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A B S T R A C T   

This paper analyzes the impacts of carbon intensity control introduced by China’s National Plan on firm 
competitiveness. By exploiting plausibly exogenous variation in the mandates on carbon intensity reduction 
across locations, we find that the exposure to mandate significantly decreases firm’s energy intensity, but does 
not affect firm competitiveness measured by productivity. We show that exposure to carbon intensity control 
causes firms to increase their low-carbon patents by 0.9% and low-carbon patent ratio by 0.2%, with no 
crowding-out effect on non-low-carbon innovation. Low-carbon innovation induced by the mandate increases 
firm outputs by expanding the size of labour inputs and fixed assets. Therefore, although exposure to mandate 
reduces capital productivity, the induced innovation mitigates the negative impact through input augmentation 
rather than improving the energy productivity or productivity on labour or capital. This explains why mandated 
intensity-based policy can be an effective instrument for mitigating the greenhouse gases without harming firm 
competitiveness.   

1. Introduction 

When the command-and-control is efficient over market mechanism 
is a question with no simple answers (Stavins, 1995). Empirical evi
dences have shown that the prevailing view on the inefficiency of 
command-and-control over economic instruments is inaccurate 
(Goulder and Parry, 2008; Gray and Shimshack, 2011). Command-and- 
control is likely to be at least as efficient as taxes when the abatement 
costs are relatively low and the monitoring costs are relatively high 
(Cole and Grossman, 1999). Thus, the efficacy of command-and-control 
over effluent taxes or emission trading depends on institutional and 
technological conditions. In this paper, we address this question by 
investigating the efficiency of a regulatory based policy instrument on 
firm competitiveness in the context of China. 

Examining the efficiency of regulatory approach in China is impor
tant and relevant for at least three well justified reasons. First, China’s 
institutional setting implies most of its policies are command driven, 
despite it has attempted to lower the governmental intervention through 
marketization. The unique policy making structure provides an inter
esting example to be compared with economies where the institution is 
driven by democratic system. Second, China’s industry productivity 

remains lower than the world average (Inklaar and Diewert, 2016), the 
experience from China is applicable to countries with similar level of 
industrial development for environmental control. Third, as the country 
with the highest level of emissions, the success of environmental related 
policy has strong implications for the mitigation of global climate 
change. 

Our main objective in this paper is to estimate the effects of carbon 
reduction mandates on firm’s competitiveness. To achieve the carbon 
mitigation committed in the 2009 Copenhagen Accord, China launched 
a greenhouse gases control policy, which was to reduce carbon intensity 
by 17% from the level of 2010 by 2015 during 12th Five-Year-Plan. The 
national target was allocated to provinces by the Chinese State Council 
according to some regional factors such as economic development, 
historical carbon emissions and potential reduction ability. Moreover, 
key industries like power and heating, chemical, iron and steel in
dustries that are the major contributors of carbon emissions were 
required to establish corresponding emissions standards. By decentral
izing the carbon intensity reduction to local governments, the green
house gases control policy was effective, and the carbon reduction goals 
were fulfilled at the end of 12th Five-Year-Plan, with carbon intensity 
reduced by about 20%. However, there is little known about the effects 
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of such reduction mandates on firms. Does this mandated target-based 
regulation damage the firm’s performance or spur the firm’s innova
tion as explained by Porter and der Linde (1995)? Do firms respond to 
carbon intensity control in the ways similar to carbon tax or emissions 
trading? 

We seek to identify whether carbon reduction mandates stimulate 
firm’s low-carbon innovation and crowd out innovation in other areas, 
and whether such reduction mandates influence firm’s competitiveness 
measured by firm’s total factor productivity (TFP). To do so, we 
construct a unique and novel Chinese firm-level dataset covering the 
2003–2015 period. We obtain the information on the listed companies 
and its subsidiaries and match detailed information on firm-level pat
ents. As firms are generally exposed to serious shock in carbon-intensive 
industries in provinces with higher reduction target, we measure the 
variations in the policy shock from three aspects: the time variation, by 
distinguishing before and after the start of the 12th Five-Year Plan; the 
provincial variation, by comparing provinces with high mandated target 
versus provinces with low mandated target; and the industrial variation, 
by taking into account the intensity discrepancy across industries. Given 
that one listed company in China has multiple subsidiaries in different 
locations (provinces) and in different industries, the firm’s exposure to 
carbon emissions control is measured as the average of all its sub
sidiaries’ exposures to capture the true effects of the mandates, by 
employing a modified difference-in-difference-in-differences (DDD) 
approach. We further rule out concurrent policy shocks including Clean 
Production Audit, Key Pollution Monitoring Programs, and regional 
pilot emission trading schemes, which pose threats to the validity of our 
causal inference. In addition, we conduct a series of robustness checks to 
verify the consistent causal effects. 

We have obtained novel and important findings. First, the main re
sults show that although carbon reduction mandates spur the low- 
carbon innovation, the policy has no significant crowding-out effect 
on the innovation in other areas, and no significant negative effect on 
firm’s TFP. In addition, the effect on low-carbon innovation exhibits 
heterogeneity in different dimensions. For state-owned firms, it stimu
lates the ratio of low carbon patent; For non-state-owned firms, it 
stimulates the number of low carbon patent. In terms of patent type, 
significant positive effect is found on low carbon utility model while the 
effect on invention patent is not significant. Lastly, we try to explore the 
potential channels through which the mandates affect firm’s competi
tiveness. We find that exposure to mandate directly decreases the firm’s 
capital productivity as resources are used to reduce energy intensity for 
meeting the mandate requirements. However, the low-carbon innova
tion induced by such mandate has significant positive effect on firm’s 
output. The increase in output is the results of expansion in the size of 
labour inputs and fixed assets associated with innovation. The induced 
innovation does not improve energy productivity associated with either 
labor or capital inputs. Therefore, we conclude that although exposure 
to mandate reduces capital productivity, the induced innovation miti
gates the negative impact through scale effects rather than improving 
the energy productivity associated with labour and capital. This explains 
why mandated intensity-based policy can be an effective instrument for 
mitigating the greenhouse gases without harming firm competitiveness. 

We believe this paper makes several key contributions to the litera
ture and to the policy discussion. First, it complements to the ongoing 
discussions on policy instruments for carbon mitigation. Market-based 
instruments have been long argued to be more efficient in reducing 
negative environmental externalities relative to the command and 
control approach (Carlson et al., 2000). Consequently, most prior 
studies focus on the impacts of market-based environmental regulation 
on firms when it comes to carbon emissions (Martin et al., 2014a, 2014b; 
Martin et al., 2016; Cui et al., 2018; Teixidó et al., 2019). There are also 
some theoretical comparisons between compare command and control 
policy and market-based instruments such as Dissou (2005), Fischer and 
Springborn (2011), Holland (2012) and Böhringer et al. (2017). The 
impacts of command and control policy have been widely studied in the 

context of pollution. These studies focus on the effects of regulation on 
industrial activity (Becker and Henderson, 2000; Greenstone, 2002), 
firm or plant-level productivity (Berman and Bui, 2001; Gray and 
Shadbegian, 2003; He et al., 2020) and firm’s location choice (Lin and 
Sun, 2016; Wu et al., 2017). However, few empirical studies are found in 
literature when it comes to carbon emissions.1 This study provides sys
tematic evidence on the effects of mandated target-based regulation 
scheme on firm’s competitiveness from China. Our paper therefore adds 
to literature on the understanding the environmental and economic 
impacts of carbon emissions control policies. 

Second, this study unpacks the underlying mechanisms on how firms 
respond to carbon control mandates. One of the eminent hypotheses in 
the field of environmental regulation is Porter’s induced innovation, 
examples include Jaffe and Palmer (1997), Berman and Bui (2001), 
Lanoie et al. (2008), Yang et al. (2012), Ambec et al. (2013), Rexhäuser 
and Rammer (2014), Cohen and Tubb (2018), Qiu et al. (2018), Stoever 
and Weche (2018), Peng et al. (2021). Cohen and Tubb (2018) conclude 
that it is more likely to find a positive effect of environmental regulation 
at the state, region or country level, compared to facility, firm or in
dustry level – although in both cases the most likely scenario is statistical 
insignificance. In our context, we find the mandates on carbon intensity 
reduction do stimulate the low-carbon innovation and have no signifi
cant crowding-out effect on the innovation in other areas and insignif
icant negative effect on the firm’s TFP. In addition, we also find the 
mandates significantly decrease the firm’s energy intensity and increase 
the fixed assets. The induced low-carbon innovation significantly in
creases the firm’s output through input augmentation. 

Our third key contribution is to the policy discussion on the intensity- 
based approach. Both absolute and intensity-based mitigation have been 
discussed and implemented in countries including the US and China 
(Gollop and Roberts, 1983; Lin and Sun, 2016; Wu et al., 2017). 
Empirical studies have evidenced that both approaches are effective in 
curbing environmental emissions. This paper also highlights an unin
tended weakness of intensity-based approach in addition to the firm 
competitiveness. We show that the intensity-based regulation induces 
low-carbon innovation, mainly spurring relatively low-quality innova
tion measured by utility patents. As the intensity-based mandate does 
not affect firm competitiveness, it can serve as a good supplement to the 
market-based policy instrument which is widely adopted in carbon 
mitigation due to its cost-effectiveness. However, we shall pay special 
attention to the unintended consequence that it may have on firm 
innovation. 

