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Abstract: 

Economic development under restricted resource availability has become a complex challenge 

for both developing and well-established economies. To maintain a sustainable electricity 

supply and mitigate the impact of water shortage on economic development, it is therefore 

important to understand how utility firms respond to the change in water availability and 

unpacks the underlying mechanisms of power outage. By pairing plant-level information with 

the fine-scale grid monthly meteorological data, we find significant plant-level technology 

substitution in response to water scarcity: a one-standard-deviation decrease in water 

availability causes an approximate 2.05×108 kWh decline per hydro power plant, a 1.45×108  

kWh increase per nuclear plant, and a 0.28×108 kWh increase per coal-fired plant. This water-

induced technology substitution takes place within the grid, and we do not identify cross-grid 

adjustment. Our estimation shows that the technology substitution is associated with a hidden 

increase in carbon emission up to 32000 tons per year by plant, resulting in an additional cost 

of 0.18 million USD. Water scarcity slows down the transition towards renewable energy. 
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1. Introduction 

Economic development under restricted resource availability has become a complex challenge 

for both developing and well-established economies.  The availability of resources, like water, 

has been drastically affected by global warming with increased frequency in droughts and heat 

waves (Milly et al. 2005; Olmstead 2010), which lowers agriculture production (Mendelsohn 

et al. 1994) and disrupts international trade (Debaere 2014). More damagingly, electricity 

supply becomes unreliable due to increased water temperature and reduced water availability, 

as water is both directly used for power generation in hydropower plants, and indirectly for 

cooling in thermal and nuclear generation. Firm productivity has been significantly limited by 

the increased electricity scarcity (Fisher-Vanden et al. 2015). To maintain a sustainable 

resource supply and mitigate the impact of water shortage on economic development, it is 

therefore important to understand how utility firms respond to the change in water availability 

and unpacks the underlying mechanisms of power outage. 

This paper addresses this by investigating the technologies that utility plants use to generate 

electricity. Although the correlation between frequent droughts and persistent electricity 

shortages is well known, it remains unclear as to how and why electricity shortages are related 

to drought. Relevant studies on this relationship are scant, especially for developing countries, 

possibly because meteorological data on water shortage and temperature at the power plant 

level are not readily available. Furthermore, the literature is silent on whether the technology 

switch for cooling and power generation can be attributed to a decline in water availability. 

This lack of information reduces the efficiency of investment decisions in new technologies, 

as the technology substitution that is induced as a result of water shortages may be different 

from the choices suggested in the engineering models. Although generation capacity has 

increased significantly since the early 2000s, electricity shortages remained a major challenge 

for China in the early 2010s. It is reported that the prolonged drought in spring intensified the 

electricity supply in Hainan province in 2007. In addition, lower water level in Yangtze River 

triggered the decline in hydro power generation. Thus, the drought in central China leads to 

electricity brownouts and power rationing in 2011. In all, the electricity shortage lasted for 

almost whole year, with a cumulative power rationing of about 35.2 billion kwh in China (Yue, 

2021). As an essential input for production, electricity shortages can lower firm revenue by 10% 

(Allcott et al. 2016) or increase production costs by 8% (Fisher-Vanden et al. 2015).   
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In this study, we match a plant-level panel of electricity generation information with a fine-

scale monthly meteorological dataset on electricity generation, installed capacity, and water-

use characteristics, relevant social economic factors of individual plants, and climatic 

information for plant locations for the period from 2007 to 2014. The unique dataset makes it 

possible to identify the mechanism behind the connections between water availability and 

electricity shortage, which can provide important information for managerial practice for 

achieving sustainability with restricted resource constraints. This is because water is the 

necessary resource for most plants in China. Hydropower generation requires large quantities 

of water to be available to operate the turbines. In addition, water is the major source for cooling 

in thermal power plants and nuclear plants. 

