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Background of research

Malignant melanoma is a highly aggressive skin cancer. The incidence rate is increasing rapidly year

by year at a rate of 3% 1. While it only accounts for 4% of skin tumors, it has caused 75% of its

deaths 2,3. Unfortunately, due to the rapid metastasis and poor prognosis, traditional radiotherapy

and chemotherapy are ineffective. As such, preventive strategy by making early diagnosis of

melanoma is of great importance.

Conventional diagnosis relies on dermoscopy and immunohistochemistry. Dermoscopy is 

currently used to observe microscopic substructures (Figure 1a). However, it is difficult to identify 

malignant melanoma of early stage because it shares many clinical features with benign moles. 

Alternatively, immunohistochemistry detection of S100A1 in the melanoma matrix has been 

commonly advised for further examination of melanoma (Figure 1b)4,5. However, it requires 

incisional biopsy, which is painful, invasive, and unsuitable for early and routine body check. 

Moreover, its quantification is not well developed yet. 

On the other hand, the quantitative level of S100A1 in serum or plasma is correlated with the 

stages of melanoma 6, making it a good biomarker. However, serum or plasma detection requires 

expensive benchtop instruments (i.e. centrifugation or microplate reader) for sample pretreatment 

and post-analysis, which is impractical for local clinics. Furthermore, dilution of biomarker may 

occur when being released from melanoma tissue to the blood circulation6, , which causes the 

detection less sensitive and error-prone. Most importantly, the high expression level of S100A1 in 

serum is also related to other diseases, which may lead to the false-positive diagnosis of melanoma 
7-9. Thus, instead of relying on serum biomarkers, it is urgent to develop a portable and ready-to-use

platform that allows simple and painless sampling at the melanoma sites without dilution, and

provide result quantification to determine the diseases progression.

Related works done by others 

Near the end of COVID-19 pandemic, rapid antigen tests (RAT) based on lateral flow immunoassay 

(LFIA) have largely used to self-evaluate the infection status, demonstrating a new tool that relaxes 

and decentralizes the healthcare system to benefit both users and medical service providers. The 

success of COVID-19 RAT is aligned with the concept of “Lab on a Chip” which aim at providing 

precise fluidic control on a miniaturized microfluidic platform for automated sample collection, 

preparation, transportation, reaction, and result reporting10,11. If success, it will largely improve 

telemedicine for resource-limited sites such as home and private clinics 12. However, unlike COVID-

19 RAT that only reports yes/no through easily accessed specimen, “Lab on a Chip” is not yet 

populated to general use because a number of technical hurdles when applying to other diseases.  

Appropriate specimen preparation is the first issue. Liquid biopsy such as blood plasma is the 

most essential specimen13. Carrying excessive amounts of circulating biomarkers, blood plasma can 

be used to diagnose diseases such as diabetes, blood disorders (anemia , hemophilia , leukemia ), 

organ failure (liver , kidney , cardiovascular), and cancers14. Recent research has also broaden the 

diagnosis to Alzheimer’s15, and most recent viral outbreaks including COVID-1916 and Zika 

viruses17. However, blood plasma needs to be first centrifuged to remove blood cells and clotting 

factors to prevent their interferences on the diagnosis results18-21, which is exclusively a laboratory 

process. To achieve it on miniaturized platforms, on-chip blood separation was developed. However, 

it usually requires electricity to power up a separation using dielectrophoresis, inertial force, stiffness 

and weight through the acoustic separation18,22-25. As such, earlier attempts for device 

miniaturization still rely on separate, external devices such as centrifuge, power source, pump, which 

make them still laboratory exclusively (Figure 2). Moreover, even with successful serum 

preparation, the serum S100A1 is known to be unspecific to malignant melanoma, and presents at 

much lower level due to dilution, making the serum-based diagnosis difficult and unreliable.  

The second issue for is the quantitative measurement on an easy-to-use platform. LFIA such 

as COVID-19 rapid tests only provide qualitative result (yes/no), which is insufficient because most 

disease diagnosis needs quantitative results such as abnormally elevated S100A1 in serum6. 

Attempts were made to miniaturize the conventional immunoassays into microfluidic platforms12. 

However, signal quantification still relies on complicated setups such as optical fiber, excitation light 

source, photodetectors, and amperemeter, making them still laboratory exclusively (Figure 2) 26-28.  