Finally, this study also speaks to the literature discussing the binding 
carbon emission reduction targets in China. Some papers study China’s 
2020 carbon intensity reduction target. For example, Wang et al. (2011) 
discuss the provincial low-carbon energy policy in the path toward 
achieving China’s 2020 carbon reduction target. Yuan et al. (2012) 
examine the 2020 carbon intensity target and its interdependence with 
the overarching national economic development goals. Wang and Liang 
(2013) further investigate the integrated impacts of consumption 
structure changes, energy technology development, and new energy 
increments on China’s CO2 mitigation target as well as identifying key 
economic sectors for achieving this target. Cui et al. (2014) explore how 
the emission trading scheme save cost for achieving China’s 2020 car
bon intensity reduction target. Other recent studies discuss the carbon 
neutrality target. These studies include Abbasi et al. (2021) for the UK, 
Shao et al. (2021) for the US, Zhang et al. (2021) for China. However, 
these previous studies mostly focus on macro-level analysis, the micro- 
level analysis on the emissions reduction target is rare. This study 
highlights the effect of such a binding carbon emission reduction target 
on the firm’s performance. We find convincing evidence that intensity- 
based reduction target stimulates firm’s low-carbon innovation but has 

1 Several studies by Holland et al. (2009), Chen et al. (2014) and Holland 
et al. (2015) investigate the effects of low carbon fuel standard policy. 
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little effect on firm’s competitiveness. 

2. Carbon mandates in China’s national plan 

China’s five-year plans are a series of nationwide social and eco
nomic development initiatives including detailed five-year guidelines 
for social and economic development. In recent years, The Chinese 
government is aware of environmental issues and is concerned about the 
sustainable development, the five-year-plans therefore include envi
ronmental policies like controlling SO2, COD, NOx. To achieve the ex
pected carbon reduction target and to curb the carbon emissions, the 
Chinese government starts to control carbon emissions nationwide at the 
beginning of the 12th Five-Year-Plan (2011–2015). Specifically, as 
shown in Table A1 in the Appendix, the China State Council issued a 
document titled “Work Plan for Controlling Greenhouse Gas Emissions 
during the 12th Five-Year Plan” in 2011, which specified the reduction 
targets and allocated them at the provincial level for the first time. In 
principle, the provincial reduction mandated targets were suggested 
based on a series of factors, such as provincial GDP growth, industrial 
structure, current carbon intensity and maximal potential reduction. 
Moreover, the plan also required that key carbon intensive industries, 
such as steel, electric power, coal, petroleum, chemical industries take 
action to reduce carbon emissions, and emissions standards should be 
established for the key firms in these industries. 

The final mandated targets were determined after negotiation be
tween the central government and the local government of each prov
ince (Zhang et al., 2013; Zhang, 2017). To achieve the mandated goals, 
it was suggested that local governments should focus on optimizing the 
industrial structure, improving energy efficiency and investing in low 
carbon technology, to reduce the carbon intensity within the province. 
To realize the target for controlling carbon emission, the Shanghai 
government issued a document titled “Interim Measures on Carbon 
Emission Management in Shanghai” in 2013. The government allocated 
special funds for energy conservation and emission reduction to support 
the carbon emission management within the administrative area. A se
ries of measures were adopted, including monitoring, reporting and 
verifying the major emitters’ carbon emission. In addition, emitters are 
encouraged to trade carbon emission quotas within the administrative 
area. More specifically, Shanghai established a carbon emission quota 
management system. Carbon emitters whose annual carbon emissions 
reach a certain standard would be subject to quota management. The 
government determined the carbon emission quota of each emitter by 
historical level of carbon emission of the unit and the characteristics of 
the corresponding industry. Quotas were allocated free of charge or with 
payment through the quota registration system. Carbon emitters under 
quota management (including emitters with over 10,000 tons annual 
carbon emissions) were required to compile their carbon emission re
ports for the previous year, which was verified by a third-party orga
nization thereafter. And then the report was submitted to the Municipal 
Development and Reform Commission before March 31 of each year. In 
addition, carbon emitters under quota management were also required 
to set out an annual carbon emissions monitoring plan regarding the 
scope, ways, frequency, and the person in charge by the end of each 
year. The qualified emitters were encouraged to trade quotas via open 
bidding, transfer of agreement or other means on the carbon emissions 
trading platform at Shanghai Environment and Energy Exchange. The 
Exchange established a carbon emission trading information manage
ment system which discloses trading information such as market 
quotation, trading volume and transaction amount as well as relevant 
information that may affect major market changes. In addition, Banks 
and other financial institutions were encouraged to give priority to 
providing financial support for energy conservation and carbon reduc
tion projects of emitters under quota management. 

The top-down carbon intensity reduction mandates thus determine 
the stringency of regulation and can be regarded as a general measure of 
the strength of provincial regulation on carbon emissions. Table A1 in 

the Appendix shows the carbon intensity reduction mandated targets 
across provinces. Among these provinces, we can see Zhejiang, Tianjin, 
Shanghai, Jiangsu and Guangdong have the relatively high reduction 
mandates, Qinghai, Tibet and Hainan have the relatively low mandates 
on reduction. As shown in Fig. 1, overall, provinces in the eastern region 
have the highest reduction target, followed by the central region, the 
western region comes last. 

To enhance the implementation of policy at the local level, the Na
tional Development and Reform Committee (NDRC) of China and other 
related departments were responsible for performance assessment.2 

Fig. 2 shows the relationship between the actual reductions and the 
mandated targets. Enforcement varied across the provinces and regions. 
We can see that most provinces achieved or even exceeded their targets, 
while only a few did not. 

3. Data 

3.1. Data sources and the sample 

The data used in this study includes all Chinese publicly listed 
companies in the non-financial sector in Shanghai and Shenzhen stock 
markets from 2003 to 2015. We assemble this dataset from multiple 
sources. The detailed patent applications for Chinese listed firms are 
obtained from the State Intellectual Patent Office (SIPO) of China. The 
firm-level financial data is taken from the China Stock Market and Ac
counting Research (CSMAR) database, which is widely used in research 
on listed firms in China. By using corporate tree reported by the CSMAR 
database, we obtain a comprehensive list of firms’ names associated 
with its parent company and subsidiaries. The location and industry 
information of subsidiaries is from National Enterprise Credit Informa
tion Publicity System (NECIPS). The data on carbon emissions is derived 
from China Emission Accounts and Datasets (CEADs) and Environmental 
Accounts of World Input-Output Database (WIOD). 

First, we construct a firm-level patent database, covering the patent 
applications associated with all Chinese listed companies in the in
dustries including mining, manufacturing, and public utilities sectors 
during the sample period. Based on the archives of the SIPO, we match 
and merge Chinese listed firms and their subsidiaries with those that 
have filed patent applications. For each firm in the merged sample, the 
data include patent type, application date, application number, grant 
date, grant number, and main International Patent Classification (IPC). 

With the matched firm-level patent database from above, we further 
merge firms’ economic fundamentals from the CSMAR database. Similar 
to the Compustat database from Wharton Research Data Service, 
CSMAR provides firm’s financial information including startup year, 
assets, debts, labor, revenue, cash holdings, industry classification code, 
location and many others. The financial fundamentals play an important 
role in driving corporate R&D activities and productivity performance 
and hence are used as firm-level covariates in our empirical analysis. 

Finally, we merge our firm data with the provincial reduction man
dates and industrial carbon emissions by using the registered location 
and industry of listed firms. The final sample we have obtained include 
13,641 listed company-year observations. 

3.2. Variables construction 

3.2.1. TFP 
Several approaches can be used to estimate firm-level TFP. Specif

2 The assessment result showed that Beijing, Tianjin, Hebei, Shanxi, Inner 
Mongolia, Liaoning, Jilin, Shanghai, Jiangsu, Zhejiang, Anhui, Hubei, Guang
dong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan and Shananxi are 
assessed as “excellent”, Heilongjiang, Fujian, Jiangxi, Shandong, Henan, 
Hunan, Hainan, Gansu, Qinghai and Ningxia are assessed as “good”, Tibet and 
Xinjiang are assessed as “pass”. 
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ically, consider a Cobb-Douglas production function for firm i at time t. 

yit = β0 + βkkit + βllit + βmmit +ωit + εit (1)  

where yit is the logarithm of output measured by sales of goods and 
services; kit is the logarithm of capital measured by net fixed assets; lit is 
the logarithm of labor measured by the number of employees; and mit is 
the logarithm of the intermediate inputs measured by cash payments for 
purchasing goods and receiving services. ωit represents unobservable 
productivity, and εit is an idiosyncratic output shock. 

Endogeneity issue arises when estimating Eq. (1), as the 

unobservable productivity shocks ωit can be correlated with inputs kit 
and lit. Various methods have been proposed to tackle this issue. Olley 
and Pakes (1996) (hereafter, OP) use firms’ investment levels to proxy 
for unobserved productivity shocks, but the monotonicity condition of 
OP requires that only observations with positive investment can be used, 
which limits its applications in empirical settings. To address this issue, 
Levinsohn and Petrin (2003) (hereafter, LP) exploit intermediate inputs 
as a proxy. However, Ackerberg et al. (2006) and Bond and Söderbom 
(2005) state that the labor coefficient cannot be consistently estimated 
due to the multicollinearity and identification issues in the first stage. 

Fig. 1. Distribution of provincial carbon intensity reduction mandated targets. 
Notes: The deeper the colour, the higher the provincial reduction mandated target. 
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Ackerberg et al. (2015) (hereafter, ACF) address this issue by proposing 
an alternative approach that mit is chosen either at the same time or after 
lit is chosen. Therefore, we employ the LP algorithm corrected by ACF to 
estimate the TFP.3 This approach has been widely used to estimate 
firm’s productivity in the most recent empirical studies (e.g. Chor et al., 
2021; Banerjee et al., 2021). 