To shed light on the channels through which an electricity shortage is related to drought, we 

apply a fixed-effect model to study the substitution effect of variations in water shortage on 

plant generation technology selection. Causal attribution in this paper relies on the extent to 

which water shortage variations affect electricity supply exogenously after controlling for 

cooling degree days, installed capacity, electricity price, and fixed assets investment. We 

follow Couttenier and Soubeyran (2014), Eyer and Wichman (2018) to use Palmer Drought 

Severity Index (PDSI) as a proxy for water scarcity. PDSI values are computed using observed 

air temperature and precipitation and self-calibrated dynamically with the climate and duration 

factors to capture spatially comparable long-term drought trends (Alley 1984; Dai 2011b; Dai 

2017). In addition, we employ two alternative proxies for water scarcity: the Standardized 

Precipitation Evapotranspiration Index (SPEI) for the relative long-term and precipitation (P) 

for the short term. Precipitation in a given location measures the instantaneous water 

availability in the plant’s surroundings, while the PDSI and SPEI are widely used indexes that 

incorporate past and current supply of precipitation and demand for potential 

evapotranspiration moisture, and capture the impact of global warming on drought severity 

(Dai 2011a, 2017; Vicente-Serrano, and National Center for Atmospheric Research Staff 2015). 

In this paper, water scarcity and draught are interchangeable terms used, and both terms 

indicate the decline in water availability. We show that based on fuel type, coal and nuclear are 

called upon to substitute for the forgone hydropower when water availability declines.  

We find that a one-standard-deviation decrease in water availability causes an approximate  

2.05×108 kWh decline in hydro power generation, a 1.45×108  kWh increase in nuclear 

generation, and a  0.28×108 kWh increase in coal generation.  To minimum the estimation 

biases stemming from omitted variables, we also control for time invariant firm fixed effects, 
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year-of-sample fixed effects, power grid region by year, and fuel type by year fixed effects in 

all our estimations. The results are robust for alternative measures of the water scarcity index. 

We also rule out factors that may confound our results on the technology substitution, such as 

newly constructed generators and regular generator maintenance.   

To support our findings, following Chen and Yang (2019), we further construct quarterly 

average water scarcity as an alternative measure. The finding is consistent with that of using 

annual data. We also find that water scarcity may result in electricity shortages in the second 

and third quarters of a year in particular due to a technology shift. In addition, we introduce 

water availability bins to address the monthly nonlinear relationship between the severity of 

water scarcity (abundance) and power generation. A remarkable finding is that electricity 

generation responds positively to severe drought or extreme wet. We note that a change from 

moderate drought (moisture) to extreme drought (moisture) enhances electricity generation, 

especially coal-fired generation. Moreover, we analyse the effects of the characteristics of 

water withdrawal mechanisms for generators. Specifically, we focus on the water sources the 

plants rely on and the technology that the plants have installed to cool generators. We identify 

that technology selection in China’s electricity sector is likely to move from relatively water-

intensive generation technologies towards less water-intensive technologies. Our result is 

consistent with prior studies (DeNooyer et al. 2016; Eyer and Wichman 2018). By examining 

the spatial effects of water scarcity on technology substitution across grids, we find that water 

scarcity-induced electricity shortages cannot be alleviated by supply from other grids via inter-

grid transmission, which may suggest that the inefficiency of the power grid dispatch and 

transmission system is another reason for the frequent power shortages that occurred in the 

early 2010s in China.  

In addition, we address the environmental consequences of the technology selected for 

electricity generation induced by water scarcity (Amor et al. 2014; Clancy et al. 2015; Jacobsen 

and Schröder 2012). As discussed by Moomaw et al. (2011) in their lifecycle fuel summary 

analyses, coal-fired plants emit 840 g/kWh carbon dioxide, whereas hydroelectric and nuclear 

power plants emit little carbon dioxide. If droughts lead to a shift from the relatively water-

intensive fuel source of hydro power towards nuclear or coal, emissions will rise accordingly. 

Hence, it is necessary to clarify to what extent the increased coal-fired generation resulting 

from drought results in rising greenhouse gas emissions. Our results suggest that the rising use 

of coal for electricity is associated with an increase in CO2 emissions. The results imply a 

hidden increase in carbon emission up to 32000 tons of each thermal power plant per year, 
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resulting in an additional cost of 0.18 million USD. We also note that a change from moderate 

drought to extreme drought would sharply intensify CO2 emissions. An additional month at 

(−∞, -5), [-5, -3), [-3, -1), [-1, 1) [1, 3), [3, 5), and [5, ∞) bins of PDSI can lead to a substantial 

increase in average yearly CO2 emissions from each coal power plant by roughly 27064 tons, 

12632 tons, 9071 tons, 6404 tons, 2517 tons, 499 tons and 12078 tons, respectively.  

