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ABSTRACT 
 
This paper investigates the impacts of power rationing on firm performance during heat-induced 
power shortages and the economic rationales for the government's power rationing strategy in a 
system characterized by a lack of market mechanisms and price signals. We combine panel data 
from Chinese firms with fine-scale meteorological data to find robust evidence that high 
temperatures significantly reduce firms' electricity usage and performance. Leveraging inter-
provincial hydropower dispatching and precipitation anomalies, we provide causal evidence that 
the decline in firms' electricity usage is primarily driven by power rationing during high-
temperature days. We further developed a framework to theoretically and quantitatively analyze 
the social planner's optimal allocation of electricity between sectors and the welfare implications 
of prioritizing the household sector's power demand. Our results provide insights that climate 
change-intensified inter-sectoral competition for electricity and market inefficiencies can explain 
power rationing in China. 
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1. Introduction 

How firms and industrials are affected by temperature extremes highlights a key 

mechanism for the nexus of climate change and the economy in a warming globe (IPCC, 2021). 

Studies reveal that climate change increases the frequency of heat-induced peak load and 

exacerbates regional electricity supply and demand tension (Franco and Sanstad, 2008; 

Auffhammer, 2022). Despite numerous studies emphasizing the significance of power availability 

on firm operations and productivity (Fisher-Vanden et al., 2015; Allcott et al., 2016; Cole et al., 

2018; Mensah, 2024), there remains a significant research gap regarding the impact of temperature 

extremes induced by climate change on firms and industrials through the electricity system. 

This question becomes even more intriguing and essential given that the government 

dominates the allocation of electricity resources in China, with a significant portion of the power 

sector being state-owned (Cicala, 2022; Guo et al., 2020). During the summer of 2022, China 

experienced the most extreme heatwaves in the last six decades, accompanied by droughts in 

South-western China. Dealing with the surging cooling demand and insufficient power supply, the 

Sichuan provincial government suspended all factory operations in 19 out of 21 cities for six days. 

The factories of companies such as Apple, Foxconn, and Intel are also affected. In such cases, the 

government was confronted with balancing the competing electricity demands between the 

residential and industrial sectors. In China, the government has made commitments and regulations 

to prioritize the provision of electricity to the residential sector1. A significant body of literature 

that analyzes the impact of high temperatures on electricity consumption has predominantly 

focused on the household sector (Deschenes and Greenstone, 2011; Auffhammer and Mansur, 

2014; Davis and Gertler, 2015; Barreca et al., 2016; Yu et al., 2019; Zhang et al., 2022). It remains 

unknown how firms' electricity usage is associated with high temperatures. 

We answer this question by combining panel data from the National Tax Surveys (NTS) 

of manufacturing firms in China and fine-scale meteorological data from 2007 to 2016. This 

dataset provides information on the firm's address, annual electricity usage, and other inputs and 

outputs, enabling a comprehensive analysis of the impact of temperature exposure on firms. Our 

baseline empirical strategy employs within-province year-by-year ambient temperature variation 

to identify the effect of local high temperatures on firms' electricity usage.  

 
1 For instance, in 2011, the National Development and Reform Commission of China issued the "Regulations on 
Orderly Electricity Management", prioritizing residential electricity demands. 
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To start with, we show that holding all else constant, for each additional standard deviation 

increase of days (5.32 days) with a daily average temperature exceeding 31°C compared to a 

reference day2, there is a 3.84% decrease in a firm's electricity usage. Our estimates remain robust 

across various alternative empirical specifications, displaying both statistical significance and 

consistent magnitudes of coefficients. Together with the previous literature highlighting high 

temperatures increasing residential sector electricity consumption, our results suggest that the 

government's prioritization of electricity supply to residents displaces firms' electricity availability. 

This implies that high temperatures represent a negative shock to the electricity supply for firms, 

consistent with the anecdotal evidence reflected in the 2022 heatwave and power rationing in 

Sichuan province. 

To further validate heat-induced power rationing, we employ a strategy that leverages an 

exogenous variable that only affects firms' electricity availability during high temperatures without 

influencing their electricity demand. The rationale behind this strategy is that if no power rationing 

occurs, it can be assumed that firms have unlimited access to electricity. Consequently, their 

electricity usage should remain unaffected by variations in exogenous pure electricity supply shock. 

Conversely, if firms' electricity usage is sensitive to the pure electricity supply shock, it implies 

that power rationing is taking place, indicating that the available electricity supply for firms cannot 

meet their power demand. 

We construct a province-level pure electricity supply shock using hydropower availability, 

inspired by the approach employed by Allcott et al. (2016) and Cole et al. (2018). Firstly, we 

identify each province's hottest month of the year based on monthly average temperatures. We 

leverage that precipitation anomalies in the province and its hydropower-sourcing provinces a 

month prior to the hottest month can affect firms' electricity availability from hydropower but are 

exogenous to firms' electricity demand during the hottest month. We construct and incorporate the 

inter-provincial hydropower transmission matrix to account for hydropower dispatching. 

Our results reveal that firms' electricity usage is highly sensitive to exogenous electricity 

supply during high temperatures, indicating that industrial firms in China experience power 

rationing. Furthermore, we find that firms' electricity-usage-high-temperature sensitivity is more 

pronounced at lower levels of hydropower availability. This implies that when high temperatures 

 
2 Daily average temperature between 11°C and 16°C. 
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overlap with inadequate hydropower supply, the severity of power rationing experienced by firms 

intensifies. We also provide empirical evidence supporting the role played by the government. We 

show that state-owned enterprises (SOEs) exhibit a greater sensitivity of electricity usage to high 

temperatures than non-SOEs. This suggests that the government may sacrifice the demand of SOEs 

first when considering power rationing. We also conduct a falsification test by constructing a 

supply shock using precipitation anomalies a month after the hottest month and do not find any 

significant results. The falsification test also validates the exact timing of the power rationing. 

Several alternative explanations that can potentially account for our baseline results and 

threaten the power rationing channel are excluded. High temperatures and surging residential 

electricity demand may lead to an increase in electricity prices (Ponticelli et al., 2023). However, 

if this were the case, we would expect to observe a smaller impact of high temperatures on firms' 

electricity usage with better profitability. Additionally, the literature has found that industrial firms 

in China are insensitive to short-term electricity price adjustments, as the costs associated with 

reorganizing production far outweigh the magnitude of electricity cost increases (Zhou et al., 2019). 

We also do not expect timely adjustments in contract prices by China's electricity wholesalers or 

retailers in response to high temperatures. We collect monthly electricity price indices for 

industrial firms in 36 major cities in China from 2007 to 2016. However, we do not find significant 

evidence indicating that industrial electricity prices respond to high temperatures. On the contrary, 

industrial electricity prices exhibit relative stability, often remaining unchanged for consecutive 

months in China. 

High temperatures can reduce firm output through decreased productivity or other channels 

unrelated to electricity supply (Zivin and Neidell, 2014; Zhang et al., 2018; Chen and Yang, 2019; 

Agarwal et al., 2021). The reduction in electricity usage may be merely a side effect of the decrease 

in firm output. Our results may be trivial if these channels dominate the effect. To address this 

concern, we include labor, capital, and total factor productivity (TFP) in our baseline regression. 

Our results remain robust with the productivity channels controlled. Furthermore, we find no 

evidence that high temperatures increase equipment failures or lead to significant adjustments in 

firms' labor and capital inputs. 

Moreover, we demonstrate that power rationing during high temperatures has a significant 

economic impact on firms' output. We find that, after controlling for electricity input, firms' output-

high-temperature sensitivity is significantly reduced. We demonstrate that considering electricity 
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as an input factor in calculating TFP leads to a significant decrease in the TFP-high-temperature 

sensitivity compared to the case where electricity is not accounted for in TFP calculation. 

Taking a step forward, we elucidate the economic rationales behind the government's 

power rationing strategy. Both government dominance and the transitory and idiosyncratic nature 

of high temperatures render the electricity market inefficient in responding to heat-induced power 

shortages. We attempt to explain why the Chinese government prioritizes the household sector and 

implements power rationing in the industrial sector from the perspective of social welfare 

maximization. We first directly compare the household sector's willingness to pay (WTP) to avoid 

power interruptions with the industrial value-added losses resulting from power rationing. Our 

findings indicate that the household sector's welfare loss due to power interruptions is four times 

the marginal industrial value-added output. Then, we construct a static model to analyze the trade-

off faced by the social planner in allocating electricity resources between the household and 

industrial sectors in the absence of market mechanisms and price signals. We discover that the 

optimal allocation depends on the electricity substitution elasticities in both sectors. Our estimation 

of electricity substitution elasticities supports the conclusions of our direct comparison. 

Finally, we investigate potential ways to reduce the welfare losses associated with power 

rationing by analyzing the rationing mechanism employed by the Chinese government. We 

demonstrate that larger firm size, greater profitability, and higher productivity do not exempt firms 

from power rationing. Therefore, we postulate that the Chinese government implements random 

regional rationing. We suggest that reducing the welfare losses caused by high-temperature-

induced power shortages can be achieved by implementing efficient rationing that prioritizes 

regions with lower social costs for rationing. 

Our paper makes several contributions to the literature. Firstly, our study enhances our 

understanding of the impacts of high temperatures on firms and the economy. Previous research 

has found that high temperature reduces firms' labor productivity, TFP, revenues, and output (Zivin 

and Neidell, 2014; Zhang et al., 2018; Chen and Yang, 2019; Agarwal et al., 2021; Pankratz et al., 

2023), and consequently lowers regional economic growth, particularly in developing countries 

(Hsiang et al., 2017; Kalkuhl and Wenz, 2020; Kahn et al., 2021). To understand the underlying 

mechanisms, some research has provided evidence that high temperature increases residents' or 

regions' electricity consumption and costs (Deschenes and Greenstone, 2011; Auffhammer and 

Mansur, 2014; Davis and Gertler, 2015; Barreca et al., 2016; Yu et al., 2019; Zhang et al., 2022). 



  7 

Tang and He (2024) find that high temperature reduces the adoption of robots and automation by 

firms in China. In this paper, we show that power rationing induced by high temperature is another 

explanation for the productivity loss. To the best of our knowledge, we are the first to analyze the 

impact of high temperatures on firms' electricity usage in developing countries. The closest study 

to ours is the working paper by Ponticelli et al. (2023), which shows that high-temperature shocks 

increase the energy costs of US firms in a context with a higher level of electricity marketization. 

The distinctive aspect of our research is that we take China as an example to reveal the economic 

consequences when the government allocates resources among sectors with competing demands 

and the pricing mechanism is absent. In this context, our findings reveal a decrease in electricity 

consumption by firms due to heat-induced power rationing rather than an increase. While our 

research is rooted in China's institutional background, climate shocks and the absence of market-

oriented electricity systems are common challenges faced by most countries worldwide, 

particularly developing nations. 