3.2.2. Low-carbon innovation 
Following the previous studies (Newell et al., 1999; Johnstone et al., 

2010; Calel and Dechezleprêtre, 2016; Autor et al., 2020), we use the 
number of patent applications, which have been successfully granted, as 
a proxy for firms’ innovation.4 To classify low-carbon technologies, we 
match each patent’s main International Patent Classification (IPC) code 
with the IPC Green Inventory code developed by the IPC Committee of 
the World Intellectual Property Organization. The IPC Green Inventory 
classifies the so-called environmentally sound technologies in the IPC 
categories, as listed by the United Nations Framework Convention on 
Climate Change (UNFCCC). By using the definition of low-carbon patent 
in Cui et al. (2018), we pin down a list of IPCs associated with alternative 
energy production, energy conservation, and waste management. 

Let LowcarbonPatit denote the number of low-carbon granted patent 
applications. Under the carbon reduction mandates, a firm could divert 
R&D resources to develop low-carbon technologies, which in turn may 
have a crowding-out effect on innovation in other areas. We use Non
LowcarbonPatit to represent the number of patents on non-low-carbon 
technologies. As an alternative measure of the firm-level low-carbon 
innovation, we also use the ratio of low-carbon patents relative to total 
patents, denoted by LowcarbonRatioit, which measures whether reduc
tion mandates shift the direction of innovation toward low-carbon 
technologies. Moreover, besides carbon emission regulation, 

unobservable policies (e.g. innovation subsidy) may become con
founding factors for a firm’s decision of innovation. As suggested by the 
existing studies (Lanjouw and Mody, 1996; Popp, 2002; Cui et al., 2018), 
another advantage of using the patent ratio can further remove sys
tematic shocks common to both low-carbon patents and total patents. 

To further examine innovation heterogeneity, we exploit the varia
tion by patent type. The SIPO of China grants two types of patents – 
invention patent and utility model patent. Existing research on Chinese 
patents indicates that invention patents represent valuable and more 
important innovation than utility patents (Liu and Qiu, 2016; Fang et al., 
2017; Hu et al., 2017). The former is associated with inventive and new 
technical innovations, whereas the latter is related to technical solutions 
to the object’s shape or structure. We therefore further classified low- 
carbon patents into invention and utility ones. Define Low
carbonInvtPatit and LowcarbonUtyPatit as the number of low-carbon in
vention patents and utility patents, respectively. Similarly, we let 
LowcarbonInvtRatioit be the ratio of low-carbon invention patents rela
tive to all invention patents and denote LowcarbonUtyRatioit as the ratio 
of low-carbon utility patents relative to all utility patents. 

3.2.3. Control variables 
To control for other confounding factors that may affect firms’ low- 

carbon innovation and TFP, we include a set of firm-level control vari
ables. Specifically, Firm age and size are two crucial factors. Younger 
firms are generally considered to be more innovative, and Hsieh and 
Klenow (2014) find a significant effect of firm’s life cycle dynamics on 
TFP. Firm age (Age) is measured by the difference between the current 
year and startup year. Larger firms tend to have larger inputs and out
puts and would have more resources devoted to innovation. We measure 
firm size (Size) by natural logarithm of the book value of total assets 
(Yuan). Moreover, financial situation can also influence firm’s TFP and 
innovation activities (Aghion et al., 2010, 2012; Duval et al., 2020). 
Firms that encounter financial constraints are less likely to invest in 
long-term and risky innovation activities. To capture this, we use 
leverage and cash holdings to measure a firm’s financial situation. The 
former is represented as the ratio of the firm’s total debts to its total 
assets (Leverage), while the latter is the ratio of the net increase in cash 
and cash equivalents to current liabilities (Cash). Finally, we measure 

Fig. 2. Carbon intensity reduction mandated targets and actual reduction. 
Notes: Small circles in the figure represent provinces. The line in the figure is the 45◦ line, which is not like normal 45◦ line due to the different scale in the x-y axis. 
(Source: Actual reduction is calculated from (carbon intensity in 2010- carbon intensity in 2015)/ (carbon intensity in 2010). Provincial carbon emissions are taken 
from China Emissions Accounts & Datasets (CEADs) and provincial GDP is taken from the China Statistical Yearbook (2011–2015).) 

3 We also use LP algorithm and the approach of Wooldridge (2009) to esti
mate TFP for robust check.  

4 Generally, there is a time lag of 1 to 3 years between the filing and the 
publishing of granted patent applications. By matching patent applications and 
granted patents, we use the patent applications which have been successfully 
granted later as the proxy for firms’ innovation. 

Y. Lu and L. Zhang                                                                                                                                                                                                                             



Energy Economics 109 (2022) 105971

6

firms’ growth opportunities with Tobin’s Q, which is calculated as the 
sum of the market value of tradable shares and the book value of non- 
tradable shares and total liabilities divided by the book value of total 
assets. 

3.3. Summary statistics 

Overall, we have a sample of 2389 listed companies with 42,858 
subsidiaries in 74 two-digit industries across 31 province-level regions 
from 2003 to 2015. The final merged data has 13,641 listed company- 
by-year observations. Table 1 shows the summary statistics for the 
main variables used in this study. The mean TFP of the Chinese publicly 
listed firms in the sample is 2.874 with the standard deviation 0.340, 
which means that TFP differs significantly across firms. On average, a 
firm has about 37 total granted patent applications, among which 0.897 
patents are associated with low-carbon technologies (0.162 invention 
patents and 0.735 utility patents). The mean low-carbon patents ratio is 
0.019, the corresponding low-carbon invention ratio is 0.008 and utility 
ratio is 0.022. The average firm size is 21.927, leverage is 0.479, cash is 
0.097, age is 2.497 and Tobin’s Q is 1.981. The average provincial 
mandated target is 16.452%, and the mean industrial carbon emissions 
(2003–2010 average) is 102.068 million tons. 

4. Empirical strategy 

If we only consider the parent company of listed firms, assuming it 
operates in one province and covers one industry, we can apply a 
difference-in-difference-in-differences (DDD) strategy. In other words, 
we combine three types of variation: the time variation (i.e., before and 
after the start of the 12th Five-Year Plan), the provincial variation (i.e., 
provinces with high mandates on carbon reduction versus provinces 

with low mandates), and the industrial variation (i.e., more carbon 
intensive versus less carbon intensive industries). We can estimate the 
following regression: 

Yijpt = β*ln
(
Targetp

)
*Postt*ln

(
CO2 j

)
+ γ′Zit + λi + δjt + ηpt + εijpt (2)  

where Yijpt represents the firm i’s TFP or granted patent applications in 
2-digit industry j, province p and year t.5 Targetp is the provincial 
mandated target on carbon reduction for province p; Postt is a dummy 
variable which equals to 0 for 2003–2010 and 1 for 2011–2015; CO2j is 
the average CO2 emissions from 2003 to 2010 for each industry j. Zit is a 
set of firm-level control variables including age, size, cash, leverage and 
Tobin’s Q. We control for the 2-digit industry-year (δjt) and province- 
year (ηpt) fixed effects, which absorb the time-variant industrial and 
provincial confounding unobservable influencing firm’s TFP or patent. 
We also control for the firm-level fixed effect (λi) capturing the firm-level 
heterogeneity, and εijpt is an error term. 

However, the above specification may not be accurate. A large listed 
company can have multiple subsidiaries. In any given year, a firm in 
China can operate in multiple provinces (on average, one listed firm in 
the sample runs their business in 3 provinces each year), and operate in 
multiple industries (on average, one listed firm in the sample covers 4 
industries each year). Depending on the industry, region and time, these 
subsidiaries can have different treatment shocks. The simple case as 
described in eq. (2) therefore cannot reflect the level of carbon regula
tion a firm faces in reality, which can cause the biased estimation. Thus, 
we turn to a more nuanced empirical model that incorporates the facts. 

Following the approach proposed by Hanna (2010),6 we construct 
the alternative measure of the mandates treatment—exposure to carbon 
intensity control (Exposure)7: 

Exposureit =
1

Ni,t

∑Ni,t

n=1

(
ln
(
Targetnp

)
× ln

(
CO2 nj

)
×Postt

)
(3)  

where Exposureit represents the listed company i’s exposure to the 
mandates in year t. Ni,t is the total number of subsidiaries of listed 
company i in year t; Targetnp is the carbon reduction mandated target in 
province p where the subsidiary n is located. CO2 n j is the average CO2 
emissions from 2003 to 2010 for the 2-digit industry j of the subsidiary n; 
Postt is defined as before. In short, Exposure variable measures listed 
company’s exposure to the mandates as the average of all its sub
sidiaries’ exposures. A larger value of Exposure implies that the listed 
company faces a higher degree of pressure on carbon intensity control. 

We then specify the baseline empirical model as follows: 

Yijpt = β*Exposureit + γ′Zit + λi + δjt + ηpt + εijrt (4) 

Table 1 
Summary statistics.   