In the literature, there are a growing number of studies that have estimated the effect of climate 

change on the energy sector (Rübbelke and Vögele 2011; Van Vliet et al. 2012; Olmstead 2014; 

Li et al. 2019; Zhou et al. 2019; Craig et al. 2019). Most of the existing studies apply non-

econometric approaches, including lifecycle assessment (Gao et al. 2019), engineering models 

(Feeley III 2008; Rübbelke and Vögele 2011), and integrated assessment (Khan et al. 2016; 

DeNooyer et al. 2016), with a focus on developed regions (Miara et al. 2017; Behrens et al. 

2017). With access to well-documented micro-level data, climate variations associated with 

human adaptation activities are an emerging trend in the studies (Auffhammer and 

Aroonruengsawat 2011; Barreca et al. 2016; Li et al. 2019). However, water shortage as an 

increasing resource availability concern has received little attention. An exception is Eyer and 

Wichman (2018), who used monthly plant-level data for the period from 2001 to 2012 to 

estimate the influence of water scarcity on the fuel mix in electricity generation. They find that 

the generation of hydroelectricity substantially decreases as water becomes scarce. This paper 

provides the very first quantitative investigation of the impact of water scarcity on electricity 

generation in a developing country.  

Our study extends the related literature in several ways. Firstly, it contributes to an 

understanding of technology selection with restricted resource input in the process of transition 

towards greener economy. Morales-España et al. 2021 identify the situations when curtailing 

variable renewable energy (VRE) reduces both costs and CO2 emissions and conclude that 

VRE should be dispatched in an optimal way to maximize their value rather than output. Levi 

and Nault (2004) examined how heterogeneity in the operating condition of firms' plant and 

equipment can affect choices related to conversion to a cleaner technology. They find that firms 

with superior resources, such as plant and equipment being in better condition, will convert to 

a cleaner technology and vice versa. Bretschger and Zhang (2017) studied technology 

substitution in response to climate policy under restricted input use, while Xie and Zilberman 

(2018) found that investment in technology adoption for water-use efficiency and water-storage 

capacity has the potential to address the water scarcity issues and support firms in adapting to 

climate change. To guarantee a sufficient electricity supply in peak hours, Boomhower and 
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Davis’s (2020) study showed that energy-efficiency investments in air conditioning can help 

to reduce electricity consumption in the summer months.  

Secondly, the paper contributes to the understanding of how the government responses to 

climate shock. China’s electricity industry is dominated by five giant generation corporations 

and is a relatively monopolistic sector (Wang and Chen 2012). The five corporations are 

government controlled. The power plant sample used in this study were those plants with 

installed capacity of over one gigawatt (GW) that are affiliated with the five giant generation 

corporations, which means the sample studied largely represents the government’s response 

behaviour, as all plants are controlled by the government. Electricity generated from power 

plants covered in our sample accounts for 44.1% of total power generation in China. Archsmith 

(2020) estimated the spillover effects of environmental regulation that forces hydroelectric 

dams to allocate electricity generation in an inefficient way over time. Meanwhile, a number 

of studies have demonstrated the efficiency issues associated with a monopoly market structure 

(Stewart 1980; Misiolek 1980; Hart 2004; Qiu et al. 2018). In this paper, the efficacy of 

government response to drought is measured by looking into the decisions related to electricity 

generation technology substitution, which is different to the study undertaken by Eyer and 

Wichman (2018), which estimated the market response of individual generators.  

Thirdly, this paper identifies the underlying mechanisms for the severe electricity shortages in 

China in the early 2000s by linking water scarcity with electricity generation technologies. 

Using coarse macro data, Zhang et al. (2017) and Zheng et al. (2016) estimated the mismatch 

between water availability and power generation at province level in China. Although Wang et 

al. (2019) used detailed power plant data and a water scarcity index (water withdrawal to 

availability ratio) across the water basin scale, they used a non-econometric approach to 

quantify the influence of inter-grid electricity transmission on water scarcity risk. Building on 

Eyer and Wichman (2018), we pair annual plant-level generation with a resolution grid fine-

scale monthly meteorological dataset for the period 2007–2014.  