Secondly, our study reveals the economic rationales behind power rationing on firms. 

Extensive research has examined the economic consequences of electricity shortages (Reichl et al., 

2013; Allcott et al., 2016; Cole et al., 2018; Chen et al., 2023; Mensah, 2024). Some studies have 

utilized cooling degree days (CDD) as an instrument to investigate the impact of power shortages 

on firms, particularly in China, such as Fisher-Vanden et al. (2015). However, when and why this 

strategy works remain unclear. Our study elucidates that the government prioritizes residential 

electricity demand, leading to power rationing for industrial firms during periods of high 

temperatures. Further analysis reveals that the government's power rationing strategy is shaped by 

a trade-off for maximizing social welfare, which depends on the electricity elasticity of substitution 

in both the residential and industrial sectors. 

Lastly, our study shed light on how to address resource scarcity when market mechanisms 

are absent. The shift from government dominance to liberalization in the energy sector is a 

common trend internationally, particularly in developed countries like the United States (Cicala, 

2022), the United Kingdom (Sweeting, 2007), and Spain (Ito and Reguant, 2016). Literature has 

found that liberalizing energy markets can reduce power plants' costs and improve market 

efficiency (Davis and Wolfram, 2012; Kabir et al., 2011; Cicala, 2022). We provide empirical 

evidence that insufficient energy supply lowers firm performance, particularly during power 

shortages induced by climate extremes. One way of solving resource scarcity is to accelerate the 
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ongoing energy market liberalization reforms in China (Guo et al., 2020; Chen et al., 2022; Cao et 

al., 2024). Apart from the market reforms, we also provide insights on reducing welfare losses by 

improving the power rationing mechanism. Our results demonstrate that the government 

implements random regional rationing when facing a power shortage. The costs of power rationing 

could be reduced through efficient rationing by linking power cut schedules with social costs of 

rationing. 

 

2. Data 

2.1 Firm data 

The firm-level data used in this study come from the National Tax Surveys conducted by 

the Chinese State Administration of Taxation from 2007 to 2016. This survey annually samples 

about 700,000 firms from all industries, sizes, and ownership types. The sampled firms are legally 

obligated to report operational and tax-related data, including annual electricity usage, to the local 

tax bureaus using standardized forms. Our research mainly focuses on manufacturing firms, which 

constitute about 40% of all the firms in the NTS. 

We process the NTS data to address several issues. First, we create a unique ID for each 

firm. Each firm is assigned a 15-digit (18-digit after 2015) registration ID in the NTS database. 

However, the registration ID for firms with the same name and address can vary over the years3. 

To address this, we generate a unified, unique ID for each firm by considering two factors: (1) 

treating firms with the same name and address as the same firm, and (2) considering the firms with 

the same juridical person ID (the 7th-14th digits of the registration ID) as one firm. 

Second, we unify different versions of Chinese Industry Classification (CIC) codes used in 

the NTS data. Each firm in the database is classified into a 4-digit Chinese Industry Classification 

(CIC) code. The CIC standard switched from GB/T 4754-2002 to GB/T 4754-2011 in 2013. We 

unify two versions of the industry codes at the 3-digit level.  

Third, due to frequent changes in China's administrative division coding system, we unify 

the 6-digit county codes system in the NTS data. To further validate the unified geocoding of firms, 

we utilize the AMap geocoding service to parse the latitude and longitude based on their reported 

addresses, enabling us to determine the corresponding county. Subsequently, we compare the 

 
3 For instance, missing values or transitioning from a 15-digit to an 18-digit format. 
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parsed locations with each firm's county codes reported by the NTS. The firms are excluded if the 

parsed and reported locations differ at the municipality level. Firms for which the county could 

not be determined have also been removed. Approximately 7% of observations are removed during 

this process. 

Finally, we remove irregular observations that exhibit non-positive values for total assets 

or value-added output. Furthermore, we eliminate firms with electricity usage, prime operating 

revenue, or fixed assets smaller than 1. We also exclude firms with no more than four employees, 

as many of these entities are typically individual businesses that resemble households rather than 

formal enterprises. 

We measure firms' TFP using several approaches. We employ the LP approach proposed 

by Levinsohn and Petrin (2003) as the primary approach to estimate firms' TFP due to its 

advantages in estimation consistency. We use the OP approach (Olley and Pakes, 1996), also 

commonly used in the literature, to calculate firm-level TFP for robustness checks. Our results 

remain consistent across different TFP estimation approaches. To examine the significance of 

electricity in firm production, we calculate TFP both with and without controlling for electricity 

as an input factor4. 

2.2 Meteorological data 

The meteorological data in this paper comes from the China Surface Climate Data Daily 

Value Dataset (V3.0) from the National Meteorological Information Center, which includes the 

daily air pressure, temperature, precipitation, relative humidity, wind speed, sunshine hours, and 

evaporation of 824 weather stations in China. We first interpolate the meteorological data into 

gridded data with a resolution of 0.1 degrees by 0.1 degrees using inverse distance weighting. Then, 

we take the within-region average to obtain daily weather data in China from 1975 to 2016 at the 

county level. 

  

 
4 Theoretical equations for firm-level TFP with and without controlling for electricity using a classical Cobb-Douglas 
framework can be expressed as follows: (1) 𝑇𝐹𝑃!"# = ln𝑄!" − 𝜎$ ln 𝐿!" − 𝜎% ln𝐾!" − 𝜎# ln 𝐸!"  and (2) 𝑇𝐹𝑃!"&# =
ln𝑄!" − 𝜎$ ln 𝐿!" − 𝜎% ln𝐾!" , where Q, L, K, and E represent firm's value-added output and labor, capital, and 
electricity inputs, respectively. The superscripts "E" and "NE" indicate TFP with and without controlling for electricity, 
respectively. 
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2.3 Interprovincial electricity dispatching data 

We obtain interprovincial electricity dispatching data from the "Compilation of Statistical 

Information on China's Electric Power Industry" from 2006 to 2016. We manually clean and 

encode this data into an interprovincial electricity transmission matrix. Some of the interprovincial 

transmission records are labeled with specific transmission grid lines. Therefore, we can identify 

whether the transmitted electricity is from hydropower or thermal power if the specific 

transmission line is known to transmit hydropower or thermal power exclusively. For the cases 

where the source of electricity cannot be determined, we estimate the amount of hydropower 

dispatched across provinces based on the proportion of provincial hydropower production to total 

electricity production in that year. 

Interprovincial electricity allocation plays a crucial role in China's power supply system. 

In the Appendix, Figure A1 illustrates the flow of interprovincial electricity dispatching in 2007. 

Figure 1 provides a more detailed breakdown of the import and export proportions of electricity 

across different provinces in 2007 and 2016. In northern China, the primary transmission lines 

transport electricity from provinces such as Inner Mongolia, Shanxi, and Ningxia in the west to 

provinces like Beijing, Hebei, and Liaoning in the east. These transmission lines predominantly 

carry thermal power, leveraging the coal resources in northwest China. In southern China, the main 

transmission lines transfer electricity from provinces such as Guizhou, Yunnan, and Sichuan in 

the west to provinces like Chongqing, Guangdong, and Shanghai in the east. These southern 

transmission lines have a significant proportion of hydropower sourced from the abundant water 

resources in southwest China. Figure 2 illustrates the proportions of hydropower in total electricity 

consumption across China, southern provinces, and northern provinces from 2006 to 2016. The 

average dependence on hydropower exceeds 20% for an average province in China, with southern 

provinces surpassing 30%.  

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

2.4 Matching firm and weather data 

 We match the firm-level data with weather data by county and year. Approximately 95% 

of the firms in the NTS dataset are classified as small and medium-sized enterprises according to 

the government's standards. For larger firms and conglomerates that may have multiple plants, 

their different branches and plants registered separately are treated as distinct firms as long as they 
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have different registration IDs. Therefore, our data is seemingly establishment-level, and we are 

not concerned about substantial mismeasurement of firm-level temperature exposure due to our 

merging strategy. After the data cleaning steps and removing singletons, our final regression 

dataset consists of unbalanced panel data with 17,1270 distinct firms and 586,168 observations 

from 2007 to 2016. 

 Panel A of Table 1 represents summary statistics for the main variables in our sample. The 

dataset shows an average firm's annual value-added output of approximately $0.77 million. It 

requires an input of 1.24 million kWh of electricity, $1.01 million capital value, and employs 129 

workers. The differences in TFP calculated using the LP and OP methods for firms are insignificant. 

However, the TFP is slightly lower when controlling for electricity as an input factor. We also 

report weather conditions at the firms' locations, including annual average temperature (Temp), 

cumulative precipitation (Pre), average relative humidity (Rhu), average wind speed (Win), and 

average sunshine hours (Sun). The annual average temperature (Temp) is calculated as the mean 

of daily average temperatures over a year. Temp has a mean value of 15.82 in our sample and 

exhibits substantial variation across different firms (𝜎 = 4.56). 

[Insert Table 1 about here] 

 

3. Estimation strategy 

3.1 Empirical approach 

To investigate how temperature exposure affects firms' electricity usage, we follow the 

model of Schlenker and Roberts (2009) and Addoum et al. (2023) by assuming that the firm's 

production process nonlinearly depends on regional temperature. We provide a more detailed 

discussion of this estimation strategy in Appendix B. Consistent with the approach adopted by 

Deschênes and Greenstone (2011), Dell et al. (2014), and Zhang et al. (2018), we estimate the 

nonlinear impact of temperature on firm's electricity usage using the equation (1). 

 ln 𝑦!" = * 𝛽# ⋅ 𝑇𝑒𝑚𝐵!"#
$%

#&',#)$

+ 𝛿𝑿!" + 𝜇! + 𝜆*" + 𝐼+" + 𝝐!" (1) 

where ln 𝑦!" denotes firm 𝑖's electricity usage in year 𝑡 in log form. 𝑇𝑒𝑚𝐵!"#  is the number of days 

experienced by firm 𝑖 in year 𝑡 with daily average temperature that falls in the nth temperature bin. 

We lump the first bin as the number of days with a daily average temperature below -9°C and the 
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last (10th) bin as the daily average temperature that exceeds 31°C. The 6th bin (11°C–16°C) is 

omitted to avoid multicollinearity in estimating equation (1). Thus, the semi-elasticity coefficients 

𝛽# should be interpreted as the marginal effect of an extra day with temperature in the nth bin 

relative to a day with temperature between 11°C and 16°C. Other factors are denoted 𝑿!"  and 

include quadratic of precipitation, average relative humidity, average wind speed, and sunshine 

hours. 𝜇! is the firm fixed effect proxy for time-invariant firm characteristics. Considering that the 

impact of temperature may exhibit substantial industry heterogeneity (Addoum et al., 2023), we 

control for two-digit-industry-by-year fixed effects (𝐼+").  