Obs Mean S.D. Min Max 

Panel A: Firm-level      
Size 13,641 21.927 1.278 16.704 28.509 
Leverage 13,641 0.479 1.210 0.007 96.959 
Cash 13,641 0.097 1.584 − 70.715 64.185 
Age 13,641 2.497 0.471 0 3.871 
Tobin’s Q 13,325 1.981 1.742 0.153 118.255 
TFP 13,609 2.874 0.340 − 0.675 5.442 
LowcarbonPat 13,641 0.897 5.108 0 173 
NonLowcarbonPat 13,631 36.622 189.1119 0 12,384 
LowcarbonRatio 13,631 0.019 0.082 0 1 
LowcarbonInvtPat 13,641 0.162 2.000 0 105 
LowcarbonUtyPat 13,641 0.735 3.908 0 163 
LowcarbonInvtRatio 13,637 0.008 0.063 0 1 
LowcarbonUtyRatio 13,633 0.022 0.0092 0 1  

Panel B: Province 
level      

Provincial mandated 
target (%) 

31 16.452 2.541 10 19.5 

Panel C: Industry 
level      

Industry CO2 

emissions 
(2003–2010 
average) 
(106 tons) 

74 102.068 388.987 0.127 2990.162 

Notes: this table reports the main variables used in this study. Size is measured 
by natural logarithm of the book value of total assets. Age is measured by natural 
logarithm of the difference between the current year and startup year. Leverage is 
represented as the ratio of the firm’s total debts to its total assets. Cash is the 
ratio of the net increase in cash and cash equivalents to current liabilities. Tobin’s 
Q is calculated as the sum of the market value of tradable shares and the book 
value of non-tradable shares and total liabilities divided by the book value of 
total assets. TFP is calculated as LP algorithm corrected by ACF. 

5 As discussed by Ederington and Minier (2003), polluter lobbying groups 
may adversely influence policymaking, thus endogeneity problem can arise. 
This is very unlikely in our context, the carbon reduction targets were negoti
ated between the central government and the local governments and the 
mandated goals were predetermined by the central government at the begin
ning of the 12th FYP, which was out of firm’s control. This specific setting rules 
out the concerns of the reverse causation problem. Some recent studies also use 
the mandated target in pollution reduction as plausibly exogenous environ
mental regulation (Wu et al., 2017; Maurel and Pernet, 2020).  

6 Hanna (2010) measures multi-plant firms’ exposure to the local regulation 
by considering whether an affiliated plant is located in non-attainment counties 
and belongs to heavily polluting industry under the Clean Air Acts implemented 
by the US Environmental Protection Agency.  

7 Assuming one listed company has 5 subsidiaries in different industries and 
regions, then the exposure of this listed company can be calculated as: Expo
sureit =

1
5
∑5

n=1

(
ln
(

Targetnp

)
× ln

(
CO2 nj

)
× Postt

)
, where Targetnp is mandated 

target of the corresponding subsidiary n’s province p, CO2 nj is the carbon 
emission of the corresponding subsidiary n’s industry j. Postt is a dummy var
iable which equals to 0 for 2003–2010 and 1 for 2011–2015. We construct the 
Exposure_ETS in the similar way. 
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where Yijrt represents the listed company i’s TFP or granted patent ap
plications in year t.8 Exposureijpt is aforementioned regulation variable; 
Similarly, Z is a set of firm-level control variables including age, size, 
cash, leverage and Tobin’s Q. We control for the 2-digit industry-year 
(δjt), province-year (ηrt) fixed effects, and firm-level fixed effect (λi), 
and εijrt is an error term. Overall, we use the registered industry and 
location information of the listed companies (which is the same as the 
parent company) to control for industrial fixed effects. We then use 
subsidiaries information to construct the policy exposure variable. 

To further check the validity of the empirical strategy, we conduct a 
battery of sensitivity tests. These include using alternative measures of 
firm’s TFP, controlling for firm-level environmental policy, carbon 
emissions trading scheme, the innovation subsidy, clustering standard 
errors at the industry-province level. 

5. Results 

In this section, we start with the baseline results and then conduct a 
series of robustness checks to mitigate the endogeneity concerns from 
potential confounding factors. The heterogeneous effects are also dis
cussed. We finally explore the firm’s response to carbon reduction 
mandates through which the mandates influence the firm’s TFP. 

5.1. Baseline results 

Table 2 reports the estimated effects of exposure to carbon reduction 
mandates on firm’s innovation and TFP. In all columns, we control for 
firm fixed effects, 2-digit industry-year effects and province-year effects 
to absorb confounding unobservable factors at the firm, industry and 
province levels. These fixed effects help to control for the industrial and 
regional environmental and energy policy shocks like regional pilot 
carbon emissions trading and provincial targets of reducing energy in
tensity. Robust standard errors in the parentheses are clustered at the 
firm level. 

Columns (1) and (3) of Table 2 show the estimated effects of carbon 
mandates on low-carbon patents. The estimated coefficient of interest is 
0.009 and statistically significant at the 10% for the number of low- 
carbon patents, whereas the estimated coefficient of Exposure in col
umn (3) is 0.002 and statistically significant at the 1%, implying that one 
unit increase in exposure to the mandates leads to 0.9% (e^0.009–1 ≈
0.9%) in the low-carbon granted patent applications and 0.2% increase 
in the low-carbon patent ratio. In column (2), we find no significant 
crowding-out effect of the mandates on the firm’s innovation in other 
areas. 

Moreover, in columns (1)–(3), we can clearly see the significant 
positive effect of firm’s size on firm’s innovation, suggesting that firm 
size plays an important role on innovation. As shown in column (4), we 
do not observe significant negative effect of mandates on firm’s TFP. 
Overall, we find that carbon mandates significantly boost the firm’s 
innovation in low-carbon technologies and have no significant 
crowding-out effect on firm’s innovation in other areas. Under such 
mandates, firms tend to have directed technical change toward low- 
carbon technologies, while firm TFP is not affected by the mandates. 

We further replace “Post” with a set of year dummies to investigate 
the parallel pre-trends. As shown in Fig. A1 in the Appendix, we do not 
find any significant shock on firm’s low-carbon innovation and TFP in 
the pre-policy period. In other words, the parallel pre-trends hold for 
firm’s low-carbon innovation and TFP, further confirming the validity of 
our baseline results. 

5.2. Heterogeneous effects 

In addition to the average effects, in this section, we further examine 
whether our main results vary across firms with different ownership and 
patent type. 

First, we divide the sample into state-owned enterprises (SOEs) and 
non-state-owned enterprises (non-SOEs) based on the firm’s largest ul
timate share holder of the firm and run the regression (4). Table 3 re
ports the estimated results. In column (1), for the non-SOEs, we can see 
the coefficient of Exposure is statistically significant at the 10% level, 
while the coefficient of Exposure is not significant for the SOEs. These 
suggest that the carbon reduction mandates mainly boost the non-SOEs’ 
low-carbon innovation. From Column (3), the coefficient of Exposure is 
statistically significant at the 5% for the SOEs whereas the coefficient of 
Exposure for non-SOEs is not significant, indicating that the mandates 
mainly shift the SOEs’ direction of innovation toward low-carbon 
technologies. In addition, the heterogeneity analysis by ownership still 
shows little evidence of the effects of mandates on innovation in other 
areas or firm’s TFP. 

Moreover, we show the heterogeneity by patent type. As mentioned 
before, we divide the patent type into invention patent and utility model 
patent. Invention patents represent valuable and more important inno
vation than utility patents. The former is associated with inventive and 
new technical innovations, whereas the latter is related to technical 
solutions to the object’s shape or structure. As shown in Table 4, in 
columns (2) and (4), the coefficients of Exposure are statistically sig
nificant at the 10% and 1% respectively, providing the evidence that the 
mandates mainly stimulate the low-carbon utility model patents. 
Whereas the estimated coefficients from columns (1) and (3) show that 
the low-carbon invention patents are not significantly affected. These 
facts show that under the carbon reduction mandates, the quality of 
firm’s low-carbon innovation is not as good as we may expect. 

5.3. Placebo tests on confounding policies 

A. Firm-level environmental policies 
The firm-level environmental pressure (e.g. air quality regulation) 

may induce firms to conduct R&D activities in low-carbon technologies. 
In 2004, China Ministry of Ecology and Environment (formerly, Ministry 
of Environmental Protection) launched a Clean Production Audit (CPA) 
program to promote cleaner production and reduce pollution through 
the improvement of technology design, the adoption of clean energy, 
and the installation of the cleanest available technology or equipment. 
The provincial governments announced a list of companies that 
mandatorily participating in the CPA program within their jurisdiction 
since 2004. To address this concern, we match and merge the listed firms 
with those included in the CPA program. We measure this regulation by 
using a binary indicator denoted by CPA_program. It equals one if the 
firm i mandatorily joined the CPA program in year t, and zero otherwise. 

On the other hand, the Ministry of Environmental Protection also 
launched a Key Pollution Monitoring (KPM) program to get direct access 
to the pollution discharge information of key industrial pollution sour
ces and centralized pollution control facilities in 2006. The Ministry of 
Environmental Protection and provincial government announced a list 
of key polluting enterprises under national and provincial monitoring 
each year since 2006. To mitigate this concern, we match and merge the 
listed firms with those included in the KPM program. Similarly, we 
measure this firm-level regulation by using a binary indicator denoted 
by KPM_program. It equals one if the firm i mandatorily joins the CPM 
program in year t, and zero otherwise. 

8 Following Cui et al. (2018) and Kong et al. (2020), throughout the paper, 
we use log (1 + x) to avoid the problem of zeros, where x is the number of 
patents. We have obtained similar results when using the number of patents in 
the Poisson model, which are available from the authors upon request. 
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Panel A and B of Table 5 report the results, respectively.9 Panel A of 
Table 5 presents the results when including the CPA_program while Panel 
B reports the results when we include the KPM_program in the regression. 
The results are quite similar. in column (1), the positive coefficient of 

Exposure in Panel A is statistically significant at the 5% level while the 
corresponding coefficient in Panel B is similarly statistically significant 
at the 5% level. In column (3), both panels show the same results. 
Moreover, in all columns, the coefficients of CPA_program or KPM_pro
gram are not significant, suggesting that firm-level environmental pol
icies, either CPA or KPM, has no significant effect on innovation or TFP 
in our case. 