 

2. Background information 

2.1.  Water scarcity and electricity generation in China 

Figure 1 portrays the Chinese yearly average water shortage from 2007 to 2014 inclusive using 

PDSI as a proxy for water scarcity. A negative PDSI value indicates a water shortage. The 
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negative values provided in the figure are the highest-profile evidence that China has 

experienced drought to different extents. We also observe both extreme drought and extreme 

wet weather from 2012 onwards, as shown by the dots in the figure.  

As depicted in Appendix figure AF2(a), there is a positive correlation between PDSI and 

monthly electricity generation in China. That is, increased water scarcity, as shown by the 

lower PDSI index, is associated with a reduction in electricity generation. In Appendix figure 

AF2(b), it is noted that during the 2008–2016 period, the growth rates of both hydroelectricity 

and coal-fired generation fluctuated; however, they had opposing trends. It is likely that there 

exists a technology substitution between hydro and coal generation. Although the correlation 

between generation mix and water shortage is well known, the magnitude by which the 

hydropower generation is curtailed and the extent to which there is substitution of technologies 

under state control are not well identified. Appendix figure AF2(c) shows China’s total CO2 

emissions and the CO2 emissions of the electricity sector in China (Research Council UK 

2007–2014). The data indicate that the emissions originating from the electricity generation 

sector account for approximately half of the total CO2 emissions for China. Therefore, the 

decisions made around technology selection in response to water shortages will inevitably carry 

environmental implications. 

2.2. Relative monopoly in China’s electricity industry 

The Chinese power industry has experienced three phases of market-oriented reform: absolute 

monopoly, breaking absolute monopoly, and relative monopoly (Wang and Chen 2012). Since 

2003, China’s power industry has been separated into the power generation section and the 

power grid section, which subsequently resulted in the current relative monopoly. The five 

giant generation corporations, which are central state-owned corporations, are the China 

Huaneng Group, the China Huadian Corporation, the China Guodian Corporation, the China 

Datang Corporation, and the China Power Investment Corporation. These corporations have a 

leading role in generation asset ownership and expansion of generation capacity. It is noted 

that in 2011, the five giant generation corporations controlled 49% of the installed capacity and 

other central state-owned generators controlled 11% (State Electricity Regulation Commission 

[SERC] 2011). These two utilities were owned by the State-owned Assets Supervision and 

Administration Commission (SASAC). In this sense, in 2011, the central state-owned 

generators accounted for 60% of the national installed capacity. Figure 2(a) shows the location 
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of power plants at city level. The majority of power plants covered in this study are in the 

eastern cities of China. 

Meanwhile, the nationwide transmission, distribution, and retail assets are controlled by two 

transmission companies, the State Grid Corporation of China and the South Power Grid 

Company Limited. The distribution of the individual grid systems is displayed in Figure 2(b). 

Under the management systems for generation and utilization, the government determines a 

generation target for a month and a year. It also has a daily generation dispatching schedule 

according to generator load (Gu and Xiao 2018). With regard to establishing the consumer 

price for electricity, instead of reflecting the generation costs, the price is set with reference to 

historical prices determined by the government (Lin and Liu 2013; Sun and Lin 2013). 

Therefore, there is still little competition in the Chinese power industry, and supply and demand 

do not affect the price. In this context, there is little independent adjustment undertaken in 

power generation by the plants, with government regulation behaviour playing a critical role 

in the decisions about technology substitution for power generation as water grows more scare.  

2.3. Water requirements in distinguished electricity technologies 

Adaptation of thermal power plants to water shortages relies predominantly on the 

characteristics of the cooling technologies employed and the nature of the water sources 

(Meldrum et al. 2013). A review by Zhang et al. (2016) examined the water withdrawal and 

consumption features of the different thermal electricity generation technologies in China. 

