City University of Hong Kong Course Syllabus

offered by College/School/Department of Management Sciences with effect from Semester B 2017 / 2018

Part I Course Overview

Course Title:	Statistical Inference
Course Code:	MS2602
Course Duration:	One semester
Credit Units:	3
Level:	B2
	Arts and Humanities Study of Societies, Social and Business Organisations
<i>for GE courses only</i>	Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	MA2506 Probability and Statistics
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

Statistical methods have proven enormously valuable in helping scientists interpret the results of their experiments. This is a course about how statisticians draw conclusions from experimental data. Its primary goal is to introduce the student to an important type of reasoning that statisticians call 'inference'. Rather than provide a superficial introduction to a wide variety of inferential methods, we will concentrate on fundamental concepts and study a few of them in depth. Statistical inference rests on the mathematical foundation of probability. Students having taken an introductory course in probability will benefit most from this course. Many statistical procedures rely on softwares for their implementation. This is done through the elegant MATLAB, a software favoured by engineers, mathematicians as well as scientists.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	very-en	riched
		(if	curricu	lum re	lated
		applicable)	learnin	ig outco	omes
			(please	e tick	where
			approp	riate)	
			Al	A2	A3
1.	understand the theory of estimation and hypothesis testing	80%	Х	х	Х
	and be able to apply them to real world data				
2.	be able to use MATLAB to implement and execute	20%		х	х
	techniques learnt				
3.					

* If weighting is assigned to CILOs, they should add up to 100%.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

100%

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

A1: Attitude

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.			Hours/week (if		
		1	2	3	4		applicable)
Lecture		Х	х				2
In-class	In-class problem solving allows						
exercises	instant feedback from students	х					1
Hand-in	Strengthens the understanding of						
assignments	topics covered in lectures	х	х				Not applicable

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks		
	1	2						
Continuous Assessment: 40%	Continuous Assessment: 40%							
Hand-in assignments	Х	Х					10	
Test(s)	Х	х					30	
Examination: 60% (duration: 2 hours)								
* The weightings should add up to 100%. 100%								

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Hand-in	1. The ability to	Strong evidence of the	Evidence of grasp of	Student who has	Sufficient familiarity with	Little evidence of
assignments	problems involving	capacity to analyse and	subject ; reasonable	some understanding	the subject matter to enable	familiarity with the subject
	estimation and	synthesize; superior	understanding of	of the subject;	the student to progress.	matter; weakness in critical
	nypotnesis testing.	grasp of subject matter.	issues.	ability to develop		and analytic skills.
	2. The ability to			solutions to simple		
	write MATLAB codes and interpret			problems in the		
	MATLAB printouts.			material.		
2. Test(s)	As above	Strong evidence of	Evidence of grasp of	Student who has	Sufficient familiarity with	Little evidence of
		the capacity to analyse	subject ; reasonable	some understanding	the subject matter.	familiarity with the subject
		and synthesize;	understanding of	of the subject;		matter; weakness in critical
		superior grasp of	issues.	ability to develop		and analytic skills.
		subject matter.		solutions to simple		
				problems in the		
				material.		
3. Examination	As above	Strong evidence of	Evidence of grasp of	Student who has some	Sufficient familiarity with	Little evidence of
		the capacity to analyse	subject ; reasonable	understanding of the	the subject matter to enable	familiarity with the subject
		and synthesize;	understanding of	subject; ability to	the student to progress	matter; weakness in critical
		superior grasp of	issues.	develop solutions to	without repeating the	and analytic skills.
		subject matter.		simple problems in the	course.	
				material.		
•••						

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Theory of point estimation : methods of moments, maximum likelihood and least squares. Confidence interval estimation. Theory of hypothesis testing, tests concerning the mean(s), variance(s) and proportion(s) (parametric and nonparametric), ANOVA.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Probability & Statistical Inference – Hogg, Tanis & Zimmerman (9/e, Pearson, 2015)
2.	Statistics Toolbox for Use with MATLAB
	http://www.mathworks.com/help/stats/index.html
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Introduction to Mathematical Statistics – Hogg, McKean & Craig (7/e, Pearson, 2012)
2.	
3.	