B. Regional pilot carbon emissions trading policy 
Although we control the industry-year and province-year fixed ef

fects which could rule out potential confounding factors at the industrial 
and provincial levels, some contemporary energy and environmental 
policies may bias the estimated effect of the mandates. Particularly, the 
pilot carbon emissions trading scheme (ETS) is the biggest threat to the 
identification. In 2011, the National Development and Reform Com
mission (NDRC) announced that Shanghai, Beijing, Guangdong, Tianjin, 

Table 2 
Baseline results.  

Variables LowcarbonPat 
(1) 

NonLowcarbonPat 
(2) 

LowcarbonRatio 
(3) 

TFP 
(4) 

Exposure 0.009* 
(0.005) 

− 0.007 
(0.009) 

0.002*** 
(0.001) 

− 0.002 
(0.025) 

Size 0.159*** 
(0.020) 

0.466*** 
(0.034) 

0.004* 
(0.002) 

− 0.008 
(0.010) 

Age 0.019 
(0.062) 

− 0.011 
(0.100) 

0.002 
(0.005) 

− 0.019 
(0.024) 

Tobin’s Q − 0.011 
(0.005) 

− 0.019*** 
(0.007) 

− 0.001 
(0.001) 

0.018*** 
(0.004) 

Cash 0.001 
(0.001) 

− 0.018*** 
(0.004) 

− 0.0004 
(0.0002) 

0.008*** 
(0.002) 

Leverage 0.011* 
(0.006) 

0.019** 
(0.008) 

0.001 
(0.001) 

− 0.036*** 
(0.007) 

Constant − 3.349*** 
(0.449) 

− 7.917*** 
(0.765) 

− 0.079* 
(0.046) 

3.092*** 
(0.222) 

Observations 12,857 12,848 12,848 12,828 
Firm FE Yes Yes Yes Yes 
Industry-year FE Yes Yes Yes Yes 
Province-year FE Yes Yes Yes Yes 
Adjusted R-squared 0.604 0.752 0.347 0.685 

Notes: LowcarbonPat refers to the low-carbon granted patent applications, NonLowcarbonPat represents the granted patent applications in other areas, and Low
carbonRatio is the ratio of low-carbon patents relative to total patents. Robust standard errors clustered at the firm level are reported in parentheses. ***, **, and * 
significant at the 1%, 5%, and 10% level, respectively. 

Table 3 
Heterogeneity by ownership.   

LowcarbonPat NonLowcarbonPat LowcarbonRatio TFP 

(1) (2) (3) (4) 

SOEs:     
Exposure 0.002 

(0.008) 
0.016 
(0.140) 

0.002** 
(0.001) 

− 0.005 
(0.004) 

Observations 6040 6033 6033 6032 
Adjusted R- 

squared 
0.621 0.791 0.252 0.708  

Non-SOEs:     
Exposure 0.013* 

(0.007) 
− 0.091 
(0.011) 

0.001 
(0.001) 

− 0.0005 
(0.004) 

Observations 6512 6510 6510 6492 
Adjusted R- 

squared 
0.611 0.717 0.460 0.710 

Firm 
Attributes 

Yes Yes Yes Yes 

Firm FE Yes Yes Yes Yes 
Industry-year 

FE 
Yes Yes Yes Yes 

Province- 
year FE 

Yes Yes Yes Yes 

Notes: LowcarbonPat refers to the low-carbon granted applications, Non
LowcarbonPat represents the granted patent applications in other areas, and 
LowcarbonRatio is the ratio of low-carbon patents relative to total patents. SOEs 
represent the state-owned firms, and Non-SOEs represent the non-state-owned 
firms. Firm attributes include firm’s size, age, leverage, cash and Tobin’s Q. 
Robust standard errors clustered at the firm level are reported in parentheses. 
***, **, and * significant at the 1%, 5%, and 10% level, respectively. 

Table 4 
Heterogeneity by patent type.   

LowcarbonInvt LowcarbonUty LowcarbonInvt LowcarbonUty 

Pat Pat Ratio Ratio 

(1) (2) (3) (4) 

Exposure 0.002 
(0.003) 

0.009* 
(0.005) 

− 0.0004 
(0.001) 

0.002*** 
(0.0009) 

Observations 12,857 12,857 12,854 12,850 
Adjusted R- 

squared 
0.471 0.580 0.216 0.319 

Firm 
Attributes 

Yes Yes Yes Yes 

Firm FE Yes Yes Yes Yes 
Industry- 

year FE 
Yes Yes Yes Yes 

Province- 
year FE 

Yes Yes Yes Yes 

Notes: LowcarbonInvtPat refers to the low-carbon granted invention patent ap
plications, LowcarbonUtyPat represents the granted utility patent applications, 
LowcarbonInvtRatio is the ratio of low-carbon invention patents relative to total 
invention patents, LowcarbonUtyRatio is the ratio of low-carbon utility patents 
relative to total utility patents. Firm attributes include firm’s size, age, leverage, 
cash and Tobin’s Q. Robust standard errors clustered at the firm level are re
ported in parentheses. ***, **, and * significant at the 1%, 5%, and 10% level, 
respectively. 

9 As the environmental research sub-database of the CSMAR database provide 
the data related to CPA and KPM programs starting from 2008, the matched 
sample covers the period 2008–2015, leading to a substantial drop in sample 
size. We also drop the observations with KPM or CPA program and get similar 
results, which are available from the authors upon requests. 
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Hubei, Chongqing and Shenzhen were selected as the regional carbon 
emissions trading scheme (ETS) pilots. To further mitigate this concern, 
we take the pilot (ETS) into consideration. Following the way of con
structing Exposure variable, we construct the variable Exposure_ETS to 
measure the firm’s exposure to regional ETS: 

Exposure ETSit =
1

Ni,t

∑Ni,t

n=1

(
ETSnp*ln

(
CO2 nj

)
*Postt

)
(5)  

where Exposure_ETSit represents the parent firm i’s exposure to carbon 
emissions trading in year t. Ni,t is the number of subsidiaries of firm i in 
year t; ETSnp refers to the binary indicators for pilot region p where the 
subsidiary n is located. CO2 n j is the average CO2 emissions from 2003 to 
2010 for industry j of subsidiary n; Postt is a dummy variable equal to 
0 for 2003–2010 and 1 for 2011–2015. 

We include Exposure_ETS in the regression and obtain the corre
sponding estimated results, as shown in Panel C of Table 5. Overall, 
including Exposure_ETS variable does not change our main conclusions. 

Specifically, the coefficients of Exposure in columns (1) and (3) are 
similar to the baseline results and are both statistically significant at the 
5% level, the coefficients of Exposure_ETS are not significant, suggesting 
that the innovation in low-carbon technologies are mainly driven by the 
carbon reduction mandates instead of ETS. Moreover, in column (4), the 
positive coefficient of Exposure_ETS is statistically significant at the 5% 
level, indicating ETS has a positive effect on the firm’s TFP. 

5.4. Robustness checks 

In this section, we conduct a battery of robustness checks for our 
results. In all models in the section, we include firm attributes (age, size, 
cash, leverage and Tobin’s Q) and control for province-year fixed effects, 
industry-year fixed effects and firm fixed effects in all analyses. 

Firstly, we take into account the confounding effects of government 
subsidy. The Chinese governments may offer subsidies for firms con
ducting research and development in a list of selected high technologies, 
such as low-carbon technologies. The CSMAR database has the firm- 
level subsidy data, which reports subsidy amount and subsidy reasons 
(e.g. subsidy for granted patents). To address this confounding policy, 
we obtain the corresponding subsidy dataset by retrieving those related 
to patent applications and granting and mitigate the subsidy effects in 
two ways. In Panel A of Table A2 in the Appendix, we drop the firms that 
have received subsidies for patents. The sample size drops substantially 
accordingly, but the coefficients of interest are similar and still signifi
cant. For the low-carbon patents, the estimated coefficient is 0.011 and 
significant at the 5% level, which is more significant compared with the 
baseline results. In column (3), the estimated effect of Exposure is 0.003 
and significant at the 5% level, indicating that 1 unit increase in expo
sure to the mandates increase 0.3% in low-carbon patent ratio. Panel B 
reports the results when the Innovation_subsidy (flow) (subsidy received 
within one year) is included as one additional control variable in the 
regression. The estimated coefficients of Exposure do not change and the 
estimated coefficient in column (1) is significant at the 5% level. In 
addition, we can clearly see the significant boost effect of the subsidy on 
the innovation in other areas (1% increase in innovation subsidy can 
lead to 0.8% increase in granted patent application in other areas), as 
shown in column (2). Given that accumulated innovation subsidies may 
persistently influence firm’s innovation performance, we further include 
Innovation_subsidy (stock), which is measured by accumulated innova
tion subsidies in the previous years. Panel C reports the similar esti
mated results. The significance level and coefficients of Expsoure are 
similar to the baseline results. Overall, the main conclusion still holds. 

Secondly, to verify the robustness of our results under different TFP 
measures, we estimate firm’s TFP by using alternative methods. Spe
cifically, we construct two alternative TFP measures—TFP1 measured 
by LP algorithm and TFP2 measured by Wooldridge (2009).10 Table A3 
in the Appendix reports the estimated coefficients. In all columns, the 
coefficients of Expsoure are insignificantly negative, which are consis
tent with the finding in baseline results, further supporting that carbon 
reduction mandates do not harm the firm’s TFP. 

Third, although we cluster the robust standard errors at the firm 
level, the unobserved components in firm’s innovation or TFP within an 
industry in one region may also be correlated. To verify whether our 
main findings are robust after considering these correlations, we use 
heteroscedastic robust standard errors clustered at the industry-province 
level and report the results in Table A4. Clearly, our results are still 
robust. 

In addition, to alleviate concern about the existing trend, we further 
control linear and quadratic polynomials of time trend. As shown in 

Table 5 
Placebo tests on confounding policies.  