There is a distinction between water withdrawal and water consumption. Water withdrawal is 

the amount of water diverted or taken from a river, lake, or aquifer that is ultimately returned 

to the water source, whereas water consumption is the use of water from a source that is lost 

from the cycle due to processes such as transpiration or evaporation. Hydropower generation 

is the most water-consuming electricity technology. In China, the water losses using this 

technology are attributed to dam design, where water consumption for hydroelectricity 

generation mainly occurs from evaporation from reservoirs. Hydropower generation also 

requires large quantities of water to be available to operate the turbines, but this water is usually 

then used downstream by the agricultural sector (Rodriguez et al. 2013). Generally speaking,  

nuclear power is the most water withdrawal intensive of the non-renewable thermal power 

plants, followed by coal-fired power.  

Moreover, the level of water consumption depends on the type of cooling system being used. 

Power stations that use a once-through cooling system consume the least water, followed by 
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those that use a dry-cooled system. Power stations that use a recirculating system consume the 

most water resources; however, the once-through cooling system withdraws the most fresh 

water of the three systems. Zhang et al. (2016) also documented the characteristics of the water 

sources. In China, the water requirements for nuclear power generation are derived from 

seawater. They distinguish several types of freshwater sources: surface water, ground water, 

municipal wastewater, and mine water. Surface water accounts for 96% of the total fresh water, 

and once-through cooling plants withdraw large volumes of surface water. Hence, the range of 

requirements for water related to the type of fuel used and the nature of the cooling system will 

result in different technological responses during periods of water constraint.  

 

3.  Empirical strategy 

Several econometric power plant-level generation models are employed to identify the ability 

of power plants to react to the variation in water scarcity. We construct average drought 

variables from annual, quarterly, and monthly perspectives. The empirical analysis therefore 

involves three models, and this section provides an explicit description.  

3.1. Yearly average indicators as water scarcity variables 

Yearly average water scarcity variables are firstly implemented to help understand how 

changes in the electricity generation mix are attributed to water shortage. Causal attribution in 

this context relies on the extent to which water shortage variation affects electricity supply 

exogenously after controlling for temperature, characteristics of power plants, and 

contemporaneous electricity demand dominated by government policy. We first specify a 

benchmark panel model of electricity generation in Equation (1):  

ln𝐺𝑒𝑛𝑖𝑡 = ∑ 𝛽𝑘
𝑘∈𝐾 (𝑊𝑎𝑡𝑒𝑟 𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡 × 𝐹𝑢𝑒𝑙𝑖

𝑘) + Θ𝑋𝑖𝑡 + 𝜕𝑖 + 𝛿𝑡 + Ψ𝑡
𝑟 + Φ𝑡

𝑘 +

𝜀𝑖𝑡       (1) 

where power plants are indexed by 𝑖, power grids are indexed by 𝑟, and 𝑘 and 𝑡 denote fuel 

type and years, respectively. The natural log of electricity generation for plant 𝑖 in year 𝑡 is 

denoted by ln𝐺𝑒𝑛𝑖𝑡. We interact the water shortage indexes with a dummy variable for each 

plant’s technology 𝑘 in a set of all three fuel types k. In our benchmark specifications, we 

evolve a vector of control variables included in 𝑋𝑖𝑡 . Specifically, 𝑋𝑖𝑡  contains a nonlinear 

climatic variable for cooling degree days (𝐶𝐷𝐷𝑠𝑖𝑡), characteristics of power plants captured by 

installed capacity (𝐼𝐶𝑖), and indicators for contemporaneous electricity demand dominated by 
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government policy that involve electricity price (𝑃𝑟𝑖𝑐𝑒𝑖𝑡) and fixed assets investment (𝐼𝑆𝑖𝑡). 

𝐶𝐷𝐷𝑠𝑖𝑡 reflects the effect of a global warming-induced increase in cooling demand. 𝐼𝐶𝑖 is of 

importance as electricity power generation has a high reliance on it. Furthermore, the electricity 

industry in China is mainly dominated by government regulation, and thus determinants related 

to electricity demand led by government authority should be taken into consideration. We 

introduce two additional variables: on-grid electricity price set by local authority (𝑃𝑟𝑖𝑐𝑒𝑖𝑡) and 

the stock of electricity source investment that could promote electrical power development 

(𝐼𝑆𝑖𝑡).  

