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Background of research

The intricate interplay between the human genitourinary tract microbiome and the pathogenesis of 

genitourinary malignancies has emerged as a critical yet poorly understood facet of cancer biology. 

The tumor microenvironment, characterised by immune cells including tumor-associated 

macrophages (TAMs) and the presence of biofilms, is a pivotal focal point for understanding cancer 

progression and response to treatment. However, the dualistic effects of bacterial-driven 

inflammation and the dynamic phenotypic shifts of tumor-associated immune cells and their 

possible treatment targets within this context remain areas of significant research interest. 

2.1 Portable microfluidics for point-of-care (POC) disease management: Due to the fast 

processing rate, small size, and multiplex assay capabilities applicable to even patient blood samples, 

microfluidics is important in advancing POC testing. In vitro drug screening platforms can benefit 

personalised medicine by integrating microenvironmental cues that mimic the tumor 

microenvironment. Capitalising on the portability and integrative capabilities of microfluidics, 

components can be introduced to mimic disease conditions in vivo for higher clinical relevance, 

allowing monitoring and prediction of outcomes in a routine and well-defined setting to resolve 

specific knowledge gaps in the research field. Automation of POC systems will also decentralise 

healthcare, standardise management, and reduce overall costs for disease management. 

2.2 High incidence of systemic infections in patients with genitourinary malignancies: Most 

patients are highly susceptible to bacterial infections after chemotherapy, and inappropriate 

antibiotic treatment can worsen their prognosis and survival rates [1, 2]. Chronic inflammation 

caused by bacterial colonisation has been shown to play a key role in the origin and progression of 

cancer [3, 4]. The discovery of bacteria colonising in human pancreatic tumor cells was made several 

years ago [5]. However, detailed information about the impact of these interactions remains largely 

unknown. Bacterial infections are related to cancer development, especially in the digestive and 

urinary systems, which can cause chronic inflammation or produce carcinogenic metabolites, 

leading to cancer-promoting effects (Appendix, Table 1) [6, 7]. Clinical evidence shows that 

Escherichia coli and Clostridium nucleatum have carcinogenic potential in patients with colorectal 

cancer [8], and Helicobacter pylori infection is highly correlated with the risk of gastric and 

pancreatic cancer [9, 10]. 

2.3 Cancer Heterogeneity And Mortality: Cancer phenotypes can affect multiple signaling 

pathways, resulting in vast tumor heterogeneity [11]. The tumor microenvironment has been widely 

shown to induce tumor heterogeneity and enhance tumor progression [12]. The extent of tumor 

heterogeneity presents a problem during targeted therapeutics and is one of the main reasons cancer 

often leads to morbidity and fatality worldwide. This heterogeneity is also observed among cancer cells 

shed from the tumours [13, 14]. According to the World Health Organization (WHO), the projected 

mortality count for the next decade is 13 million [15]. Another major factor contributing to cancer 

fatality is the lack of early intervention, which often results in the developing patient metastases 

[16]. Most clinical cases were detected after cells from the primary tumor had migrated to other parts 

of the body [17]. 

It has been confirmed that different tumor types and tumor stages have different forms and locations 

of bacterial infection and colonisation [18]. Recent studies show that the disease status of cancer 

patients with systemic bacterial infections can be affected, which suggests that bacteria within 

circulation may also impact tumor progression [19-21]. Due to the intervention of antibiotics during 

cancer treatment, the common bacterial pathogens in cancer patients have gradually changed from 

Gram-positive to Gram-negative bacteria in recent decades, and they are more resistant to antibiotics 

[22]. As such, bacterial infections in cancer patients have become one of the severe complications 

during chemotherapy [23, 24]. Most cancer patients with sepsis are infected with Gram-negative 

bacteria [25]. From 2007 to 2014, the average recovery rate of bacteremia in this patient cohort was 

only 51.3% (24.7% -75.8%) [22]. As such, drug resistance caused by secondary infection has also 

become an urgent problem during cancer treatment. 



2.4 Tumor models for drug screening: Despite the overwhelming evidence of the influence of 

bacterial infections on cancer patient outcomes, few studies have been conducted to evaluate new 

therapeutic strategies. One of the key reasons is that the mechanisms leading to these effects are 

currently under debate. Yet, the success of anti-cancer drug treatments hinges on the ability to predict 

and select the best combinatorial therapeutic agents while monitoring the outcomes of the treatment 

strategy. 