Variables LowcarbonPat NonLowcarbonPat LowcarbonRatio TFP 

(1) (2) (3) (4) 

Panel A: 
control for 
CPA 
program     

Exposure 0.018** 
(0.008) 

− 0.004 
(0.013) 

0.003** 
(0.001) 

− 0.002 
(0.004) 

CPA_program − 0.003 
(0.025) 

0.004 
(0.044) 

− 0.005 
(0.005) 

0.001 
(0.009) 

Adjusted R- 
squared 

0.682 0.781 0.420 0.747 

Observations 5873 5870 5870 5863  

Panel B: 
control for 
KPM 
program     

Exposure 0.018** 
(0.008) 

− 0.004 
(0.013) 

0.003** 
(0.001) 

− 0.002 
(0.004) 

KPM_program − 0.008 
(0.035) 

0.095 
(0.076) 

− 0.001 
(0.006) 

0.017 
(0.014) 

Adjusted R- 
squared 

0.682 0.781 0.420 0.747 

Observations 5873 5870 5870 5863  

Panel C: 
control for 
pilot carbon 
emissions 
trading     

Exposure 0.011** 
(0.005) 

− 0.006 
(0.009) 

0.002** 
(0.001) 

− 0.003 
(0.003) 

Exposure_ETS − 0.021 
(0.014) 

− 0.018 
(0.023) 

0.0004 
(0.002) 

0.013** 
(0.007) 

Adjusted R- 
squared 

0.604 0.752 0.346 0.685 

Observations 12,857 12,857 12,848 12,828 
Firm 

attributes 
Yes Yes Yes Yes 

Firm FE Yes Yes Yes Yes 
Industry-year 

FE 
Yes Yes Yes Yes 

Province-year 
FE 

Yes Yes Yes Yes 

Notes: LowcarbonPat refers to the low-carbon granted patent applications, 
NonLowcarbonPat represents the granted patent applications in other areas, and 
LowcarbonRatio is the ratio of low-carbon patents relative to total patents. Firm 
attributes include firm’s size, age, leverage, cash and Tobin’s Q. Robust standard 
errors clustered at the firm level are reported in parentheses. ***, **, and * 
significant at the 1%, 5%, and 10% level, respectively. 

10 LP algorithm relies on intermediate inputs as a proxy for unobserved pro
ductivity shocks. Wooldridge (2009) proposes a novel estimation setting and 
shows how to obtain LP estimator within a system GMM econometric 
framework. 
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Table A5, even considering the linear or quadratic polynomials of time 
trend, our results are very similar to the baseline estimates. 

Furthermore, we also include additional control variables (i.e., firm- 
level trade value and R&D investment) to test the robustness of our 
baseline results. More specifically, we match the sample with customs 
data maintained by China’s General Administration of Customs and 
obtain the listed company’s annual trade (export and import) value. We 
further extract the firm-level R&D investment from CSMAR database 
and merge the R&D data with our sample. Table A6 reports the results. 
We do not find any significant effect of firm-level trade and R&D in
vestment on the firm’s low-carbon innovation and TFP. And the co
efficients of Expsoure are very similar to the baseline results. 

Lastly, as the carbon reduction may not be random, our estimate 
could suffer from sample selection bias. To address this concern, we 
follow the approach proposed by Gentzkow (2006) and Chen et al. 
(2018).11 In this paper, we use the interactions between determinants of 
provincial carbon mandates measured in the pre-treatment period and a 
third-order polynomial in time, namely, Zc × f(t). More specifically, 
these factors (i.e., Zc) include Energy Consumption (annual average pro
vincial energy consumption 2006–2010, 10,000 ton), Carbon Emissions 
(annual average provincial carbon emissions 2006–2010, 1000,000 
ton), GDP (annual average provincial GDP 2006–2010, 100,000,000 
Yuan), Industrial Structure (annual average provincial secondary sector 
GDP share 2006–2010 (%)), Population (annual average provincial 
population 2006–2010, 10,000 persons) and Forest Area (annual average 
provincial forest area 2006–2010, 10,000 ha). Table A7 reports the re
sults. We still find similar results, further confirming the validity of 
baseline results. 

6. How do firms respond to the mitigation mandate? 

In this section, we discuss how firms respond to the exposure to 
mandate. He et al. (2020) discuss the responses of firms to environ
mental regulation, including adjustment in labor and capital input, in
vestment in abatement equipment and reduction in emissions, which 
therefore affects the firm’s TFP. Moreover, Lanoie et al. (2011) and 
Franco and Marin (2017) highlight the indirect effect of environmental 
regulation via innovation on productivity. We examine the channels 
related in spirit to these studies through which the mandates affect 
firms’ TFP. 

Given that the accumulated low-carbon patents can influence the 
firm’s performance, we therefore measure the firm’s patent by con
structing two indicators, one is LowcarbonPat_flow, measured by the low- 
carbon granted applications within one year; the other is Low
carbonPat_stock, the accumulated low-carbon patents.12 We use one-year 
lagged LowcarbonPat_flow and LowcarbonPat_stock in the following 
regressions. 

First, Table 6 reports the estimated results of exposure to mandate 
and low-carbon innovation on a set of firm’s inputs and outputs. As the 
energy consumption is a major source of carbon emissions, we take into 
account the firm’s energy intensity measured by energy consumption 

per unit of output value.13 From columns (1)–(2), based on the limited 
sample, we still find the significant negative effect of exposure to 
mandate on firm’s energy intensity and the induced low-carbon inno
vation does not have the significant effect on the energy intensity. From 
columns (3) and (4), we find statistically insignificant effect of exposure 
to mandate on employees and significant positive effect of low-carbon 
innovation on employees. In columns (5)–(6), we can clearly see that 
the coefficient of Exposure is 0.021 and significant at the 1% level, 
suggesting that the larger exposure to carbon intensity control leads to 
an increase in fixed assets. This finding is consistent with the results of 
He et al. (2020) showing that upstream polluting firms own significantly 
higher levels of capital assets due to the tighter environmental regula
tion. In addition, the significant coefficients of LowcarbonPat_flow (lag
ged) and LowcarbonPat_stock (lagged) suggest that the induced Low- 
carbon innovation helps to expand the fixed assets of the firm, as 
shown in columns (7) and (8) of the table. We do not find any significant 
effect of the mandates on firm’s intermediate input. 

As both labor and capital inputs have been increased through the 
induced innovation, it finally significantly boosts the firm’s output. As 
shown in columns (9) and (10), 1% increase in LowcarbonPat_flow can 
lead to 0.031% in the output and 1% increase in LowcarbonPat_stock will 
lead to 0.033% in the output. 

We further explore the effects of exposure to mandate on firm’s input 
substitution in Table 7. We measure substitution between labor and 
energy by Labor/Energy ratio (employees/energy consumption), and 
substitution between capital and energy by Capital/Energy ratio (fixed 
assets/energy consumption). From columns (1)–(4), we do not observe 
any significant input substitution induced by mandate. We also do not 
find any significant effect of low-carbon patent, either measured by 
patent flow or patent stock, on firm’s input substitution. In columns (5) 
and (6), the significant positive coefficients of exposure suggest that 
exposure to mandate significantly increases firm’s Capital/Labor ratio, 
which is measured by fixed assets/employees, showing that firms tend to 
update production equipment and invest more in advanced abatement 
equipment to cope with tighter carbon emissions control. Therefore, we 
conclude that the induced innovation does not affect the energy pro
ductivity associated with labor or capital inputs. 

Finally, we examine the effects of low-carbon innovation induced by 
the mandate on firm’s productivity. Motivated by the above findings, we 
further include labor productivity (output value/employees) and capital 
productivity (output value/ fixed assets). To alleviate reverse causality 
and simultaneity, as suggested by previous studies (Dabla-Norris et al., 
2012; Franco and Marin, 2017), we also employ the average Low
carbonPat_flow and LowcarbonPat_stock of peer firms in the same industry 
in the same region per year as an instrument variable (IV).14 As shown in 
Table 8, Panel A reports the results of using lagged low-carbon patent 
whereas Panel B shows the results of using IV.15 

From Panel A, in columns (1) and (2), the estimated coefficients of 
LowcarbonPat_flow (lagged) and LowcarbonPat_stock (lagged) are positive 
but not significant, suggesting that the induced low-carbon innovation 
does not significantly improve firm productivity measured by TFP. 

11 Gentzkow (2006) use interactions between key county-level observables in 
a base year and a fourth-order polynomial in time, which controls flexibly for 
differences in the time path of the dependent variables whose correlation with 
television is driven by the endogenous pattern of television’s introduction. 
Similarly, due to the non-random selection of (two control zone) TCZ and non- 
TCZ cities, Chen et al. (2018) use the interactions between the determinants of 
TCZ selection measured in the pre-treatment period and a third-order poly
nomial in time.  
12 We calculate the LowcarbonPat_stock by using the perpetual inventory 

method, i.e., KPt = Pt + (1 − δ)KPt− 1 and KP1 = P1
g+δ, where KP represents the 

LowcarbonPat_stock, P is granted patent applications, g is the average growth 
rate of granted patent applications and δ is the depreciation rate, which is 
usually assumed to be 15% (Hall and Mairesse, 1995; Lach, 1995; Bretschger 
et al., 2017). 