We control for four fixed effects to capture unobserved heterogeneity of time, plant, technology, 

and power grid region. Plant and year-of-sample fixed effects are denoted by 𝜕𝑖  and 𝛿𝑡 . 

Following Bai (2009), we incorporate another two interactive fixed effects: interaction between 

year and power grid region and year and fuel type, which are indexed by Ψ𝑡
𝑟  and Φ𝑡

𝑘 , 

respectively. 𝜕𝑖  controls for the time-invariant plant characteristics that are unique to each 

power plant 𝑖, such as geographical location. 𝛿𝑡 flexibly removes unobserved market demand 

factors that vary over time, such as coal fuel price. Ψ𝑡
𝑟  absorbs unobserved time-varying 

characteristics that are common to all electricity plants in a given year but differ across power 

grid region, such as changes in electricity or trade policies for a certain power grid region 𝑟. 

Similarly, Φ𝑡
𝑘 captures unobserved common factors for power plants in a given year but allows 

for time-varying heterogeneous technology for fuel types, such as the introduction of a new 

production technology that improves generation efficiency that is specific to fuel type 𝑘. 𝜀𝑖𝑡 is 

the residual error term adjusted for autocorrelation at the power plant level. It captures the 

impacts on electricity generation of other factors that are excluded in Equation (1).1 In our 

models, we are interested in estimating the set of parameters 𝛽𝑘 to determine how generation 

shifts among different technologies.  

3.2. Quarterly average indicators as water scarcity variables 

Most regions in China have four distinct seasons. The climatic variable for water scarcity 

indexes and temperature could change significantly over a year. We then follow Chen and 

Yang’s (2019) measurement of seasonal average temperatures and adopt quarterly average 

 
1 To adjust the within heteroscedasticity and serial correlation issue as discussed in Cameron and Miller (2015), 

we cluster the standard errors in the presence of a power plant-level effect. 
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water relevant indicators to gain a detailed understanding of the effect of seasonal water 

variations on power generation.  

The yearly average water scarcity indexes are separated into four quarters. We incorporate the 

interaction between quarterly average water shortage indicators and fuel types for coal and 

hydro because the electricity generation of these two kinds of technologies rely heavily on the 

fluctuations in seasonal trends. We again estimate the generation portfolio at the plant level 

after controlling for the same set of effects as in Equation (1), revising our estimating equation 

as follows:  

ln𝐺𝑒𝑛𝑖𝑡 = ∑ ∑ 𝛽𝑞𝑘
𝑘∈𝐾𝑞∈𝑄 (𝑊𝑎𝑡𝑒𝑟 𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡

𝑞
× 𝐹𝑢𝑒𝑙𝑖

𝑘) + Θ𝑋𝑖𝑡 + 𝜕𝑖 + 𝛿𝑡 +

Ψ𝑡
𝑛 + Φ𝑡

𝑘 + 𝜀𝑖𝑡                   (2)  

3.3. Drought index bins as water scarcity indicators 

Thus far, we assume the relationship between power generation and water shortage to be linear 

at yearly and quarterly level. However, the degree of drought severity, such as moderate 

drought and extreme drought, may trigger different responses from electricity producers. We 

divide the range of PDSI values into several bins. The number of months in year 𝑡 when the 

monthly PDSI falls into the 𝑏th drought severity bin in a climatic grid where power plant 𝑖 is 

located is labelled as 𝐵𝑖𝑛𝑖𝑡
𝑏 .  

𝐵𝑖𝑛𝑖𝑡
1  is when the monthly PDSI is below -5, 𝐵𝑖𝑛𝑖𝑡

2  represents the months falling into the range 

of [-5,-3), 𝐵𝑖𝑛𝑖𝑡
3  captures the observations for the number of months falling into [-3, -1) and 

𝐵𝑖𝑛𝑖𝑡
4 , 𝐵𝑖𝑛𝑖𝑡

5  𝐵𝑖𝑛𝑖𝑡
6  and 𝐵𝑖𝑛𝑖𝑡

7  capture the number of months falling into the range of [-1,1), [1,3), 

[3,5) and [5, +∞ ), respectively. A positive PDSI distribution indicates abundant water 

conditions. Thus, the results examined in this study are concerned not only with the effect of 

water scarcity but also with the impact of water abundance.  

