and theory of sequences to evaluate their limits.	20%	✓	~	
4.	describe concepts on infinite series and test their convergence/divergence.	16%	✓		
5.	explain at high level concepts of limit, continuity and differentiability of functions.	16%	~		
6.	perform techniques of differentiation to obtain derivatives of functions.	16%		~	

* If weighting is assigned to CILOs, they should add up to 100%.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

100%

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

Students are assigned to lecture sessions according to mathematical background and/or results in HKDSE mathematics.

Students in Section B benefit from extra tuition hours.

HKDSE Mathematics							
Compulsory Part	Module 1 (Level 5)	Module 2	Section				
~		✓ (Levels $4-5$)	Α				
✓		✓ (Levels 1 – 3)	В				
✓	✓		В				
New Foundation Year of CSE							

Note: \checkmark = passed

TLA	Brief Description	CILO No.				Hours/week (if		
	-	1	2	3	4	5	6	applicable)
Lectures		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	39 hours in
	Learning through teaching is							total (A);
	primarily based on lectures.							46 hours in
								total (B)
Tutorials		\checkmark						2 hours in
								total (A);
								3 hours in
								total (B)
			\checkmark					2 hours in
								total (A);
								3 hours in
								total (B)
	· · · · · · · · ·			\checkmark				3 hours in
	Learning through tutorials is							total (A);
	primarily based on interactive problem solving allowing instant feedback.							4 hours in
								total (B)
					\checkmark			2 hours in
								total (A);
								3 hours in
								total (B)
						\checkmark		2 hours in
								total (A);
								3 hours in
								total (B)
			1		1		\checkmark	2 hours in

							total (A);
							3 hours in
							total (B)
Learning through take-home	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
assignments helps students							
implement concepts of							
functions and limits, evaluate							
limits of sequences, series and							ofter class
functions, test for							after class
convergence/divergence of							
series as well as apply							
techniques of differential							
calculus.							
Learning activities in Math	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	after-class,
Help Centre provides students							depending on
extra assistance in study.							need

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4	5	6		
Continuous Assessment: _30	%							
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Questions are
								designed to see how
								well students have
								learned basic
							15 - 30%	mathematical
								methods, concepts of
Ouizzes/Test(s)								functions, limits,
Quizzes/Test(s)								continuity and
								differentiability, as
								well as techniques of
								differential calculus.
								These assessment
								tasks monitor
								students' progress

								and reveal gaps in
								knowledge.
Hand-in assignment(s)	✓ 	~	✓ 	✓ 		✓ 	0 – 15%	These are skills based assessment to see whether students are familiar with essential mathematical techniques, properties of functions, theory and methods of limits of sequences and series as well as techniques of differential calculus.
Examination: _70% (duration	: 3 hr	s, if a	appli	cable)		100%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills based to assess the extent to which students have mastered methods of the course and synthesized mathematical knowledge in more sophisticated problems.
* The weightings should add up to 10	JU%.						100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1.	1.1 CAPACITY of	High	Significant	Moderate	Basic	Not even reaching
Quizzes/Test(s)	EXPLAIN and	-				marginal levels
	APPLY concepts and					marginar ieveis
	differential calculus					
2 Hand in	21 CARACITY of					
2. Hallu-III	2.1 CAFACITE OF	High	Significant	Moderate	Basic	Not even reaching
assignment(s)	LEARNING to					marginal levels
	understand the main					
	concepts of					
	differential calculus					
	and master the					
	mathematical					
	techniques involved.					
3. Examination	3.1 ABILITY to	High	Significant	Moderate	Basic	Not even reaching
	APPLY mainematical					marginal levels
	theories to solve					C
	problems involving					
	the intended learning					
	outcomes.					
•••						

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- A) Polynomials; Mathematical induction
- B) Coordinate geometry and conic sections; Basic trigonometry
- C) Functions and inverses
- D) Limits of sequences and infinite series
- E) Limits, continuity and differentiability of functions
- F) Techniques of differentiation, implicit, logarithmic and parametric differentiation; Successive differentiation

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	http://www6.cityu.edu.hk/ma/ug/serv/ma1300.htm
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	James Stewart, Single Variable Calculus, 7th ed., BROOKS/COLE CENGAGE Learning, 2012
2.	Basic Calculus and Linear Algebra (Compiled by Department of Mathematics, City University
	of Hong Kong), Pearson Custom Publishing, 2007
3.	C. Henry Edwards and David E. Penney, Calculus: Early Transcendentals, 7th ed., Pearson
	Prentice Hall, 2008
4.	Robert A. Adams, Calculus: A Complete Course, 6th ed., Pearson Addison Wesley,
	2006