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Background of research

Acute myeloid leukemia (AML) is one of the most lethal cancers worldwide. In Hong Kong, it 
occurs in about 300 patients each year. Overall treatment outcome is unsatisfactory and only 
30-40% of patients can achieve long-term remission. There is still an unmet need to 
develop a personalized and effective treatment for AML based on their unique genetic and 
epigenetic characteristics.  
The recommendations for diagnosis and management from European LeukemiaNet (ELN) use 
both the cytogenetic and genetic information to classify the AML into different subtypes [1]. 
By the subtyping with cytogenetic information, around 49% of AML patients are 
Cytogenetically Normal (CN-AML). This group represents patients with a very broad clinical 
outcomes, and the overall risk level for the CN-AML patients are “intermediate”. The genetic 
variations are currently the only markers used to further subtyping the CN-AML patients. Some 
mutations for essential genes, such as FLT3-ITD, CEBPA, NPM1 and IDH2, can indicate 
different prognosis in CN-AML. However, there are still around 36% CN-AML patients 
who do not hold a significant mutation [2]. Also, the effectiveness of genetic mutation could be 
low in prognostic prediction in some CN-AML patients (Fig.1A). The overall allele burden does 
not significantly correlate with leukaemia free time as the epiallele burden does [3]. A novel layer 
of markers including the DNA modifications, can provide additional information to classify CN-
AML patients [3]. 
Although the aberrant methylation in genomic DNA is a common feature for leukemia cells, 
the whole epigenetic landscape for CN-AML is still unknown. The comparison between the 
whole genome for 5-Methylcytosine (5mC) pattern of the CN-AML bone marrow cells and 
DNMT3A mutated cell lines shows exclusive divergence. The change of CN-AML cells occurs 
in non-CGI regions and DNMT3A mutations confer a pattern of global hypomethylation that 
specifically targets HOX genes [4]. This finding indicates that the representative methylation 
change in the leukemia cells could be independent to the known methylation drivers like 
TETs and DNMTs. The recent published large integrated databases can also provide some 
insight for the CpG methylation for 5mC in CN-AML, ie. the TCGA-AML and Target-AML 
project. The screening of 



5mC in primary AML samples showed that over 70% of all hypermethylation sites from different 
mutant subtypes (IDH1, 2 and TET2 mutates) are shared. These shared sites are likely to be the 
'generic', AML-associated changes. With this concept, some 5mC modifications from Illumina 
450K methylation array, which is based on bisulfite sequencing (BS), has been chosen as markers 
to differ ALL from AML samples using TCGA-AML dataset [5].  
The DNA modifications could be a good marker layer for CN-AML subtyping. In our analysis 
using the CN-AML patient information from both TCGA-AML (n=91) and TAGET-AML 
(n=111) studies, over two hundred CpG islands in the promoter region show strong correlation 
(FDR <0.05) with overall survival time (OS) in CN-AML samples (Fig. 1A). The positive 
correlation between the DNA methylation level at the promoter of LZTS2 and NR6A1 genes and 
the OS in CN-AML patients from SWOG trials (n=72) [6] can also be validated in this analysis. 
Moreover, the high epiallele burden is also significantly linked to poor OS (Fig. 1C).  
The BS method has some disadvantages in detecting DNA modifications in clinical cancer 
samples. Firstly, for the high throughput BS-based method, the BS-induced DNA degradation 
leads to depletion of genomic regions enriched for unmethylated cytosines. As a result, the biased 
estimation of the m5C within hypomethylated regions is expected. Secondly, the WGBS can only 
detect the 5mC. The other types of modifications, including the N6-methyladenine (6mA), 5-
formylcytosine (5fC) and 5-Hydroxymethylcytosine (5hmC), would be missed by using only this 
technology. Thirdly, compared with cytogenetic and genetic information, the feasibility to obtain 
the epigenetic information from DNA has hindered the use of these epigenetic changes in clinical 
diagnostics. The traditional BS method to detect the specific change in a unique site would require 
sophisticated laboratory bench work , which could result in long turnover time and reduce the 
feasibility to use this technology clinically.  
Nanopore sequencing, provided by Oxford Nanopore Technology (ONT), is currently the most 
effective way to get DNA modification information. The native DNA is used for the sequencing, 
so the amplification bias was no longer an issue for this platform. After loading the library, the 
DNA sequences are basecalled by the recording of current signal changes when the native DNA 
passes through the Nanopore. The current signal for the “ATCG” could be different from the 
modified ones, and these modifications can be precisely retained by bioinformatic analysis. 
Theoretically, this technology can detect any type of methylation. By now, the 5mC modifications 
can be predicted in very high accuracy (>99%) and reach 95% consistency with BS covered 
regions using pre-trained models with the state-to-art deep learning methods [7, 8]. For the other 
type of modifications aside from 5mC, like 5fC, 5hmC, the accuracy is still in doubt. We have 
tried to train our own models to call these specific modification types, and developed a framework 
pipeline for Long Read Modifications Finding (named as “nanoCEM”). This pipeline can be sued 
to prepare the datesets used to call different types of DNA or RNA modification by comparing 
with a modification free sample, which can be whole genome DNA amplification (WGA) data 
(Fig. 2A). Moreover, because of the real-time basecalling and modification calling, the results can 
be fetched right after the sequencing begins. The turnover time for this technology could be as 
short as the library preparation time, which takes only two hours.  
Aside from the whole genome screening of the methylation change, there is a specific target for 
tumorigenesis, the ribosomal DNA (rDNA). The change of rDNA is favoured to provide infinity 
proliferation ability for cancer cells. And the copy number variation (CNV) for rDNAs has been 
found in most cancers. In the human genome, the 18S-5.8S-28S clusters with 43 Kb repetitive unit 
are dispersed near the centromere or telomeres on five separate chromosomes (i.e., chromosomes 
13, 14, 15, 21 and 22). Although the ~400 copies of rDNA copies have identical sequence, their 
methylation status in different cells could be very divergent, varies from 0 to 100%. Thus, the 
DNA methylation status in rDNA can server as a good indicator for overall epiallelic burden in 
leukaemia cells [9]. The traditional high throughput BS and immunoprecipitation methods for 
5mC modification falls short in highly repetitive regions, only the long read based Nanopore reads 
can provide a reliable solution [7]. With this specific marker, the overall epiallelic burden can be 
quickly identified using targeted sequencing instead using the average of multiple loci.  