Next, we construct a vector of indicator variables for the interaction between the yearly average 

PDSI and its distribution bins, which allows us to investigate the monthly causal relationship 

linearly and continuously within each bin. Meanwhile, this model provides a nonlinear 

estimation of how the severity of drought or water abundance affects electricity generation. In 

addition, we interact the established indicator variables with the coal technology dummy 

variable to further identify the nonlinear effects on coal generation. Our estimation equation is: 
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ln𝐺𝑒𝑛𝑖𝑡 = ∑ ∑ 𝛽𝑏𝑘
𝑘∈𝐾𝑏∈𝐵 [𝑊𝑎𝑡𝑒𝑟 𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡 × 𝐵𝑖𝑛𝑖𝑡

𝑏 (× 𝐹𝑢𝑒𝑙𝑖
𝑘)] + Θ𝑋𝑖𝑡 + 𝜕𝑖 +

𝛿𝑡 + Ψ𝑡
𝑛 + Φ𝑡

𝑘  + 𝜀𝑖𝑡 (3)  

3.4. Characteristics of water use based on water sources and cooling technologies 

How an incumbent power plant responds to water shortages depends not only on the fuel types, 

but also on the characteristics of the water sources it uses and the related water-cooling 

technologies. To identify how water scarcity affects the choice of technology in terms of water 

sources and cooling techniques, we construct a vector of interactions between 𝑃𝐷𝑆𝐼𝑖𝑡  and 

indicator variables for the water-use characteristics of power plant 𝑖 after controlling for a set 

of fixed effects as in Equation (1). In this way, we obtain in-depth information on how the 

water source and cooling technique features of a technology respond to heterogeneous water 

scarcity. Equations (4) and (5) show the new model specification: 

ln𝐺𝑒𝑛𝑖𝑡 = ∑ 𝛽𝑐

𝑐∈𝐶

(𝑊𝑎𝑡𝑒𝑟 𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡 × 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝑖
𝑐) + Θ𝑋𝑖𝑡 + 𝜕𝑖

+ 𝛿𝑡 + Ψ𝑡
𝑟 + Φ𝑡

𝑘 + 𝜀𝑖𝑡     (4) 

ln𝐺𝑒𝑛𝑖𝑡 = ∑ 𝛽𝑤

𝑤∈𝑊

(𝑊𝑎𝑡𝑒𝑟 𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡 × 𝑊𝑎𝑡𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒𝑖
𝑤) + Θ𝑋𝑖𝑡 + 𝜕𝑖 + 𝛿𝑡

+ Ψ𝑡
𝑟 + Φ𝑡

𝑘 + 𝜀𝑖𝑡              (5) 

4. Data 

In this paper, we construct a unique, fine-scale, plant-level panel that contains data on 

electricity generation, installed capacity, and water-use characteristics, relevant social 

economic factors of individual plants, and climatic information for the plant locations for the 

period from 2007 to 2014. Table 1 provides the summary statistics. The key variables of 

electricity generation, water scarcity, climatic variables, as well as the cooling technologies and 

water source variables are described in detail in the following subsections. 

4.1. Electricity generation variable 

The study sample consists of 195 coal-fired power plants, 25 hydroelectric power plants and 5 

nuclear power plants. Annual electricity generation information is collected from the China 

Electric Power Yearbook published by the National Bureau of Statistics (NBS) (2008–2015). 

This yearbook provides production statistics for power plants with installed capacity of over 

GW. Fuel sources are primarily classified as coal, hydro, or nuclear following the plant’s own 

categorization. This study tabulates the power plant generation data from 2007 to 2014. 
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Meteorological data for the years after 2014 that match with the electricity generation data were 

unavailable. To obtain balanced panel data, the sample is restricted to plants that were in 

operation over the full timespan. Thus, newly built and closed plants were not analyzed. 

4.2. Water scarcity and climatic variable  

We obtain the monthly meteorological information from The Climate Data Guide of the 

National Center for Atmospheric Research (NCAR) (2019) and the Terrestrial Air Temperature 

and Precipitation of the National Oceanic and Atmospheric Administration (NOAA) (2017). 