Figure 1 shows the importance of including the province-year fixed effect (𝜆*"). Due to 

interprovincial electricity dispatching in the grid system, firms' electricity usage may be influenced 

by temperature shocks in other regions. By introducing province-year fixed effects, we analyze the 

impact of temperature shocks on firms' electricity usage within provinces, holding the local 

electricity supply potential constant. Including province-year fixed effects also mitigates the 

potential influence of factors such as electricity policy changes and new power generation units 

within the provincial grid. 

We choose the sixth bin as the reference because it is the middle bin and corresponds to 

the annual average temperature experienced by the firms in our sample. The middle-bin 

specification also aligns with the literature (Zhang et al., 2018; Agarwal et al., 2021), and our 

results are independent of the reference bin selection. In the robustness check, we also report 

results for alternative specifications for the temperature bins, including a step function with 3°C 

intervals and Chebyshev polynomials estimated with 1°C intervals, following Schlenker and 

Roberts (2009), Burke et al. (2015), and Addoum et al. (2023).  

We report the descriptive statistics for two sets of temperature bins in Panel B and C of 

Table 1. In this study, we are particularly interested in the temperature bins representing high 

temperatures due to the global warming trend. The results show that the number of days with a 

daily average temperature exceeding 31°C is relatively small, with an average of only 5.32 days 

per year, indicating rare occurrences. However, it has a significantly bigger coefficient of variation 

(1.54), much larger than other temperature bins, which boosts our confidence in considering high 

temperatures as exogenous shocks.  

We also calculate temperature anomalies at the bin level by subtracting the average 

temperature bin over the past ten years. Figure 3 illustrates the mean temperature anomalies 
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experienced by an average county in China from 2003 to 2020 at each 1°C interval. We observe a 

significant increase in high-temperature anomalies and a significant decrease in low-temperature 

anomalies among Chinese firms, with a clear threshold at 15°C. The results show that between 

2007 and 2016, the number of days with a daily average temperature falling within the (29, 30] 

and (30, 31] ranges increased by more than one day compared to the previous ten years, which 

reveals a clear warming trend in China. 

[Insert Figure 3 about here] 

3.2 Hydropower transmission and climate-induced electricity supply shock 

A tricky issue is that regional high temperatures may simultaneously affect both electricity 

supply and demand. To further investigate whether high temperatures lead to power rationing, we 

leverage an exogenous electricity supply shock using interregional hydropower transmission and 

precipitation anomalies. Due to the water-storage-dominated characteristic of hydropower 

generation, the precipitation patterns and water inflows in the past few months can significantly 

affect the supply potential of hydropower in the focal month. Inspired by Allcott et al. (2016) and 

Cole et al. (2018), we assume that, for a given province, the hydropower availability can be 

exogenously influenced by precipitation anomalies in the province and its hydropower-sourcing 

provinces one month prior. In contrast, the prior precipitation anomalies is unrelated to high 

temperatures and the heat-induced changes in electricity demand of firms in the hottest month.  

For province 𝑝, we have the following identity: 

 𝐶*" = 𝐺*" + 𝐼𝑚𝑝𝑜𝑟𝑡*" − 𝐸𝑥𝑝𝑜𝑟𝑡*" (2) 

where 𝐶*"  and 𝐺*"  represent the hydropower consumption and generation in province 𝑝 during 

year 𝑡. 𝐼𝑚𝑝𝑜𝑟𝑡*" is the amount of hydropower received by province 𝑝 from other provinces, while 

𝐸𝑥𝑝𝑜𝑟𝑡*" is the amount of hydropower allocated by province 𝑝 to other provinces. Based on the 

interprovincial allocation of hydropower, we calculate the degree of dependency of province 𝑝 on 

hydropower from other provinces in year 𝑡 using the following approach: 

 𝐷𝑒𝑝*," =
𝑒,*"

𝐶*" + 𝐸𝑥𝑝𝑜𝑟𝑡*"
 (3) 

where 𝑒,*" represents the amount of hydropower dispatched from province 𝑗 to province 𝑝 in the 

year 𝑡. When 𝑗 = 𝑝, 𝑒,*" indicates the amount of hydropower generated and used within provinces 
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𝑝 itself. We have ∑ 𝐷𝑒𝑝*,", ≡ 1. Subsequently, we construct an indicator of hydropower supply 

potential for the hottest month in province 𝑝. 

 𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙*" =*(𝐷𝑒𝑝*,"-$ ⋅ 𝑃𝑟𝑒𝑐𝐴𝑛𝑜,,[/-0,/-1])
,

 (4) 

where 𝑚 represents the hottest month in province 𝑝 during year 𝑡. We identify the hottest month 

in a year as the month with the highest monthly average temperature. 𝑃𝑟𝑒𝑐𝐴𝑛𝑜,,[/-0,/-1] refers 

to the anomaly of cumulative precipitation in province 𝑗 during months 𝑚 − 3 to 𝑚 − 2 in year 𝑡. 

The precipitation anomalies are calculated as the difference between the precipitation and the 10-

year historical average of the corresponding months.  

Then, we employ the following equation to estimate how firms respond to exogenous 

electricity supply shocks overlapping with high-temperature periods. 

 ln 𝑦!" = 𝜃 ⋅ 𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙*" + 𝛿𝑿!" + 𝜇! + 𝐼+" + 𝝐!" (5) 

Figure A2 illustrates the implications for different values of 𝜃. When 𝜃 = 0, it implies that 

exogenously increasing or decreasing electricity supply during high temperatures does not affect 

firm electricity usage, resulting in a vertical curve along the x-axis. This indicates the absence of 

electricity constraints during high temperatures. However, if 𝜃 > 0, it signifies that firm electricity 

usage during high-temperature periods increases with the exogenous increase in electricity supply. 

This implies that electricity supply shortages restrict firms' electricity usage during high 

temperatures; in other words, firms are "electricity-constrained" or power-rationed. 

 

4. Results 

4.1 Main Results 

We aim to examine whether and how firms respond to high temperatures in electricity 

usage. Table 2 presents the estimation results for Equation (3), visually represented in Figure 4. 

The first column of Table 2 reveals a significant negative correlation between a firm's electricity 

usage and high-temperature exposure. This conclusion remains significant and robust as columns 

(2) and (3) successively introduce other weather control variables and two-digit industry-year fixed 

effects. The results indicate that holding all else constant, for an extra day increase with a daily 

average temperature exceeding 31°C compared to the reference bin (11°C–16°C), there is a 0.72% 

decrease in a firm's electricity usage. Moreover, for each additional standard deviation increase of 
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days (5.32 days) with a daily average temperature exceeding 31°C, there is a 3.84% decrease in a 

firm's electricity usage. The scale of this effect is highly robust across different empirical 

specifications. This effect holds significant economic significance compared to the existing 

literature's relevant findings5. 

[Insert Table 2 about here] 

[Insert Figure 4 about here] 

We then perform several robustness tests to ensure that specific empirical specifications do 

not drive the observed results. Columns (1) and (2) of Table 3 present the results when replacing 

the reference bin with the fifth (6°C–11°C) and seventh (16°C–21°C) bins, respectively. While the 

choice of the reference bin may affect the magnitude of the estimated coefficients slightly, our 

conclusions remain significant both statistically and economically. In columns (3) and (4) of Table 

3, we explore clustering the standard errors at different levels. Our findings remain robust even 

when two-way clustering the standard errors at the firm and province-year level or simply 

clustering at the province level (31 provinces). 

[Insert Table 3 about here] 

Our conclusions remain robust after substituting different measures of temperature 

exposure. In column (5) of Table 3, we employ temperature anomalies as a proxy for firm-specific 

temperature exposure. In columns (6) and (7) of Table 3, we construct temperature bins and 

anomalies with a 3°C interval. Additionally, we adopt the Chebyshev polynomials approach 

proposed by Schlenker and Roberts (2009) to relax specifications regarding the temperature bins 

and functional form as much as possible. The estimated results are presented in Figure 5. Our 

estimation consistently demonstrates statistical and economic significance across various 

empirical specifications. 

[Insert Figure 5 about here]  

4.2 Power rationing 

A logical question arises as to why there is a negative correlation between high 

temperatures and firms' electricity usage. Intuitively, firms may increase their electricity usage 

during high temperatures to maintain a comfortable working environment, similar to how 

 
5 For instance, Zhang et al. (2018) show that an extra day with temperature larger than 90°F (32°C) decreases output 
by 0.45%, relative to an extra day with temperature between 50–60°F (10–16°C), for the above-scale industrial firms 
in China. 
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households respond to high temperatures. Existing studies have consistently shown that high 

temperatures significantly increase household electricity demand and usage (Davis and Gertler, 

2015; Barreca et al., 2016; Zhang et al., 2022). However, our empirical findings indicate a negative 

correlation between high temperatures and firms' electricity usage. Although high-temperature 

shocks are often transitory and idiosyncratic compared to the vast electricity grid, it does not 

indicate the absence of heat-induced power supply shortages (relative to total demand). Actually, 

existing research has demonstrated that rapid ramping services and power dispatching cannot fully 

cover peak electricity demand (An and Zhang, 2023). Theoretically, households and industrial 

sectors compete for electricity resources in situations of inadequate electricity supply. Therefore, 

it is also reasonable to postulate that in a context where the government has the authority to allocate 

electricity resources and prioritize electricity supply for households, the surge in electricity 

demand from the residential sector due to high temperatures may crowd out firms' electricity 

availability.  

Our baseline estimates utilize localized temperature exposure and thus cannot differentiate 

between heat-induced electricity supply and demand shock. To address this challenge, we employ 

equation (4) to construct an exogenous measure of pure electricity supply shock during high 

temperatures in the province where the firms are located. Then, we employ equation (5) to further 

examine whether firms' electricity supply is constrained during high temperatures by testing 

"usage-supply sensitivity". Table 4 shows the estimation of 𝜃  is significantly positive under 

different empirical specifications. The result implies that during high temperatures, if the province 

where the firms are located enjoys a greater electricity supply, the firms' electricity usage also 

increases. This indicates that firms are power rationed during high temperatures. 

[Insert Table 4 about here] 

We provide additional support to validate the legitimacy of the electricity supply shocks 

by examining whether the shock variable constructed using precipitation anomalies in the months 

following the hottest month is related to firms' electricity usage. Table A2 shows the results of this 

falsification test. The regression coefficients of 𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙*",[/31,/30]  and firm 

electricity consumption are positive but not statistically significant. This falsification test also 

verifies that the exact timing of the heat-induced power rationing. 