Work done by us. 
The PI has been working on the methodology development for Nanopore sequencing, especially 
for modification findings. As one of the pioneer labs to use Nanopore technology in Hong Kong, 
the PA team has developed several pipelines used for Nanopore DNA and RNA sequencing [10, 
11], and used this technique to solve the “hard to solve” questions in genome research, including 
the structural variation finding on mitochondrial DNA and assembly of gapped rDNA cluster in 
non-model species. We have developed the modification finding pipeline for DNA and RNA 
using Nanopore sequencing (“nanoCEM”, https://github.com/lrslab/nanoCEM). This pipeline 
consists of a framework used to visualize and compare different samples, which could be used to 
prepare the input for further machine learning process.  
We have sequenced eight CN-AML patients’ bone marrow samples with DNMT3a mutation, and 
eight other CN-AML patients’ sample from other patients using Nanopore R9.4.1 platform. These 
sequencing data together with the DNA methylation profiling can be used as a start point to test 
our selected sites.  
The classification for AML is fast evolving since high-throughput sequencing was introduced to 
provide the layer of genetic changes. The DNA modifications were not yet included in the ENL 
classification of hematopoietic neoplasms. With the mature of DNA modification detection using 
third-generation sequencing, we believed this is the right time to add another layer of information, 
the modifications, to better reflect the prognosis of CN-AML patients.  

Aims and Hypotheses to be Tested: 

The proposal arises from an unmet clinical need to subtype CN-AML patients. Based on our 
preliminary analysis, we aim to select the genomic loci with unique DNA modification pattern 
related to prognosis. These sites can be further used to build a screen panel with Nanopore 
sequencing platform for CN-AML subtyping in further studies.    

Objective: 

Identify the DNA modifications related to the prognosis of CN-AML patients by mining 
public databases and validate these sites in obtained Nanopore sequencing data.
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Fig 1. The epigenetic changes are better prognostic markers than genetic mutation. (A) volcano 
plot shows the relative contribution to prognosis (expressed as the logarithmic hazard on the x-
axis; positive values indicate a worsening effect) vs false discovery rate (FDR) values 
(expressed on an inverted logarithmic scale on the y-axis) for each variables included in their 
random-effects model. The size of circles for the genetic mutations represent the frequency of 
this mutation, only mutations with >5% frequency are included. The age and white blood cell 
count (WBC) are shown for reference. (B) Overall survival analysis for patients with high or 
low allele burden assessed from somatic mutation burden inferred from the VAF values from 
whole exon sequencing. (C) Overall survival analysis for patients with high or low epiallele 
burden assessed from promoter 5mC methylation inferred from the BS sequencing data. The 
samples with overall allele/epiallele burden higher than average are marked as "high". All three 
analysis was carried out with n = 202, combined TCGA-AML and TARGET-AML public 
databases.     