13 The listed firms in China disclosed their environmental information since 
2008. We merge the sample with those which disclosed their energy con
sumption. With limited sample size compared to the full sample in the main 
analysis, it does not allow us to include the province-year and industry-year 
fixed effects. We instead include province, industry and year fixed effects.  
14 The observation from the firm itself is removed when computing the 

average, which leads to the loss of 3139 and 3347 observations respectively due 
to industry-province cells with only a single firm.  
15 From Panel B, in all columns, Kleibergen-Paap rk LM statistics indicates that 

we can reject the null hypothesis that the model is unidentified. We also report 
the Cragg-Donald Wald F statistics under the assumption of homoskedasticity 
and the heteroskedasticity-robust Kleibergen-Paap rk Wald F statistics. Both 
values suggest we can reject the null hypothesis of weak instrument. The results 
verify the validity of the IV. 
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Columns (3) and (4) show the similar results, i.e., the induced low- 
carbon patent does not significantly influence the labor productivity. 
However, the results from columns (5) and (6) show that exposure to 
mandate significantly lowers the firm’s capital productivity. This should 
be attributed to the significant increase in the fixed assets for carbon 
mitigation due to the mandate. We also find that the induced innovation 
does not improve either labor or capital productivity. This is consistent 
with our argument in Table 6 that innovation induced from exposure to 
mandate serves to expand the size of both labor and capital inputs, in 
order to mitigate the reduction in inputs that firms have used for ful
filling the mandate requirement. The results from Panel B with IV esti
mation confirm our results. 

Overall, although firms have to devote resources to meet the carbon 
intensity control target, firms respond to the policy shock from two di
rections. It will increase the capital inputs as technologies are required 
to mitigate carbon emissions on the one hand, and induce firms to 
conduct more innovations on the other hand. The induced low-carbon 
innovation stimulates the firm’s output. This may explain why firm 
competitiveness measured by TFP is not affected by the mandate policy. 
Despite the fact that the low-carbon innovation cannot result in net 
productivity gains, thereby not enhancing the competitiveness, our 
findings confirm the narrow version of the Porter hypothesis that well- 
designed regulations provide firms incentives to innovate and will 
have less adverse impact on productivity than prescriptive regulations. 

7. Conclusion 

In this paper, by exploiting plausibly exogenous variation in the 
mandate on carbon intensity reduction across China’s provinces, we 
assess the impacts of China’s carbon emissions control on firm’s 
competitiveness. We match publicly listed firms with their subsidiaries 
covering the period 2003–2015, to precisely measure the degree the 
firms exposed to the policy shock of mitigation mandate. We find 
consistent and robust evidence that supports the directed technical 
change induced by the mandates on low-carbon innovation and insig
nificant crowding-out effect of mitigation mandate on other types of 
innovation. Our results also show that firm’s TFP is not affected by either 
the mandate directly or the induced low-carbon innovation indirectly. 
Therefore, we confirm the narrow version of Porter hypothesis that the 
target-based regulation stimulates the low-carbon innovation but does 
not affect firm performance measured by productivity. 

In light of the recently announced carbon neutrality target in China, 
these results suggest that environmental mandates do not necessarily 
harm firm’s competitiveness and they are effective at reducing green
house gases as evidenced by the declined energy intensity per firm. 
However, we find that low-carbon innovation induced by the mandate is 
of low quality, and serves mainly for technologies related to input 
augmenting. This is largely due to the fact that the mandate is intensity 
based target and thus does not encourage deep innovation for signifi
cantly changing the production technology related to energy. Thus, 
future policy design shall pay special attention to the unintended 

Table 6 
Effects of the mandates and low-carbon innovation on firm’s input and output.  

Variables Energy 
Intensity 
(1) 

Energy 
Intensity 
(2) 

Employee  

(3) 

Employee  

(4) 

Fixed 
assets  

(5) 

Fixed 
assets  

(6) 

Intermediate 
Input 
(7) 

Intermediate 
Input 
(8) 

Output  

(9) 

Output  

(10) 

Exposure − 0.289* 
(0.154) 

− 0.293* 
(0.151) 

− 0.0005 
(0.007) 

− 0.0007 
(0.006) 

0.021*** 
(0.005) 

0.021*** 
(0.007) 

− 0.003 
(0.006) 

− 0.003 
(0.006) 

− 0.005 
(0.005) 

− 0.005 
(0.005) 

LowcarbonPat_flow 
(lagged) 

0.178 
(0.116)  

0.028** 
(0.014)  

0.042*** 
(0.012)  

0.021 
(0.013)  

0.031*** 
(0.012)  

LowcarbonPat_stock 
(lagged)  

0.256 
(0.162)  

0.053** 
(0.023)  

0.050*** 
(0.017)  

0.019 
(0.016)  

0.033** 
(0.014) 

Observations 
R-squared 

126 
0.521 

126 
0.530 

9521 
0.932 

9521 
0.932 

9530 
0.963 

9530 
0.963 

9529 
0.972 

9529 
0.972 

9526 
0.977 

9526 
0.977 

Firm attributes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Province FE Yes Yes         
Industry FE Yes Yes         
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Industry-year FE   Yes Yes Yes Yes Yes Yes Yes Yes 
Province-year FE   Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Firm attributes include firm’s size, age, leverage, cash and Tobin’s Q. Robust standard errors clustered at the firm level are reported in parentheses. ***, **, and * 
significant at the 1%, 5%, and 10% level, respectively. For energy intensity, with limited sample size compared to the full sample in the main analysis, it does not allow 
us to include the province-year and industry-year fixed effects. We instead include province, industry and year fixed effects. 

Table 7 
Effects of the mandates and low carbon innovation on firm’s input substitution.   

Labor/Energy 
ratio 
(1) 

Labor/Energy 
ratio 
(2) 

Capital/Energy 
ratio 
(3) 

Capital/Energy 
ratio 
(4) 

Capital/Labor 
ratio 
(8) 

Capital/Labor ratio 
(9) 

Exposure 0.019 
(0.020) 

0.022 
(0.021) 

− 0.0001 
(0.012) 

0.001 
(0.013) 

0.021** 
(0.010) 

0.022** 
(0.010) 

LowcarbonPat_flow 
(lagged) 

0.036 
(0.031)  

− 0.054 
(0.059)  

0.013 
(0.020)  

LowcarbonPat_Stock 
(lagged)  

− 0.033 
(0.075)  

− 0.078 
(0.077)  

− 0.003 
(0.028) 

R-squared 0.371 0.370 0.725 0.729 0.855 0.855 
Firm attributes Yes Yes Yes Yes Yes Yes 

Notes: Firm attributes include firm’s size, age, leverage, cash and Tobin’s Q. Robust standard errors clustered at the firm level are reported in parentheses. ***, **, and * 
significant at the 1%, 5%, and 10% level, respectively. For Labro/Energy ratio and Capital/Energy ratio, with limited sample size compared to the full sample in the 
main analysis, it does not allow us to include the province-year and industry-year fixed effects. We instead include province, industry and year fixed effects. For 
Capital/Labor ratio we include the province-year and industry-year fixed effects. All models have controlled for firm fixed effects. 
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consequences on innovation. 
Lastly, this paper also provides several possible directions for future 

research. Our results show that the mandate mainly induces innovations 
measured by the number of utility model patents. The classification of 
patent quality here is rather general. Previous studies have suggested to 
use the forward citations associated with patents and their citing in
formation to measure innovation quality (Hall et al., 2005; Fang et al., 
2017; Jaravel et al., 2018). It would be interesting the distributional 
impacts of the mandate on various levels of innovation quality. More
over, we can further examine the firm’s investment in green-energy 
technology and low-carbon technology when the data is available. 

Last but not the least, some recent studies have shown that political 
incentives are indeed central to China’s decentralized program 
enforcement including environmental regulation.16 Therefore, the role 
of local government is crucial for improving the compliances and 
enforcement in emission mitigations. All these will require additional 
data sources, and thus are left for future work. 

Declaration of Competing Interest 

None.  

Appendix A. Appendix  

Table A1 
Carbon intensity reduction mandates.  

Province Reduction mandated target (%) 

Beijing 18 
Tianjin 19 
Hebei 18 
Shanxi 17 
Inner Mongolia 16 
Liaoning 18 
Jilin 17 
Heilongjiang 16 
Shanghai 19 
Jiangsu 19 
Zhejiang 19 
Anhui 17 
Fujian 17.5 
Jiangxi 17 
Shandong 18 
Henan 17 
Hubei 17 
Hunan 17 

(continued on next page) 

Table 8 
Effects of low-carbon innovation on firm’s productivity.   

TFP 
(1) 

TFP 
(2) 

Larbor_prodcutivity 
(3) 

Larbor_prodcutivity 
(4) 

Capital_productivity 
(5) 

Capital_productivity 
(6) 

Panel A       
Exposure − 0.003 

(0.003) 
− 0.003 
(0.003) 

− 0.004 
(0.007) 

− 0.004 
(0.007) 

− 0.025*** 
(0.009) 

− 0.025*** 
(0.009) 

LowcarbonPat_flow 
(lagged) 

0.006 
(0.006)  

0.004 
(0.015)  

− 0.010 
(0.020)  

LowcarbonPat_stock 
(lagged)  

0.002 
(0.008)  

− 0.018 
(0.023)  

− 0.015 
(0.023) 

Observations 9517 9517 9517 9517 9526 9526 
R-squared 0.711 0.789 0.854 0.854 0.874 0.874  

Panel B       
Exposure − 0.004 

(0.003) 
− 0.004 
(0.004) 

− 0.009 
(0.008) 

− 0.008 
(0.008) 

− 0.025*** 
(0.009) 

− 0.025*** 
(0.010) 

LowcarbonPat_flow 
(instrumented) 

− 0.034 
(0.088)  

− 0.057 
(0.223)  

0.051 
(0.199)  

LowcarbonPat_stock 
(instrumented)  

− 0.079 
(0.080)  

− 0.155 
(0.181)  

0.112 
(0.202) 

Kleibergen-Paap rk LM 
statistics 

25.465 18.010 25.465 18.010 27.032 18.816 

Cragg-Donald Wald F 
statistics 

62.277 64.811 62.277 64.811 66.547 67.914 

Kleibergen-Paap rk Wald F statistics 27.053 17.377 27.053 17.377 28.850 18.148 
Observations 7333 7185 7333 7185 7341 7193 

Notes: All results have controlled for firm attributes including firm’s size, age, leverage, cash and Tobin’s Q. Robust standard errors clustered at the firm level are 
reported in parentheses. ***, **, and * significant at the 1%, 5%, and 10% level, respectively. IV for LowcarbonPat (instrumented): the average patent number of the 
peer firms in the same industry in the same region that year. Firm fixed effects, industry-year and province-year fixed effects are included in all models. 