Figure 6 provides further evidence of the power rationing. We divide the sample based on 

the median of electricity supply shocks and perform subsample regressions. We find that a greater 
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impact of high temperatures on firm electricity consumption is observed in scenarios where high 

temperatures overlap with inadequate hydropower supply. In subsamples with greater hydropower 

supply, the effect of high temperatures on firm electricity consumption is smaller. The results 

indicate that the power rationing effect is more prominent when high temperatures overlap with 

droughts. Furthermore, we find that SOEs exhibit greater sensitivity in electricity usage to high 

temperatures. This suggests that the government may sacrifice the SOEs and prioritize non-SOEs' 

demand during periods of strained electricity supply.  

[Insert Figure 6 about here] 

The hydropower supply in northern China is significantly lower than in southern China, as 

depicted in Figure 2. This implies that provinces in northern China have fewer hydropower 

resources available when high temperatures occur, potentially leading to more severe power 

rationing for firms. The results of the subsample regressions reported in Table A4 confirm our 

hypothesis. We find that firms in northern China face three times larger 𝜃 than firms in southern 

provinces. 𝜃 is significant in southern Chinese provinces as well, albeit smaller than the estimate 

using the full sample. These findings also represent the significance of hydropower's rapid 

responsiveness and flexibility in addressing the heat-induced peak load. 

4.3 Alternative explanations 

One possible explanation for our baseline results is the price effect. The increase in 

electricity demand during high temperatures may surge electricity prices, prompting firms to 

reduce their electricity usage (Ponticelli et al., 2023). However, we tend to rule out the price effect 

in China. In China, the electricity prices for manufacturing firms depend on their contracts with 

electricity retailers. Retailers may not be able to promptly respond to high temperatures and adjust 

electricity prices. Furthermore, literature has found that industrial firms in China are insensitive to 

short-term electricity price adjustments, as the costs associated with reorganizing production far 

exceed the magnitude of electricity cost increases (Zhou et al., 2019). To test the price effect, we 

collect monthly electricity price indices for industrial firms with a voltage level of 35kV or above 

in 36 major cities in China from 2007 to 2016, as published by the Price Monitoring Center of the 

National Development and Reform Commission. We find no economically significant correlation 

between monthly electricity price indices (lnEPI) and the city's temperature, as shown in Table 

A5. In Figure A3, we present the trend of the average EPI across 36 cities. It reveals that industrial 
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electricity prices in China exhibit relative stability, often remaining unchanged for consecutive 

months. 

Another possible explanation is that high temperatures reduce firms' output through 

mechanisms unrelated to electricity supply or demand, leading to decreased electricity usage only 

as a side effect. Previous literature has documented that high temperatures significantly reduce 

industrial firms' labor productivity, TFP, and output (Zivin and Neidell, 2014; Zhang et al., 2018; 

Chen and Yang, 2019; Agarwal et al., 2021). If such side effects entirely drive our results, we 

expect the sensitivity of firm electricity usage to high temperatures to disappear after controlling 

for variables such as labor, capital, and total factor productivity. In columns (1)–(3) of Table 5, we 

sequentially add labor productivity, capital productivity, and TFP as control variables in the 

baseline model. We find that including labor and capital productivity does not affect the sensitivity 

of firm electricity usage to high temperatures. Indeed, after controlling for TFP, the sensitivity 

decreases but remains significant at the 5% level. After accounting for the TFP channel, the 

marginal effect of an extra day with an average temperature exceeding 31°C on the firm's 

electricity usage reduction is estimated to be 0.49%. 

[Insert Table 5 about here] 

If high temperatures lead to an increase in equipment failure rates and subsequent 

shutdowns, it may also result in a decrease in firm electricity usage. To investigate this possibility 

further, we regress the firm's equipment repair and maintenance expenses (Ln(R&M)) on 

temperature bins. However, our regression results do not indicate a significant positive correlation 

between the firm's equipment repair and maintenance expenses and high temperatures, as shown 

in Table 6 (1)–(3). Furthermore, in (4) and (5) of Table 6, we also show that high temperatures do 

not significantly reduce firms' labor and capital inputs, consistent with previous literature (Zhang 

et al., 2018; Chen and Yang, 2019). 

[Insert Table 6 about here] 

4.4 Economic consequences 

We further investigate whether heat-induced power rationing and the decline in electricity 

usage affect firms' output. Previous research on the relationship between high temperatures and 

output has overlooked electricity as a crucial input factor of firms' production process. In column 

(1) of Table A6, we show that high temperatures significantly reduce firms' output. The results 

indicate that for each additional day with a temperature exceeding 31°C compared to the reference 
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bin, an average firm's output decreases by approximately 0.4%. Our estimates are similar to those 

of previous studies (Zhang et al., 2018; Chen and Yang, 2019). However, column (2) shows that 

when we include electricity input as a control variable in the regression model, the sensitivity of 

firm output to high temperatures significantly decreases by 13%–30%. In columns (3) and (4) of 

Table A6, we replicate this analysis using temperature bins with a 3°C interval and arrive at the 

same conclusion. TFP is considered one of the primary channels explaining the output-high 

temperature sensitivity in the literature. In column (5), we validate that high temperatures indeed 

reduce firms' TFP in our sample. However, when we incorporate electricity input into the firm's 

production function and recalculate TFP, we find a significant decrease in the sensitivity of TFP 

to high temperatures, as shown in column (6). In columns (7) and (8), we obtain consistent results 

using alternative temperature bins. Our findings demonstrate robustness when estimating TFP 

using the OP method in untabulated results. 

 

5. Welfare implications 

5.1 Direct comparison 

One insightful question is how to understand the decision of the Chinese government to 

prioritize residential electricity demand during high-temperature periods in terms of social welfare. 

To shed light on this question, we first compare the marginal reduction in industrial value-added 

due to power rationing with the residents' marginal willingness to pay (WTP) to avoid power 

interruptions for the same amount of electricity. Following the literature estimating the "value of 

the lost load" (de Nooij et al., 2007; 2009; Zachariadis and Poullikkas, 2012), we estimate the loss 

in industrial firms' value-added due to power rationing using the production-function approach. 

For convenience, we employ a Cobb-Douglas production function to estimate the average 

economic value-added loss when firms reduce their electricity input by 10MWh. The production 

function is estimated using a 2SLS method, considering high temperatures as instrumental 

variables for electricity input. The estimation results are detailed in Table A7. Our results show 

that, on the margin, removing 10 MWh of electricity from an average firm yields an economic 

value-added loss of approximately US$1,010. 

Estimating the welfare losses for the residential sector due to power interruptions is 

typically challenging since no market allows households to trade power interruptions directly. 

However, the contingent valuation method (CVM) combined with survey studies offers a viable 
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approach 6  to estimating the impact of power interruptions based on the residents' stated 

preferences (Hartman et al., 1991; Baik et al., 2020; Zhao et al., 2022). Nevertheless, relevant 

surveys and empirical studies in this area remain scarce. The only estimation available for Chinese 

residents that we could find is provided by Zhao et al. (2022), which estimated the residents' WTP 

to avoid air conditioning interruptions induced by electricity outages during summer electricity 

peaks based on a survey study conducted in a major Chinese city in 2020. Their results showed 

that the median WTP for avoiding a half-hour air conditioning interruption was CN￥2.91, 

while the median WTP reached as high as CN￥6.75 for avoiding a one-hour interruption. These 

estimates are lower than the WTP of residents in other more developed regions and countries for 

avoiding power interruptions, as revealed by other studies7 (Woo et al., 2014; Baik et al., 2020). 

Then, our calculation yields that the welfare of allocating 10 MWh of electricity to the residential 

sector during high temperatures is $3,702. We visualize the comparison of the value of the lost 

loads in Figure 7. 

[Insert Figure 7 about here] 

In estimating China household's MWTP, Zhao et al. (2022) only consider the interruption 

of air conditioning, which may underestimate the impact of power interruptions on household 

welfare via all appliances, despite the literature emphasizing the importance of air conditioning as 

the primary means for residents to cope with heat-related physical damages (Naughton, 2002; Basu, 

2009; Agarwal et al., 2021; Xi et al., 2024). Nevertheless, our back-of-envelope calculation reveals 

that the marginal welfare effect of allocating more electricity to households during high-

temperature periods is four times greater than the marginal economic value-added of allocating it 

to firms. 

5.2 A static model of the optimal allocation 

Taking a step further, we construct a simple yet intuitive static model to analyze the social 

planner's optimal allocation of electricity resources between the household and industrial sectors 

under the premise of inadequate supply. We detail the model specification, solution, and 

 
6 Introductions and comparisons of other related methods, such as household production-function-based approaches, 
market-behavior-based approaches, and case studies, can be found in de Nooij et al. (2007) and Baik et al. (2020). 
7 Using a similar estimation strategy, Woo et al. (2014) found that residents in Hong Kong had a WTP of up to $45 to 
avoid a one-hour power interruption, while Baik et al. (2020) documented that U.S. residents had a WTP ranging from 
approximately $1.7 to $2.3 per kWh for avoiding power interruptions. 
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calibration in Appendix C. In our model, the total electricity output of the power sector 𝐸4  is 

featured by a Leontief production function so that the maximum electricity output is a constant 𝑁. 

𝐸4 = min	(𝐴5𝐿5 , 𝑁) 

where 𝐴5 denotes the productivity of the power sector, and 𝐿5 is the labor employed in the power 

sector. We then analyze how a social planner, aiming to maximize social welfare, should allocate 

electricity resources between representative households and firms. The utility function 𝑈 of the 

representative household is defined as 

𝑈 = ^𝜆$𝑌
+'-$
+' + (1 − 𝜆$)𝐸6

+'-$
+' `

+'
+'-$

 

where 𝑌 and 𝐸6 indicate the consumption of normal goods and electricity, respectively. 𝜆$ is the 

share parameter, and 𝑠$  denotes the household's elasticity of substitution. Normal goods are 

produced by the firm with the technology 𝑌 = 𝐴7 ^𝜆1𝐿7
()*'
() + (1 − 𝜆1)𝐸7

()*'
() `

()
()*'

, where 𝐴7 

denotes the firm's productivity. 𝐿7  and 𝐸7  represent the labor and electricity inputs, and 𝑠1 

represents the elasticity of substitution between the two composites. 