The ability to translate research outputs of drug treatment studies involving in vitro models is still 

continuously questioned. Recent reports suggest using combination treatments with antimicrobial 

agents to improve outcomes. However, most models include 2D cultures of only cancer cell lines or 

bacteria cultures, which poorly represent bacteria-tumor samples. Although animal models are arguably 

more physiologically relevant to in vivo conditions, the results are often not translatable due to the different 

components of associated pathways between these animal models and human patients. As such, current 

tumor models cannot produce mutually consistent results, and both cancer-promoting and anti- 

cancer effects have been reported in the presence of bacterial-mediated inflammation [26]. Although 

many clinical studies have shown a correlation between the presence of bacterial infections and 

tumor progression [27, 28], a well-defined model is pivotal to revealing the detailed interactions 

between bacteria and tumor, which can provide adequate response measures for cancer patients with 

systemic bacterial infections, and reveal how the distribution of bacteria in tumor tissues can affect 

cancer cell phenotypes and tumor progression. 

Previous related work by the team: The PI team previously described a microwell-based assay for 

patient-derived cancer clusters derived from liquid (blood) biopsy of breast cancer patients, with 

demonstrated relevance in predicting patient prognosis [29]. The assay combined parameters using 

microfabrication and hypoxia to mimic the tumor microenvironment in vitro [30]. The microwell 

array applies to cluster formation of other cancer types such as cervical, head, and neck [31]. These 

parameters are the foundation for establishing this proposal's clinically relevant inflammatory 

tumor model. Liquid biopsy contains circulating tumor cells (CTCs), which are shed from tumors. 

The presence of cancer cells in blood negatively correlates with patient survival [32-34], disease 

progression [35], and treatment efficacy [36]. Reports also associate primary CTCs with heightened 

drug resistance [37] or tolerance [38] traits. Using the microwell-based assay, the CTC clusters were 

positively screened for six target genes (FGFR1, Myc, CCND1, HER2, TOP2A, and ZNF217) 

associated with breast cancer, and the heterogeneity of gene expression was observed across patient 

samples [29]. Phenotyping of CTCs reveals the presence of cancer stem cells (CSCs) [39], which 

also originate from tumors and may present heightened tolerance [38] or resistance [37, 40] to 

specific chemotherapeutic drugs. These subpopulations of cancer cells with favorable traits for 

survival are valuable drug targets for novel therapies. 

Preliminary studies demonstrate that the microwell arrays can establish uniform co-cultures of 

bacteria-tumor clusters under defined conditions (Figure 1). The microwell-based assays enabled 

the formation of 3D structured biofilms, which are more representative of biofilms in vivo than 

traditional 2D models [41]. Together with the analysis of CV intensity based on OD595 

absorbance values and the structural analysis from scanning electron microscopy (SEM) 

images, we could confirm that the presence of biofilms is specific to the CT model. Co-cultures 

were established with bladder cancer cell lines (UMUC3) and pathogenic Escherichia coli (UTI89). 

Urinary tract infection (UTI) by uropathogenic E. coli (UPEC) infection has been proved to be a 

contributing factor to the development of bladder cancer [42, 43]. 

Tumor clusters remained viable prior to the onset of infection. The cells were uniformly suspended 

in the growth media and seeded into each microchannel at the optimal concentration, forming 

uniform clusters in the center of each microwell after 24 h and could be processed for downstream 

analysis. Clusters can be characterised by live/dead staining, immunostaining, crystal violet staining, 

and colony-forming unit (CFU) quantification to investigate tumor response (Figure 2). Spatial 

distribution of the bacteria within the tumor appears to impact tumor response, as reflected by the 

higher cluster adherence observed with extratumoral bacteria (EB) but not intratumoral bacteria (IB). 



Tapered morphology for microwells to establish uniform co-cultures is crucial for drug screening 

consistency and has been validated with new drug combination screening [45]. Cylindrical 

microwells led to multiple irregular small clusters of ~10-20 cells, while tapered microwells 

consistently formed single large clusters comprising ~50 cells (Figure 3). Through the model, we 

validated a new combinatorial strategy of PDT and chemotherapy by co-delivering a bacterial- 

targeted photosensitiser with aggregation-induced emission (AIE) property and an anti-cancer drug, 

doxorubicin [46]. The effect of combinatorial therapy was synergistic, resulting in improved 

efficacy, as evidenced by at least a 2.5-fold reduction in the half-maximal inhibitory concentration 

of doxorubicin. 

In the last decade, the co-PI team have been working on multidrug-resistant bacteria in urinary tract 

infections, mainly focusing on disseminating drug-resistant genes through horizontal gene transfer 

and determining factors that provide survival advantages to bacteria under stress environments 

(figure x). Moreover, we have identified several key elements in virulent plasmids that contribute to 

the fitness and physiology of bacteria, particularly those small RNA (sRNA), which is known to 

play the master role in regulating numerous important pathways in response to environmental 

changes during infection such as colonization and invasion. Nevertheless, the effect on the bladder 

cancer cells remains unclear. 