16 These studies include Chen et al. (2018), Bo (2021), He et al. (2020). 
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Table A1 (continued ) 

Province Reduction mandated target (%) 

Guangdong 19.5 
Guangxi 16 
Hainan 11 
Chongqing 17 
Sichuan 17.5 
Guizhou 16 
Yunan 16.5 
Tibet 10 
Shaanxi 17 
Guansu 16 
Qinghai 10 
Ningxia 16 
Xinjiang 11 

Source: “Work Plan for Controlling Greenhouse Gas Emissions 
during the 12th Five-Year Plan” issued by the China State Council 
in 2011. 

Fig. A1. Pre-trends for low-carbon innovation and TFP. 
Notes: Panel (a), (b), (c) and (d) represent the pre-trend for LowcarbonPat, NonLowcarbonPat, LowcarbonRatio and TFP respectively. The vertical dashed lines 
represent the 95% confidence interval.  
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Table A2 
Robustness check on firm’s innovation subsidy.  

Variables LowcarbonPat NonLowcarbonPat LowcarbonRatio 

(1) (2) (3) 

Panel A: drop firms with innovation subsidy 
Exposure 0.011** 

(0.006) 
− 0.004 
(0.011) 

0.003** 
(0.001) 

Adjusted R-squared 0.626 0.764 0.322 
Observations 9443 9436 9436  

Panel B: control for innovation subsidy (flow) 
Exposure 0.009* 

(0.005) 
− 0.007 
(0.009) 

0.002*** 
(0.001) 

Innovation_subsidy (flow) 0.001 
(0.002) 

0.008*** 
(0.002) 

− 4.04*10− 6 

(0.0002) 
Adjusted R-squared 0.604 0.752 0.346 
Observations 12,857 12,848 12,848  

Panel C: control for innovation subsidy (stock)    
Exposure 0.009* 

(0.005) 
− 0.007 
(0.009) 

0.002*** 
(0.001) 

Innovation_subsidy (stock) 0.002 
(0.002) 

0.009*** 
(0.003) 

6.94*10− 5 

(0.0002) 
Adjusted R-squared 0.604 0.752 0.346 
Observations 12,857 12,848 12,848 
Firm attributes Yes Yes Yes 
Firm FE Yes Yes Yes 
Industry-year FE Yes Yes Yes 
Province-year FE Yes Yes Yes 

Notes: LowcarbonPat refers to the low-carbon granted patent applications, NonLowcarbonPat represents the granted patent applications in other 
areas, and LowcarbonRatio is the ratio of low-carbon patents relative to total patents. Firm attributes include firm’s size, age, leverage, cash and 
Tobin’s Q. Robust standard errors clustered at the firm level are reported in parentheses. ***, **, and * significant at the 1%, 5%, and 10% level, 
respectively.  

Table A3 
Robustness check on alternative TFP measures.  

Variables TFP1 TFP2 

Exposure − 0.003 
(0.002) 

− 0.003 
(0.002) 

Firm attributes Yes Yes 
Firm FE Yes Yes 
Industry-year FE Yes Yes 
Province-year FE Yes Yes 
Observations 12,828 12,828 
Adjusted R-squared 0.764 0.775 

Notes: TFP1 is measured by LP algorithm. TFP2 is measured by Wool
dridge (2009). Firm attributes include firm’s size, age, leverage, cash 
and Tobin’s Q. Robust standard errors clustered at the firm level are 
reported in parentheses. ***, **, and * significant at the 1%, 5%, and 
10% level, respectively.  

Table A4 
Robustness check on standard error clustering.   

LowcarbonPat NonLowcarbonPat LowcarbonRatio TFP 

(1) (2) (3) (4) 

Exposure 0.009** 
(0.004) 

− 0.007 
(0.009) 

0.002*** 
(0.001) 

− 0.002 
(0.003) 

Firm attributes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes 
Industry-year FE Yes Yes Yes Yes 
Province-year FE Yes Yes Yes Yes 
Observations 12,857 12,848 12,848 12,828 
Adjusted R-squared 0.604 0.752 0.347 0.685 

Notes: LowcarbonPat refers to the low-carbon granted patent applications, NonLowcarbonPat represents the granted patent applications in other 
areas, and LowcarbonRatio is the ratio of low-carbon patents relative to total patents. Firm attributes include firm’s size, age, leverage, cash and 
Tobin’s Q. Robust standard errors reported in parentheses are clustered at the province-industry level. ***, **, and * significant at the 1%, 5%, 
and 10% level, respectively.  
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Table A5 
Robustness check on time trend.   

LowcarbonPat NonLowcarbonPat LowcarbonRatio TFP  

(1) (2) (3) (4) (5) (6) (7) (8) 

Exposure 0.009* 
(0.004) 

0.009* 
(0.005) 

− 0.007 
(0.009) 

− 0.007 
(0.009) 

0.002*** 
(0.001) 

0.002*** 
(0.001) 

− 0.002 
(0.003) 

− 0.002 
(0.002) 

Trend 0.035*** 
(0.008) 

0.007 
(0.011) 

0.083*** 
(0.018) 

0.107*** 
(0.024) 

− 0.003*** 
(0.001) 

− 0.003* 
(0.002) 

− 0.009 
(0.006) 

− 0.005 
(0.008) 

Trend_2  0.002** 
(0.001)  

− 0.002 
(0.001)  

− 4.56*10− 6 

(0.0001)  
− 0.0003 
(0.0003) 

Firm attributes Yes Yes Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Industry-year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Province-year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 12,857 12,857 12,848 12,848 12,848 12,848 12,828 12,828 
Adjusted R-squared 0.605 0.605 0.752 0.753 0.347 0.347 0.685 0.685 

Notes: LowcarbonPat refers to the low-carbon granted patent applications, NonLowcarbonPat represents the granted patent applications in other areas, and Low
carbonRatio is the ratio of low-carbon patents relative to total patents. Trend refers to a linear time trend, Trend_2 refers to quadratic term of Trend. Firm attributes 
include firm’s size, age, leverage, cash and Tobin’s Q. Robust standard errors reported in parentheses are clustered at the province-industry level. ***, **, and * 
significant at the 1%, 5%, and 10% level, respectively.  

Table A6 
Robustness check on trade and R&D.   

LowcarbonPat NonLowcarbonPat LowcarbonRatio TFP 

(1) (2) (3) (4) 

Exposure 0.009* 
(0.005) 

− 0.003 
(0.008) 

0.002*** 
(0.001) 

− 0.0005 
(0.003) 

Trade 0.0005 
(0.001) 

0.005 
(0.003) 

0.00004 
(0.0002) 

0.0004 
(0.0007) 

R&D 0.0005 
(0.0009) 

0.0006 
(0.002) 

− 0.0001 
(0.0002) 

0.00001 
(0.0004) 

Firm attributes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes 
Industry-year FE Yes Yes Yes Yes 
Province-year FE Yes Yes Yes Yes 
Observations 10,988 10,988 10,988 10,988 
Adjusted R-squared 0.638 0.764 0.408 0.700  

Notes: LowcarbonPat refers to the low-carbon granted patent applications, NonLowcarbonPat represents the granted patent applications in other 
areas, and LowcarbonRatio is the ratio of low-carbon patents relative to total patents. Trade is the logarithm of value of firm’s export and import. R&D 
refers to the logarithm of firm-level R&D investment (starting from 2007). Firm attributes include firm’s size, age, leverage, cash and Tobin’s Q. 
Robust standard errors reported in parentheses are clustered at the province-industry level. ***, **, and * significant at the 1%, 5%, and 10% level, 
respectively.  

Table A7 
Robustness check on non-random carbon reduction mandates.   

LowcarbonPat NonLowcarbonPat LowcarbonRatio TFP 

(1) (2) (3) (4) 

Exposure 0.009* 
(0.005) 

− 0.002 
(0.008) 

0.002*** 
(0.001) 

− 0.0004 
(0.003) 

Zc × f(t) Yes Yes Yes Yes 
Firm attributes Yes Yes Yes Yes 
Firm FE Yes Yes Yes Yes 
Industry-year FE Yes Yes Yes Yes 
Province-year FE Yes Yes Yes Yes 
Observations 10,959 10,959 10,959 10,959 
Adjusted R-squared 0.641 0.765 0.410 0.699 

Notes: LowcarbonPat refers to the low-carbon granted patent applications, NonLowcarbonPat represents the granted patent applications in other 
areas, and LowcarbonRatio is the ratio of low-carbon patents relative to total patents. Zc × f(t) includes interactions between six key factors used to 
determine provincial carbon mandates and a third-order polynomial function of time. The six key factors include Energy Consumption, Carbon 
Emissions, GDP, Industrial Structure, Population and Forest Area. Firm attributes include firm’s size, age, leverage, cash and Tobin’s Q. Robust 
standard errors reported in parentheses are clustered at the province-industry level. ***, **, and * significant at the 1%, 5%, and 10% level, 
respectively. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2022.105971. 
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