 We define the allocation share 𝜇 = 5+
5,

. The social planner is facing a trade-off featured by 

 
Thus, the effect of change in 𝜇 on utilities can be decomposed into two parts. The first 

component refers to the change in utility resulting from a change in the consumption of the product, 

while the second component represents the change in utility resulting from a change in the 

consumption of electricity. By solving the social planner's problem, we have the optimal allocation 

(𝑟 = 𝐸7/𝐸6) characterized by 

𝑟∗ = 𝐴7
+)-$ c

𝜆$
1 − 𝜆$

d
+'
$-+)
$-+'

𝜃
+)-+'
$-+'  

were 𝜃 = 𝑝𝑌/𝑒𝐸6, and we assume that high temperatures increase household electricity demand, 

and the social planner always prioritizes the household sector, resulting in a decrease in 𝜃.  

Our model reveals that in an electricity market characterized by a constrained total supply 

and the absence of market mechanisms, an increase in residential electricity consumption due to 
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high temperatures leads to a decline in industrial output (see prof in Appendix C). To maximize 

welfare, the social planner must weigh the trade-off between increased electricity consumption 

and reduced consumption of normal goods. Furthermore, we elucidate that the optimal allocation 

is characterized by the substitution elasticities in both the household and industrial sectors. The 

social planner should allocate more electricity to the industrial sector only when the substitution 

elasticity of the household sector exceeds that of the industrial sector (𝑠1 < 𝑠$ < 1). However, 

based on our calibration, the electricity substitution elasticity of the household sector in China is 

significantly lower 8 . This implies that the welfare loss from electricity interruptions in the 

household sector is much greater than that from power rationing in the industrial sector. Consistent 

with our findings in Section 5.1, more electricity should be directed toward the household sector 

during heat-induced electricity shortages. 

5.3 Regional rationing mechanism and potential welfare improvement 

Finally, building upon our justification for applying power rationing to industrial firms, we 

further explore potential improvements to reduce the welfare loss from heat-induced power 

rationing. Our static model suggests that enhancing industrial firm productivity can mitigate the 

welfare loss from power rationing, aligning with existing empirical studies (Sweeting, 2007; Ito 

and Reguant, 2016; Cicala, 2022). For instance, Cicala (2022) documents that introducing market 

mechanisms to determine power generation in the United States can significantly reduce 

production costs and enhance welfare. In addition to the liberalization of electricity markets, which 

are typically slow and contentious, regional rationing mechanisms can directly reduce the welfare 

loss from power rationing. Efficient regional rationing, as opposed to random rationing, can 

minimize social costs by prioritizing rationing in regions with lower social costs (de Nooij et al., 

2007; 2009). 

In Figure 8, we present the heterogeneity analysis of the impact of high temperatures on 

firms' electricity usage based on their total assets, return on assets (ROA), and TFP. Our findings 

indicate that larger, more profitable, and more productive firms do not escape power rationing. 

This confirms our conclusion that the price mechanisms are absent during high-temperature shocks. 

With market mechanisms in place, we expect the electricity usage of better-performing firms to be 

less affected by high temperatures, as they have a higher capability and willingness to pay to avoid 

 
8 𝑠-. = 0.616 and 𝑠.. = 0.863. See Appendix C3 for more details. 
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power interruptions. More importantly, these results suggest that the Chinese government 

implements random regional rationing, which implies that the welfare loss could be mitigated 

through efficient regional rationing by prioritizing rationing in regions with lower social costs first. 

[Insert Figure 8 about here] 

 

6. Conclusions 

Global climate change has led to more frequent heat shocks and droughts, impacting both 

the supply and demand sides of the electricity market, exacerbating strains on the power system, 

and threatening social welfare. Despite its importance, there is a dearth of empirical evidence on 

the impact of heat-induced power shortages and power rationing on industrial firms' performance. 

In this paper, we conduct the first study documenting the power rationing imposed on firms and 

the significant reduction in their electricity input due to high temperatures. We elucidate how the 

government allocates electricity resources between the household and residential sectors when 

facing heat-induced power shortages and market inefficiencies.  

Our study has several important implications. First, we elucidate that the impact on the 

power system is a crucial mechanism through which high temperatures affect the industrial sector. 

Our research reveals the central role of the government in the nexus of climate change, electricity 

supply, and firm performance. In the context of climate change and increasing resource constraints, 

governments are forced to make trade-offs between the welfare of residential and industrial sectors. 

Neglecting the specific institutional backgrounds and the power system channel can significantly 

underestimate the welfare effects of high temperatures and climate change. 

Second, hydropower provides crucial resilience in addressing peak load during high 

temperatures. Our empirical results imply that when high temperatures coincide with decreased 

hydropower availability, the electricity supply is significantly restricted, leading to power 

shortages and rationing. High-confident climate models predict that climate change will lead to 

higher temperatures and increased drought conditions in Asia. In such scenarios, to deal with the 

peak load, the energy sector may resort to technological substitutions, increasing reliance on 

thermal power generation and emitting more CO2, thereby hindering energy transition and climate 

governance efforts. Therefore, climate change mitigation policymakers may need to 

simultaneously consider targeting high temperatures and water availability in adaptation to climate 

change. 
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Lastly, our research provides insights into mitigating and adapting to the impacts of high 

temperatures on firms. It is commonly believed that larger-scale and more profitable firms exhibit 

greater resilience against shocks like high temperatures. However, our findings demonstrate that 

firms are power rationed regardless of size, profitability, and productivity, indicating a random 

regional rationing in China. Thus, an efficient regional rationing mechanism that targets 

minimizing social costs and prioritizes rationing in regions with lower social costs first may 

mitigate the welfare loss of heat-induced power rationing. 
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Figures and Tables 

Figures 

 

 
Figure 1. Ratios of electricity imports and exports across Chinese provinces in 2007 and 2016. 
The import ratio is the proportion of imported electricity from other provinces and the provincial 
annual electricity consumption. The export ratio is the proportion of the electricity transferred to 
other provinces to the total electricity generated. 
  



  30 

 

 
Figure 2. Temporal dynamics in the proportions of hydropower in total electricity consumption 
across all Chinese provinces, northern provinces, and southern provinces from 2006 to 2016. The 
solid, dashed, and dash-dotted lines depict the average proportions of annual hydropower 
consumption in total electricity consumption, calculated for all provinces in China, northern 
provinces, and southern provinces, respectively. 
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Figure 3. Mean values of temperature anomalies experienced by an average county in each 1°C 
interval in China from 2003 to 2020. Temperature anomalies are calculated by subtracting the 
average temperature bin over the average of the past ten years. 
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Figure 4. The impact of temperature on firms' electricity consumption using the bin approach. The 
solid blue line represents the point estimate for 𝛽#, while the dark- and light-shaded areas represent 
the 95% and 90% confidence intervals, respectively. We control for firm, province-year, and two-
digit industry-year fixed effects and employ cluster-robust standard errors at the county level. 
Detailed results can be found in the third column of Table 2. The lower half of the figure displays 
the distribution of temperature bins. 
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Figure 5. The effect of temperature on firm's electricity usage using 3°C interval temperature bins 
and Chebyshev polynomials. The blue solid line represents the estimation results of Equation (3) 
using temperature bins with a 3°C interval, with the omission of the ninth (14°C–17°C) bin. 
Detailed regression results are in column (5) of Table 3. The red solid line presents the estimation 
results using the Chebyshev polynomials approach proposed by Schlenker and Roberts (2009), 
with the shaded area representing the 95% confidence interval for this estimation. Consistent with 
Addoum et al. (2023), we employ third-order Chebyshev polynomials, where 𝑔(ℎ) =
∑ 𝛾+𝑇+(ℎ)0
+)$  and 𝑇+(ℎ) indicates the s-th order Chebyshev polynomial.	𝑔(ℎ)	is	defined	 in	 the	

Appendix	B.	
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Figure 6. Heterogeneity in the effects of high temperatures on firm electricity consumption. 
Detailed regression results can be found in Table A3. The left panel divides the sample into two 
groups based on the median HydropowerPotential, with the blue line representing the results using 
the below-the-median subsample and the red line representing the results using the above-the-
median subsample. The right panel presents the results of estimating Equation (1) using samples 
for SOEs (blue line) and Non-SOEs (red line), respectively. 
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Figure 7. Comparing losses of industrial value-added (in China) and median WTP of households 
(across countries) avoiding power interruptions in summer. Nuances and references for the 
calculations can be found in Table A8. All the values are PPP adjusted to 2007 US dollars. 
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Figure 8. Heterogeneous effect of the impact of high temperatures on firm's electricity usage by 
total assets, ROA, and TFP. Regression results are detailed in Table A9. 
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Tables 
Table 1. Summary statistics. 