We envisage that our proposed study will promote a better understanding of the impact of bacteria 

on tumor progression and that the model can facilitate drug discovery of antibacterial agents for 

biomedical and pharmaceutical industries. The efficient automation of these quantitative 

components will provide us with novel means to screen patient responses in a cost-effective 

and non-invasive manner. 



 Table 1 Impact of inflammation on cancer development and progression.

Cell line and animal models 

Type Cell type Bacteria Cancer-promoting effects Ref 

Breast MDA-MB- 
231 

Staphylococcus 
aureus 

Promote invasiveness and adhesiveness of 
cells 

[1] 

Prostate RWPE-1 Propionibacterium 
acnes 

Induce inflammatory response; Lead to 
malignant phenotype transition 

Clinical studies 

Colon NA F. nucleatum Promote angiogenesis; Recruits tumor- 
associated immune cells 

[2] 

Gastric NA Helicobacter pylori Causes cell DNA damage [3] 

Figure 1: Development of a 

TAM-based microfluidic 

inflammatory tumour 

model. (A) The design of the 

device consisted of three 

main components. (B) 

Photograph of a PDMS 

device filled with a gradient 

of food dyes. (C) A gradient 

of concentration in the 

gradient generator simulated 

by COMSOL  ® 

Multiphysics. (D) The 

schematic illustration of 

bacteria and cell culture with 

treated drug, and (E) the final 

established in vitro 3D IB and 

EB model. 

Figure 2: Clinical relevance 

of the model. Comparison of 

E. coli biofilm formed in a 2D

infection model (left) and the

TAMPIEB device (right), the

latter of which is more clinically relevant 

to in vivo infections. Spatial distribution 

of the bacteria within the tumour 

influences tumour response, as reflected 

by the higher cluster adherence observed 

with extratumoral bacteria (left) but not 

with intratumoral bacteria (right) at 1 h 

after infection at the low MOI of 1:1, as indicated by the crystal 

violet staining. Scale bar, 100 μm. 

Figure 3: Importance of microwell array. Commercial 

cylindrical microwells form multiple irregular small clusters of 

10–20 cells (centre). In contrast, cultures in tapered microwells 

of the microwell-based array consistently lead to the formation 

of a single large cluster at the centre of each microwell. 



 

 

Figure 4 Transcriptome circles of Escherichia coli carrying MDR 

plasmids J53/pCTXM123_C0996 (a), J53/pCTXM64_C0967 (b), 
J53/pHK01  (c),  J53/pNDM-HK  (d),  J53/pNDM-HN380  (e),  and 

J53/pJIE143 (f). The outermost circle (in red) shows the genome 

coordinates (in Mbp) of J53. The first inner circle denotes the gene 

names of transconjugants, highlighting those with a log2-fold change 

greater than one (upregulated in red and downregulated in blue) 

compared with J53, as well as the genomic locations of these genes. The 

second inner circle demonstrates the gene expression of J53 and MDR 

plasmid transconjugants in TPM (transcripts per million) on the log2 

scale. The third inner circle depicts the log2-fold change in gene 

expression of MDR plasmid transconjugants compared with J53. In this 

circle, the red and blue dots represent upregulated and downregulated 

genes (log2-fold change greater than one), respectively, while the other 

genes are colored in black. 

 

 

 

 

Figure 5. sRNA IGR plas2 and its decoy 

dplas2. (a). The genetic locus of IGR plas2. 

The arrow depicted in red is IGR plas2. 

RNA-sequencing reads showed below were 

captured using the Integrative Genomics 

Viewer (IGV) software. (b). Northern blot of 

IGR plas2. The experiment was performed at 

both log and stationary phases. The 5 S rRNA 

was used as control. (c). Northern blot 

validating the expression of dplas2 and the 

degradation of IGR plas2. The level of IGR 

plas2 was measured using the Northern blot 

assay at time points of 0, 1 and 3 hours after 

induction of dplas2. 5 S rRNA was used as 

control. (d). qRT-PCR of IGR plas2 target 

genes. Relative mRNA levels of predicted 

target genes of IGR plas2 were measured 

after the knockdown of IGR plas2. fucA, 

fucO, and fucR are functional genes in the fuc 

operon. J53/pNDM-HN380/pTL134 were 

used as controls. IGR: Intergenic region. Bars 

indicate the standard deviation. ** p-value 