Related works done by the principal investigator’s (PI) group 

To provide a better platform for disease diagnosis, the PI’s team has developed a microfluidic 

particle dam that enables visual and quantitative results without relying on any external 

instrumentation. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are 

designed to connect to a target simultaneously. An on-chip magnetic separator is first used to 

remove the MMPs-target-PMPs and trap the freely flowing PMPs at a particle dam, resulting 

in PMP accumulation. Like the ordinary thermometer, users can easily read the length of PMP 

accumulation by the naked eye. Such an instrument-free and power-free platform enables a 

limit of detection (LOD) of DNA oligonucleotide at 13 fmol (Lab on a Chip; IF: 6.045, Rank 

6/78 in Biochemical Research Methods) 29 and is applied to determine lead intoxication (ACS 

Sensors, IF: 7.333, 3/86 in Chemistry, Analytical) 30,31. Similar principle has been applied to other 

metal ions for detection of cadmium 32 copper 33,34 and silver ions 35 in water. In addition, 

integrating a structurally programmed capillary flow to achieve automated sample collection, on-

chip reaction, and microfluidic particle dam, we have achieved simultaneous detections of 

multiple ions on an all-in-one device (Analytical Chemistry, IF: 7.4, Rank 7/86, 8.1% in 
Chemistry, Analytical, JCR 2022) 36 (Figure 3).  Most importantly, we have also demonstrated 

ability for detecting macromolecules in complex biofluid such as serum alpha-fetoprotein levels 
37, flap endonuclease 1 activity in cell lysate (Biosensors and Bioelectronics, IF: 12.6, Rank 2/86, 

2.3% in Chemistry, Analytical, JCR 2022), and serum IgG antibodies against SARS-CoV-2 

(Science Advances, IF: 13.6, Rank 7/73, 9.6% in Multidisciplinary Sciences, JCR 2022)16 

(Figure 4). Most recently, we further demonstrated the application for detecting S100A1 in 

interstitial fluid (ISF) collected by hydrogel-fabricated swellable microneedle. (Advanced Science, 
IF: 15.1, Rank 24/344, 7% Materials Science, Multidisciplinary, JCR 2022).38



Research Question 

Figure 1. Traditional diagnosis of melanoma based on (a) 
dermoscopy and (b) incisional biopsy and histochemistry. 

Figure 2. Research question. However, disease diagnosis mostly requires blood 

specimen and quantitative results, which is hardly achieved on at-home tests. So 

far, many miniaturized devices still rely on external devices such as pump, valves, 
light source, and optical detectors for sample preparation and result quantification, 

making them still exclusively laboratory based and unsuitable for home use. 
Miniaturization does not necessarily lead to simplicity. 

a 

b 

Relevant Research Experience of the PI 

Figure 3. A structurally programmed capillary flow to achieve automated 
sample collection, on-chip reaction, and microfluidic particle dam for 

simultaneous detections of multiple ions in an integrated device 
(Analytical Chemistry, 2022).  

Figure 4. Microfluidic particle dam for detection of serum IgG 
antibodies against SARS-CoV-2 (Science Advances, 2022). 

Research Overview 
Figure 5. The schematic of 

“Lab on a Patch” as a skin 

patch integrating 

microneedles and structurally 

programmed microfluidic 

particle dam. This microfluidic 
device contains microneedle 

module, reactor module, and 

detection module. After 
attaching to skin and deposit a 

droplet of working solution into 

a manifold channel in the 
microneedle module, the 

interstitial fluid will be 

extracted by the microneedles 
surrounding by through holes 

and subsequently resuspend 

magnetic microparticles 
(MMPs) and polystyrene 

microparticles (PMPs). MMPs 

and PMPs will be surface 
functionalized so S100A1 binds 
to MMPs and PMPs simultaneously. By forcing the MMPs to flow passing the immobile PMPs at the reactor module, the reaction is maximized 
and timed through a capillary timer until it is fully filled. When completed, the particle solution is redirected to the detection module containing 

a magnetic separator that removes the MMPs and MMPs-S100A1-PMPs, leaving free PMPs to keep on flowing until they are trapped at a particle 

dam. Therefore, the quantity of S100A1 proportionally reduces free PMPs escaping from magnetic separation and shorten PMP accumulation 
length at the particle dam, achieving the visual quantification of  S100A1.  
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