Variable Obs. Mean S.D. Min Median Max 
Panel A: Main variables           
Ln(Output) 586,168 8.67 2.20 2.20 8.81 13.34 
Ln(Electricity) 586,168 4.82 2.17 0.69 4.70 10.84 
Ln(Labor) 586,168 4.86 1.33 1.61 4.84 8.02 
Ln(Capital) 586,168 8.95 2.13 2.30 9.04 13.69 
Ln(Assets) 586,168 10.54 1.88 5.20 10.56 14.95 
ROA 586,168 0.01 0.02 -0.09 0.00 0.10 
Ln(TFP-LP-E) 586,168 4.71 1.65 -4.35 4.90 11.31 
Ln(TFP-LP-NE) 586,168 4.84 1.67 -3.92 5.04 11.73 
Ln(TFP-OP-E) 586,168 4.70 1.65 -4.35 4.90 11.31 
Ln(TFP-OP-NE) 586,168 4.83 1.67 -3.93 5.03 11.73 
Temp 586,168 15.82 4.56 -4.25 16.70 26.09 
Pre 586,168 1136.77 529.92 11.66 1097.96 3301.30 
Rhu 586,168 69.69 7.24 30.23 71.49 90.38 
Win 586,168 2.29 0.55 0.60 2.25 6.43 
Sun 586,168 5.39 1.10 1.82 5.17 9.48 
Panel B: Temperature bins 5°C interval         
TemB_1    ( , -9°C] 586,168 7.23 19.73 0.00 0.00 152.00 
TemB_2    (-9°C, -4°C] 586,168 9.08 14.49 0.00 0.00 79.00 
TemB_3    (-4°C, 1°C] 586,168 20.86 20.44 0.00 14.00 94.00 
TemB_4    (1°C, 6°C] 586,168 33.77 20.00 0.00 38.00 116.00 
TemB_5    (6°C, 11°C] 586,168 42.22 17.35 0.00 44.00 125.00 
TemB_6    (11°C, 16°C] 586,168 48.76 14.62 0.00 48.00 142.00 
TemB_7    (16°C, 21°C] 586,168 61.62 15.42 0.00 60.00 186.00 
TemB_8    (21°C, 26°C] 586,168 75.21 16.99 0.00 75.00 242.00 
TemB_9    (26°C, 31°C] 586,168 61.22 41.50 0.00 59.00 226.00 
TemB_10  (31°C, ) 586,168 5.32 8.21 0.00 1.00 54.00 
Panel C: Temperature bins 3°C interval         
TemB3_1    ( , -7°C) 586,168 9.98 23.76 0.00 0.00 158.00 
TemB3_2    (-7°C, -4°C] 586,168 6.34 9.82 0.00 0.00 52.00 
TemB3_3    (-4°C, 1°C] 586,168 10.54 12.68 0.00 2.00 61.00 
TemB3_4    (-1°C, 2°C] 586,168 16.36 13.04 0.00 17.00 68.00 
TemB3_5    (2°C, 5°C] 586,168 20.29 12.82 0.00 22.00 92.00 
TemB3_6    (5°C, 8°C] 586,168 23.70 12.61 0.00 25.00 88.00 
TemB3_7    (8°C, 11°C] 586,168 25.95 10.76 0.00 26.00 87.00 
TemB3_8    (11°C, 14°C] 586,168 28.31 9.86 0.00 28.00 113.00 
TemB3_9    (14°C, 17°C] 586,168 31.12 9.91 1.00 31.00 98.00 
TemB3_10  (17°C, 20°C] 586,168 37.02 10.56 0.00 35.00 126.00 
TemB3_11  (20°C, 23°C] 586,168 42.91 10.60 0.00 42.00 156.00 
TemB3_12  (23°C, 26°C] 586,168 46.23 14.26 0.00 46.00 176.00 
TemB3_13  (26°C, 29°C] 586,168 43.23 28.13 0.00 40.00 175.00 
TemB3_14  (29°C, 32°C] 586,168 21.03 18.21 0.00 20.00 89.00 
TemB3_15  (32°C, ) 586,168 2.28 4.83 0.00 0.00 33.00 
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Table 2. The impact of temperature on firm's electricity consumption. 
  (1) (2) (3) 
  Ln(Electricity) Ln(Electricity) Ln(Electricity) 
(31°C,  ) -0.006*** -0.007*** -0.007*** 
  (0.002) (0.002) (0.002) 
(26°C, 31°C] -0.005*** -0.006*** -0.006*** 
  (0.002) (0.002) (0.002) 
(21°C, 26°C] -0.004*** -0.004*** -0.004*** 
  (0.001) (0.001) (0.001) 
(16°C, 21°C] -0.001 -0.001 -0.001 
  (0.001) (0.001) (0.001) 
(11°C, 16°C]       
        
(6°C, 11°C] -0.001 -0.001 -0.001 
  (0.001) (0.002) (0.001) 
(1°C, 6°C] 0.001 0.001 0.001 
  (0.002) (0.002) (0.002) 
(-4°C, 1°C] -0.002 -0.002 -0.002 
  (0.002) (0.002) (0.002) 
(-9°C, -4°C] 0.000 0.001 0.001 
  (0.003) (0.003) (0.003) 
( , -9°C] -0.004 -0.003 -0.003 
  (0.004) (0.004) (0.004) 
Pre   -0.000 -0.000 
    (0.000) (0.000) 
Pre2   0.000 -0.000 
    (0.000) (0.000) 
Rhu   -0.024 -0.024 
    (0.026) (0.026) 
Rhu2   0.000 0.000 
    (0.000) (0.000) 
Wind   0.173 0.152 
    (0.167) (0.163) 
Wind2   -0.041 -0.036 
    (0.030) (0.030) 
Sun   0.178 0.188 
    (0.126) (0.124) 
Sun2   -0.015 -0.016 
    (0.011) (0.011) 
Constant 5.617*** 5.939*** 5.960*** 
  (0.328) (1.125) (1.109) 
Effect of 1 Std. Dev. Change 
as % of Dep. Var.:    

(31°C,  ) -3.28 -3.99 -3.84 
p-value [0.007] [0.001] [0.001] 
Obs. 586,168 586,168 586,168 
R2 0.758 0.758 0.758 
Firm FE Yes Yes Yes 
Province-Year FE Yes Yes Yes 
Industry-Year FE  No No Yes 

Notes: Standard errors in the parentheses are clustered at the county level. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 3. Robustness checks. 
  (1) (2) (3) (4) (5) (6) (7) 
  Ln(Electricity) Ln(Electricity) Ln(Electricity) Ln(Electricity) Ln(Electricity) Ln(Electricity) Ln(Electricity) 
(31°C,  ) -0.006** -0.006*** -0.007*** -0.007**       
  (0.003) (0.002) (0.002) (0.003)       
(26°C, 31°C] -0.005** -0.005*** -0.006*** -0.006**       
  (0.002) (0.002) (0.002) (0.002)       
(21°C, 26°C] -0.003* -0.004*** -0.004*** -0.004*       
  (0.002) (0.001) (0.002) (0.002)       
(31°C,  ) Anomaly         -0.007***     
          (0.002)     
(26°C, 31°C] Anomaly         -0.006***     
          (0.002)     
(21°C, 26°C] Anomaly         -0.004***     
          (0.001)     
(32°C,  )           -0.005*   
            (0.003)   
(29°C, 32°C]           -0.007***   
            (0.002)   
(26°C, 29°C]           -0.005***   
            (0.002)   
(23°C, 26°C]           -0.004***   
            (0.001)   
(32°C,  ) Anomaly             -0.005* 
              (0.003) 
(29°C, 32°C] Anomaly             -0.008*** 
              (0.002) 
(26°C, 29°C] Anomaly             -0.005*** 
              (0.002) 
(23°C, 26°C] Anomaly             -0.004*** 
              (0.001) 
Controls and other bins Yes Yes Yes Yes Yes Yes Yes 
Obs. 586,168 586,168 586,168 586,168 586,168 586,168 586,168 
R2 0.758 0.758 0.758 0.758 0.758 0.758 0.758 
Firm FE Yes Yes  Yes Yes Yes Yes Yes 
Province-Year FE Yes  Yes Yes Yes Yes Yes Yes 
Industry-Year FE Yes  Yes Yes Yes Yes Yes Yes 

Cluster County County Firm and 
Province-Year Province County County County 

Notes: Temperature anomalies are calculated by subtracting the average temperature bin over the average of the past ten years. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 4. Hydropower potential shock and firm's electricity consumption. 
  (1) (2) (3) (4) 
  Ln(Electricity) Ln(Electricity) Ln(Electricity) Ln(Electricity) 
HydropowerPotential 0.427*** 0.490*** 0.468*** 0.468** 
  (0.111) (0.106) (0.104) (0.216) 
Pre   -0.000*** -0.000*** -0.000** 
    (0.000) (0.000) (0.000) 
Pre2   0.000*** 0.000*** 0.000** 
    (0.000) (0.000) (0.000) 
Rhu   0.005 0.008 0.008 
    (0.022) (0.022) (0.030) 
Rhu2   -0.000 -0.000 -0.000 
    (0.000) (0.000) (0.000) 
Wind   0.107 0.083 0.083 
    (0.167) (0.163) (0.268) 
Wind2   -0.018 -0.014 -0.014 
    (0.034) (0.033) (0.053) 
Sun   0.157* 0.160** 0.160 
    (0.084) (0.082) (0.159) 
Sun2   -0.013 -0.013* -0.013 
    (0.008) (0.008) (0.014) 
Constant 4.823*** 4.281*** 4.178*** 4.178*** 
  (0.001) (0.768) (0.759) (1.085) 
Obs. 585,093 585,093 585,093 585,093 
R2 0.753 0.753 0.754 0.754 
Firm FE Yes Yes Yes Yes 
Year FE Yes Yes No No 
Industry-Year FE No No Yes Yes 

Notes: Standard errors in the parentheses are clustered at county the level for columns (1)–(3). In column (4), standard 
errors are clustered at the province level. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 5. Controlling productivity proxies.  
  (1) (2) (3) 
  Ln(Electricity) Ln(Electricity) Ln(Electricity) 
(31°C,  ) -0.007*** -0.007*** -0.005** 
  (0.002) (0.002) (0.002) 
(26°C, 31°C] -0.006*** -0.006*** -0.004** 
  (0.002) (0.002) (0.001) 
(21°C, 26°C] -0.004*** -0.004*** -0.003** 
  (0.001) (0.001) (0.001) 
Labor Productivity 0.127*** 0.097*** 2.905*** 
  (0.006) (0.007) (0.063) 
Capital Productivity   0.031*** 1.081*** 
    (0.006) (0.028) 
TFP     -3.920*** 
      (0.088) 
Controls and other bins Yes Yes Yes 
Obs. 586,168 586,168 586,168 
R2 0.762 0.762 0.808 
Firm FE Yes Yes Yes 
Province-Year FE Yes Yes Yes 
Industry-Year FE Yes Yes Yes 

Notes: Labor productivity is measured as output per employee. Capital productivity is the ratio of output to capital. 
TFP is estimated using the LP method while controlling for electricity as an input factor, denoted as Ln(TFP-LP-E) 
in Table 1. Our results are independent of the method used to estimate TFP. Standard errors in the parentheses are 
clustered at the county level. * p<0.1, ** p<0.05, *** p<0.01. 
 

