City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>B</u> 20_17_/18_

Part I Course Over	view
Course Title:	Applied Probability
Course Code:	MA4535
Course Duration:	One semester
Credit Units:	3 credit units
Level:	B4
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	MA2506 Probability and Statistics
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	MA3160 Probability & Stochastic Processes

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course introduces fundamental concepts of stochastic processes and their applications in a range of problems. It develops students' ability of applying the probability concept to various stochastic models and analyzing queueing situations from a probabilistic point of view.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	ery-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	explain at high level concepts from probability and	15%	√		
1.	stochastic processes.	1370	Ÿ		
2.	identify appropriate estimators for random variables and	15%		✓	
۷.	compute variabilities.	1370		,	
3.	formulate real-life phenomena in terms of stochastic	15%			✓
<i>J</i> .	processes.	1370			,
4.	explain basic properties of Markov chains and their	25%	1	/	
٦.	applications in modeling queueing systems.	2570	Ÿ	·	
5.	analyze probability and stochastic models mathematically.	15%		✓	✓
6.	the combination of CILOs 1-5	15%	✓	√	✓
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.				Hours/week (if	
		1	2	3	4	5	6	applicable)
Lectures	Learning through teaching is	✓	✓	✓	✓	✓	✓	39 hours in
	primarily based on lectures.							total
Take-home	Learning through take-home	✓	✓	✓	✓	✓		
Assignments	assignments helps students							after-class
	understand probability theory,							
	stochastic processes, queueing							
	systems and their applications in							

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

modeling real-life situations.				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities							Weighting*	Remarks	
	1	2	3	4	5	6			
Continuous Assessment: _30	%								
Test	✓	√	√				15-30%	Questions are designed for the first part of the course to see how well the students have learned basic concepts of probability and stochastic processes.	
Hand-in assignments	✓	✓	✓	✓	✓		0-15%	These are skills based assessment to help students understand concepts of probability, stochastic processes, Markov chains and some applications in queueing systems.	
Formative take-home assignments	\	✓	✓	✓	✓		0%	The assignments provide students chances to demonstrate their achievements in applying concepts of probability and stochastic processes learned from this course.	
E		: c	1*	1-1					
Examination: _70% (duration	1: 3 h	rs, 11	appli	cable)		1		

^{*} The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Ability in problem solving	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Understanding of concepts and applications	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Formative take-home assignments	Study attitude	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	Comprehensive ability in independent problem solving	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1.	Keywo	ord S	SvII	ahı	115
1.	IXCY	JI U I	<i>J</i> .y 11	av	μŅ

(An indication of the key topics of the course.)

Bayes' formula, random variable, Poisson process, exponential distribution, Markov chain, random walk, M/M/1 and M/M/s queues.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

3.	
2.	
1.	