Table 6. The impact of temperature on firm's repair and maintenance costs. 
  (1) (2) (3) (4) (5) 
  Ln(R&M) Ln(R&M) Ln(R&M) Ln(Labor) Ln(Capital) 
(31°C,  ) -0.007 -0.009** -0.008* 0.000 0.000 
  (0.004) (0.005) (0.005) (0.001) (0.001) 
(26°C, 31°C] -0.001 -0.003 -0.002 0.000 0.001* 
  (0.003) (0.004) (0.004) (0.000) (0.001) 
(21°C, 26°C] 0.002 0.001 0.001 0.000 0.000 
  (0.003) (0.003) (0.003) (0.000) (0.000) 
Controls No Yes Yes Yes Yes 
Obs. 321,314 321,314 321,314 586,168 586,168 
R2 0.665 0.665 0.666 0.950 0.955 
Firm FE Yes Yes Yes Yes Yes 
Province-Year FE Yes Yes Yes Yes Yes 
Industry-Year FE No No Yes Yes Yes 

Notes: All temperature bins except the 6th bin are included in the regression analysis. We only report the regression 
coefficients for the three bins representing high temperatures for brevity. In columns (1)–(3), the dependent variables 
are the firm's equipment repair and maintenance expenses in log form. The dependent variables in columns (4) and (5) 
are the firm's labor and capital input in log form, respectively. Standard errors in the parentheses are clustered at the 
county level. * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix A: Figures and Tables 
 

 

 
Figure A1. Interprovincial electricity transmission volume in China in 2007. The abbreviations of 
provincial names can be found in Table A1. 
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Figure A2. Illustration of different values of 𝜃 of the Equation (7).  
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Figure A3. Dynamics of the monthly mean electricity price index for 36 Chinese cities. The 
interval we study is between the two vertical dotted lines.  
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Table A1. Chinese provinces, abbreviations, and respective regions. 
Provinces Abbr. North/South 

Anhui AH S 
Beijing BJ N 

Chongqing CQ S 
Fujian FJ S 
Gansu GS N 

Guangdong GD S 
Guangxi GX S 
Guizhou GZ S 
Hainan HaiN S 
Hebei HeB N 

Heilongjiang HLJ N 
Henan HN N 
Hubei HuB S 
Hunan HuN S 

Inner Mongolia NMG N 
Jiangsu JS S 
Jiangxi JX S 

Jilin JL N 
Liaoning LN N 
Ningxia NX N 
Qinghai QH N 
Shaanxi ShaanX N 

Shandong SD N 
Shanghai SH S 
Shanxi ShanX N 
Sichuan SC S 
Tianjin TJ N 
Tibet XZ S 

Xinjiang XJ N 
Yunnan YN S 
Zhejiang ZJ S 
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Table A2. Falsification test. 
  (1) (2) (3) 
  Ln(Electricity) Ln(Electricity) Ln(Electricity) 
Hydropower Potential[m+2,m+3] 0.157 0.192 0.195 
  (0.160) (0.160) (0.156) 
Pre   -0.000*** -0.000*** 
    (0.000) (0.000) 
Pre2   0.000*** 0.000*** 
    (0.000) (0.000) 
Rhu   -0.003 0.001 
    (0.022) (0.022) 
Rhu2   0.000 0.000 
    (0.000) (0.000) 
Wind   0.118 0.092 
    (0.162) (0.159) 
Wind2   -0.025 -0.021 
    (0.033) (0.032) 
Sun   0.125 0.131 
    (0.084) (0.081) 
Sun2   -0.010 -0.011 
    (0.008) (0.008) 
Constant 4.821*** 4.600*** 4.482*** 
  (0.001) (0.780) (0.770) 
Obs. 585,093 585,093 585,093 
R2 0.753 0.753 0.754 
Firm FE Yes Yes Yes 
Year FE Yes Yes No 
Industry-Year FE No No Yes 
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Table A3. Heterogeneity in the effects of high temperatures on firm electricity consumption. 
  (1) (2)   (3) (4) 
  Ln(Electricity)   Ln(Electricity) 
  Hydropower Potential   SOE 
  Below Median Above Median   SOE Non-SOE 
(31°C,  ) -0.011*** -0.006   -0.013* -0.007*** 
  (0.004) (0.004)   (0.007) (0.002) 
(26°C, 31°C] -0.006* -0.005*   -0.012*** -0.005*** 
  (0.003) (0.003)   (0.004) (0.002) 
(21°C, 26°C] -0.006** -0.003   -0.011*** -0.004*** 
  (0.002) (0.002)   (0.004) (0.001) 
Controls and other bins Yes Yes   Yes Yes 
Obs. 232,553 239,781   44,166 534,602 
R2 0.804 0.789   0.753 0.758 
Firm FE Yes Yes   Yes Yes 
Province-Year FE Yes Yes   Yes Yes 
Industry-Year FE Yes Yes   Yes Yes 
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Table A4. Heterogeneity in the sensitivity of firms' electricity usage to power supply.  
  (1) (2) (3) 
  All North South 
Hydropower Potential 0.468*** 0.890*** 0.265** 
  (0.104) (0.321) (0.118) 
Control Yes Yes Yes 
Obs. 585,093 223,315 361,778 
R2 0.754 0.737 0.768 
Firm FE Yes Yes Yes 
Industry-Year FE Yes Yes Yes 

Notes: Column (1) replicates the results presented in column (3) of Table 4. Columns (2) and (3) further examine the 
regression by focusing on subsamples of provinces in northern and southern China, respectively. 
 

Table A5. Temperature and electricity price indices. 
  (1) (2) (3) (4) 
  Ln(EPI) Ln(EPI) Ln(EPI) Ln(EPI) 
MonthlyAverageTemp 0.002* 0.002* 0.001 0.001 
  (0.001) (0.001) (0.001) (0.001) 
MonthlyAverageTemp2   0.000   0.000 
    (0.000)   (0.000) 
Controls Yes Yes Yes Yes 
Obs. 4,320 4,320 1,200 1,200 
R2 0.864 0.864 0.985 0.985 
City FE Yes Yes Yes Yes 
Year-Month FE Yes Yes No  No 
Province-Year-Month FE  No No Yes Yes 
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Table A6. The impact of high temperatures on output through electricity.  
  (1) (2)   (3) (4)   (5) (6)   (7) (8) 
  Ln(Output)   Ln(Output)   TFP - LP   TFP - OP 
  Not Controlling E Controlling E   Not Controlling E Controlling E   Not Excluding E Excluding E   Not Excluding E Excluding E 
(31°C,  ) -0.004* -0.003         -0.004* -0.003       
  (0.002) (0.002)         (0.002) (0.002)       
(32°C,  )       -0.006** -0.005*         -0.006** -0.006* 
        (0.003) (0.003)         (0.003) (0.003) 
Ln(Electricity)   0.159***     0.159***             
    (0.006)     (0.006)             
Controls and other bins Yes Yes   Yes Yes   Yes Yes   Yes Yes 
Obs. 586,168 586,168   586,168 586,168   586,168 586,168   586,168 586,168 
R2 0.768 0.774   0.768 0.774   0.612 0.605   0.612 0.605 
Firm FE Yes Yes   Yes Yes   Yes Yes   Yes Yes 
Province-Year FE Yes Yes   Yes Yes   Yes Yes   Yes Yes 
Industry-Year FE Yes Yes   Yes Yes   Yes Yes   Yes Yes 
% of change of Marg. Eff. 30.13  13.41  12.07  5.46 
chi2 of Diff. 51.74  16.57  54.61  16.89 
p-value [0.000]  [0.000]  [0.000]  [0.000] 
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Table A7. Estimation the C-D production function using 2SLS. 
  (1)   (2) 
  First Stage   Second Stage 
  Ln(Electricity)   Ln(Output) 
Ln(Electricity)     0.065*** 
      (0.000) 
TFP - LP 0.074***   1.000*** 
  (0.006)   (0.000) 
Ln(Labor) 0.407***   0.432*** 
  (0.009)   (0.000) 
Ln(Capital) 0.136***   0.174*** 
  (0.006)   (0.000) 
(31°C,  ) -0.006***     
  (0.002)     
(26°C, 31°C] -0.006***     
  (0.001)     
(21°C, 26°C] -0.004***     
  (0.001)     
        
        
Controls Yes   Yes 
Obs. 586,168   586,168 
Firm FE Yes   Yes 
Province-Year FE Yes   Yes 
Industry-Year FE Yes   Yes 
Underidentification test  25.87   23.778 
  [0.000]   [0.000] 
Weak identification test  6.09   27.494 
  [0.000]     
Overidentification test     2.074 
      [0.3545] 

Notes: For the first-stage regression results, we report the SW Chi2-statistics and its p-value for 
the underidentification test, as well as the SW F-statistics and its p-value for the weak identification 
test. As for the second-stage regression results, we present the Kleibergen-Paap RK LM statistics 
and its p-value for the underidentification test, as well as the Cragg-Donald Wald F-statistic for 
the weak identification test. Hansen J statistics and its p-value are reported for the 
overidentification test conducted on all instruments. 
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Table A8. Nuances and references for calculating the median WTPs. 
Country/Region Paper Survey Year Valuation Basis Timing/Peak Appliances Currency PPP Factor CPI Factor MWTP for 10 MWh MWTP SE 

USA Baik et al. (2020) 2018 Per 1 KWh - All USD 1 1.211 14,038 1,618 

Norway Vennemo et al. (2022) 2021 1H Outage - All NOK 8.962 1.307 8,161 429 

Sweden Carlsson et al. (2021) 2017 1H Outage January All SEK 8.852 1.182 7,924 836 

Ethiopia Aweke and Navrud (2022) 2018 1H Outage - All USD 1 1.211 7,444 1,246 

China Zhao et al. (2022) 2020 1H Outage Summer Peak AC CNY 4.174 1.248 3,702 1,014 

India Bigerna et al. (2024) 2021 1H Outage - All USD 1 1.307 842 455 

Notes: We assume that an average air conditioner's power is 3.5 KW, which is the type that dominates the Chinese household AC market 
(Lin and Rosenquist, 2008; Wu et al., 2019). All the valuations are measured based on the contingent valuation method. We derive the 
standard error of China's MWTP using the delta method. 
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Table A9. Heterogeneous impact of high temperatures on firms' electricity usage. 
  (1) (2)   (3) (4)   (5) (6) 
  Ln(Electricity)   Ln(Electricity)   Ln(Electricity) 
  Total Assets   ROA   TFP 
  Below Median Above Median   Below Median Above Median   Below Median Above Median 
(31°C,  ) -0.008*** -0.007**   -0.007** -0.007**   -0.007** -0.006** 
  (0.003) (0.003)   (0.003) (0.003)   (0.003) (0.003) 
(26°C, 31°C] -0.007*** -0.007***   -0.007*** -0.005**   -0.006*** -0.006*** 
  (0.002) (0.002)   (0.002) (0.002)   (0.002) (0.002) 
(21°C, 26°C] -0.004** -0.006***   -0.006*** -0.003*   -0.004** -0.006*** 
  (0.002) (0.002)   (0.002) (0.002)   (0.002) (0.002) 
Controls and other bins Yes Yes   Yes Yes   Yes Yes 
Obs. 276,397 269,452   258,939 258,035   255,728 251,468 
R2 0.735 0.661   0.775 0.772   0.796 0.740 
Firm FE Yes Yes   Yes Yes   Yes Yes 
Province-Year FE Yes Yes   Yes Yes   Yes Yes 
Industry-Year FE Yes Yes   Yes Yes   Yes Yes 
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Appendix B: Discussion on Estimation Strategies 
Following Schlenker and Roberts (2009) and Addoum et al. (2023), we assume that the firm's 

production process, denoted as 𝑔(ℎ), nonlinearly depends on regional temperature exposure, h. 

We hypothesize that the firm's annual electricity usage 𝑦!" can be represented as follows 

 ln 𝑦!" = s 𝑔(ℎ)𝜙!"(ℎ)𝑑ℎ
9

9
+ 𝛿𝑿!" + 𝜇! + 𝜆*" + 𝐼+" + 𝝐!" (B1) 

where 𝜙!" is the time distribution of heat over year 𝑡 in the county of firm 𝑖. ℎ and ℎ are upper and 

lower bound of the observed temperatures. Other terms are identical to the equation (1).  

The key assumption in equation (B1) is that year-to-year weather fluctuations across 

counties are unrelated to factors affecting firms' production given the fixed effects (Deschênes and 

Greenstone, 2011). Equation (B1) also implies that the effects of temperature on firms' electricity 

usage accumulate over time. Since ϕ(h) is defined based on daily temperature within a year in this 

paper, we assume that the marginal effect of temperature exposure on firms' electricity usage and 

other activities is additively separable throughout the year (Schlenker and Roberts, 2009; Blanc 

and Schlenker, 2017). We approximate the integral in equation (B1) with 

 ln 𝑦!" = *𝑔(ℎ + 2.5)[Φ:;(ℎ + 5) − Φ!"(ℎ)]
9

9)9

+ 𝛿𝑿!" + 𝜇! + 𝜆*" + 𝐼+" + 𝝐!" (B2) 

where Φ!"(ℎ) is the cumulative distribution function of 𝜙!"(ℎ). In our baseline model, we specify 

g(h) as a step function within each 5°C temperature interval. This is identical to estimate equation 

(1), our baseline model. 

 
  



  54 

Appendix C: Static Model of Optimal Electricity Allocation 
C1. Model specification 

Our objective is to construct an intuitive model to illustrate how governments should allocate 

electricity resources between the household and industrial sectors when the electricity supply is 

limited. In this simple model, we consider a representative household and two producers: the 

power sector and the manufacturer. The power sector employs a fraction of the labor and generates 

electricity, with its maximum output constrained by a constant N. The manufacturer produces 

normal goods by employing labor and consuming electricity. The welfare of the representative 

household is shaped by consuming both normal goods and electricity using a CES utility function. 

The social planner, or the government, exogenously determines the electricity price and allocates 

electricity resources between the household and the manufacturer. We aim to understand how a 

social planner should allocate electricity between the household and the manufacturer to maximize 

social welfare. Furthermore, we explore how electricity resources should be allocated when faced 

with rising household electricity demand and consumption due to transitory shocks such as high 

temperatures. 

The utility function 𝑈 of the representative household is defined as 

 𝑈 = ^𝜆$𝑌
('*'
(' + (1 − 𝜆$)𝐸6

('*'
(' `

('
('*'

 (C1) 

where 𝑌 and 𝐸6 indicate the consumption of normal goods and electricity, respectively. 𝜆$ is the 

share parameter, and 𝑠$ denotes the household's elasticity of substitution. The household's budget 

constrain is given by 

 𝑝𝑌 + 𝑒𝐸6 ≤ 𝐼 (C2) 

 𝐼 = 𝜔𝐿 = 𝜔(𝐿5 + 𝐿7)  (C3) 

where 𝑝 and 𝑒 indicate the price of normal goods and electricity, respectively. The income 𝐼 is 

fixed by wage level 𝜔 and total labor supply 𝐿. 𝐿5 and 𝐿7 are the labor employed by the power 

sector and the manufacturer, respectively. 

The total electricity output of the power sector 𝐸4  is featured by a Leontief production 

function so that the maximum electricity output is a constant 𝑁. 𝐴5 denotes the productivity of the 

power sector. 

 𝐸4 = min	(𝐴5𝐿5 , 𝑁)  (C4) 
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 Normal good is produced by the manufacturer with the technology 

 𝑌 = 𝐴7 ^𝜆1𝐿7
()*'
() + (1 − 𝜆1)𝐸7

()*'
() `

()
()*'

  (C5) 

where 𝑌 is the total normal good produced. There are no savings, and all the final normal goods 

are used only for consumption. So, we do not distinguish between the notation of the normal good 

produced and the normal good consumed. 𝐿7 and 𝐸7 represent the labor and electricity inputs, and 

𝑠1 represents the elasticity of substitution between the two composites. We assume that 𝑠1 < 1, 

which implies the complementarity between labor and electricity (Bretschger and Jo, 2024). 𝐴7 

denotes the manufacturer's productivity. 

 We denote 

 5+
5,
= 𝜇, and 5/

5,
= 1 − 𝜇  (C6) 

C2. Optimal allocation of electricity 

To begin with, for the power sector, the total output of electricity is constrained by a constant, 

featuring exogenous natural resources and unit capacity. We have 

 𝐸4 = 𝐴5𝐿5 = 𝑁 and 𝐿5 =
<
=0

  (C7) 

At the social planner's equilibrium, we also have 

 𝜔 = >5,
?0
= 𝑒𝐴5 (C8) 

The marginal willingness to pay for labor in the power sector depends on the electricity 

price and productivity. In this static model, the labor market is exogenously featured as we assume 

that electricity price 𝑒  remains constant. Thus, we do not incorporate the wage effect or 

reallocation effect of transitory high temperatures, which is consistent with our empirical results 

as we do not find the  

For the social planner's problem, we solve 

 @A
@B
= 0  (C9) 

 
@A
@B
= 𝑈

'
('𝜆$𝑌

- '
('
@C
@B
+ 𝑈

'
('(1 − 𝜆$)(𝐸6)

- '
('
@5+
@B

  (C10) 

So, the effect of change in 𝜇  on utilities can be decomposed into two parts. The first 

component refers to the change in utility resulting from a change in the consumption of product, 

while the second component represents the change in utility resulting from a change in the 

consumption of electricity. Because we always have 
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 @C
@B
=

-5(=/DE)?/

()*'
() 3($-E))[($-B)5,]

()*'
() H

'
()*'

[($-B)5,]
'
()

< 0  (C11) 

So when more electricity is assigned to the household sector (𝜇 increases), it decrease in the firm's 

production due to power rationing. 

 Denote 𝑟 = 5/
5+

 (so that 𝑟 = $-B
B

), we have9  

 E'
$-E'

𝐴7
$- '

()𝑌
'
()
- '
(' = 𝑟

'
()𝐸6

'
()
- '
('  (C12) 

and 

 𝑟 = 𝐴7
+)-$ z E'

$-E'
{
+'
z>
*
{
+'-+)

  (C13) 

We define 

 𝜃 = *C
>5+

= z*
>
{
$-+'

z E'
$-E'

{
+'

  (C14) 

Then 

 𝑟 = 𝐴7
+)-$ z E'

$-E'
{
+'
'*()
'*(' 𝜃

()*('
'*('   (C15) 

The intuition of the model results are 

• As 𝐴7increases, 𝑟 decreases. Intuitively, more electricity can be allocated to the household 

sector if the productivity of firms improves. 

• We assume that high temperatures increase household electricity demand, and the social 

planner always prioritizes the household sector, resulting in a decrease in 𝜃. 

• If 𝑠$ < 𝑠1, then during high temperatures, as 𝜃 decreases, 𝑟 also decreases. This implies 

that more electricity should be allocated to the household sector during high temperatures 

to maximize welfare. 

• If 𝑠1 < 𝑠$ < 1, then during high temperatures, as 𝜃 decreases, 𝑟 increases. This indicates 

that more resources should be allocated to the industry sector during high temperatures to 

maximize welfare.  

 

9 From the social planner's problem we have 1!
-21!

𝐴3
-2 !

"#𝑌
!
"#
2 !
"! = #$

!
"#

#%

!
"!

. For the household, we have  4
#%
= 75

6
8
7!
7 1!
-21!

8
7!

. 
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The elasticity of substitution in two sectors plays a crucial role. When both 𝑠$ and 𝑠1 are 

smaller than one, it implies that electricity and other factors are, to some extent, complementary 

in both sectors. In other words, it is harder to change the consumption (input) proportions of 

different composites while keeping utility (output) unchanged. Thus, the allocation of electricity 

resources during high temperatures depends on the relative magnitudes of the substitution 

elasticities in the two sectors. The sector with a smaller substitution elasticity, indicating a stronger 

complementarity and a more significant utility loss for changing the proportion, should receive 

more electricity. In the particular case where 𝑠$ equals 𝑠1, the optimal proportion of electricity 

allocation is a constant and is featured by firms' productivity and the preferences of households.  

C3. Calibration of elasticities 

We estimate 𝑠$ using the Slutsky equation and the estimation of price and income elasticity from 

Hu et al. (2019). The Slutsky equation indicates that 

 𝜂5C = 𝛿C𝑠$ − 𝛿C𝜂57  (C16) 

where 𝛿C =
*C
7

. 𝜂5C and 𝜂57 are price and income elasticity, respectively. Based on the results of 

Hu et al. (2019) using the household level data from 1992 to 2009 in China, 𝛿C} = 0.58 , 

uncompensated elasticity 𝜂5C� = −0.043, and 𝜂57� = 0.690. Thus, we have 𝑠$� = 0.616. 

We estimate 𝑠1 following Bretschger and Jo (2024) using 2SLS. The results are detailed in 

Table C1. We show that 𝑠1�  is about 0.84–0.86, significantly larger than the 𝑠$� . Following the 

model implication, it indicates that the government should allocate more electricity to the 

household sector as 𝑠$ < 𝑠1. 

 𝑙𝑜𝑔 z589
?89
{ = 𝛽% + 𝑠1 𝑙𝑜𝑔(

I89
>89
) + 𝜇! + 𝜆*" + 𝐼+" + 𝝐!"  (C17) 
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Table C1: Estimate the elasticity of substitution between labor and energy. 
  (1) (2)   (3) (4) 
  First Stage Second Stage   First Stage Second Stage 
  log W/P log E/N   log W/P log E/N 
logW/P   0.837***     0.863*** 
    (0.038)     (0.046) 
log AvgW/AvgP 0.113***     0.117***   
  (0.006)     (0.008)   
Firm FE Yes Yes   Yes Yes 
Year FE Yes Yes   No No 
Industry FE Yes Yes   No No 
Province FE Yes Yes   No No 
Year-Industry FE No No   Yes Yes 
Year-Province FE No No   Yes Yes 
Obs. 145,048 145,048   145,045 145,045 
Underidentification test  292.56 288.41   216.00 211.17 
  [0.000] [0.000]   [0.000] [0.000] 
Weak identification test  292.43 593.326   215.59 430.162 
  [0.000]     [0.000]   

Notes: For the first-stage regression results, we report the SW Chi2 statistic and its p-value for the underidentification 
test, as well as the SW F-statistic and its p-value for the weak identification test. As for the second-stage regression 
results, we present the Kleibergen-Paap RK LM statistic and its p-value for the underidentification test, as well as the 
Cragg-Donald Wald F statistic for the weak identification test. 

 
 