We extract multiple proxies for water scarcity, which are measured by applying PDSI, SPEI, 

and P. The database consists of monthly global observation station data in a 2.5 × 2.5 degree 

grid for PDSI from January 1850 to December 2014 and a 0.5 × 0.5 degree grid for SPEI, 

precipitation, and air temperature from January 1900 to December 2014. Based on the 

geographical location of the power plants, we paired plant-level generation with water scarcity 

and climate variables over the observed period of 2007 to 2014. The proxies for water scarcity 

in our study do not consider human impacts on the water balance, hence they can be viewed as 

plausibly exogenous variables.2  

Precipitation in a given location measures the information on instantaneous water availability 

in a plant’s surroundings, while the PDSI and SPEI are widely used indexes that incorporate 

the past and current supply of (precipitation) and demand for (potential evapotranspiration) 

moisture that capture the impact of global warming on drought severity. The PDSI index 

dynamically self-calibrates the climate and duration factors to maintain consistent behaviour. 

Thus, it is more spatially comparable to quantify long-term drought trends (Dai 2011b; Dai 

2017). PDSI is normalized and ranges from -10 to +10. Negative PDSI values demonstrate 

water scarcity while positive values indicate water abundance. A value of -2 mirrors moderate 

drought and values below -3 represents severe to extreme drought conditions. In the yearly 

estimation, we first normalize the monthly PDSI into the range of [0,1]3, then take the average 

in a year to match the yearly electricity generation data.  

Similar to PDSI, SPEI accounts for the effects of precipitation and reference evapotranspiration, 

but it allows comparison of drought severity across time and space due to its multi-scalar nature 

(Vicente-Serrano and National Center for Atmospheric Research Staff 2015). SPEI is a 

 
2 Eyer and Wichman (2018) have elaborately verified that reverse causality is highly unlikely to exist.  

3 The study normalizes the PDSI using the strategy 𝑃𝐷𝑆𝐼∗ =
𝑃𝐷𝑆𝐼−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
. 
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standardized variable that obeys a normal distribution with an average value of 0 and standard 

deviation of 1, and can be calculated on a range of timescales from 1 to 48 months. With longer 

timescales of more than 18 months, it correlates with the self-calibrated PDSI indicator. In our 

research, we capture the SPEI using a one-month timescale approach.  

To reflect the growing warming trend, we obtain the temperature information using cooling 

degree days (CDDs). CDDs are a nonlinear measurement of how surface air temperature 

deviates from an ambient indoor reference temperature. In the empirical analysis, we set a 

reference temperature of 26 ℃.  

We portray the fluctuation of national monthly average temperature, precipitation, PDSI and 

SPEI during the study period in Appendix figures AF3(a) and AF3(b). As shown in the figures, 

the seasonal mode in the temperature and water shortage indexes changes over time. We 

explicitly capture the average degree and relative level of water shortage from the trajectory of 

variation in the PDSI and SPEI in China temporally. These two indexes evolve over time 

independent of temperature.  

Since drought is a medium to long-term climatic trend, the impact of variation in water scarcity 

on electricity generation will be distinguished from other weather features, seasonal patterns, 

and demand shocks. In our empirical study, we examine the causality by adopting the PDSI 

measure, as it covers more information than the SPEI. As precipitation captures the short-term 

water availability, PDSI overcomes the drawback of the metric of precipitation failing to 

account for the seasonal dynamics of water flow. Therefore, we use PDSI as the main proxy 

for the analysis, while the results of SPEI and precipitation are used for comparison.  

4.3. Non-climate variables  

Information on installed capacity for each power plant is obtained from the China Electric 

Power Yearbook (NBS 2008–2015). The average installed capacity for coal, hydro and nuclear 

electricity plants in this study is 1.6 GW, 2.4 GW, and 1.9 GW, respectively. For coal-fired 

plants, the maximum and minimum capacity are 4.8 GW and 1.0 GW, respectively. The 

installed capacity of hydroelectricity plants ranges from 1.0 GW to 2.2 GW. The lowest and 

highest installed capacity of nuclear power plants are 1.3 GW and 2.6 GW, respectively.  

Due to the limitations of data availability, other non-climate factors are estimated based on 

province-level datasets. Electricity Pricing Supervision Report (SERC 2008–2015) releases the 

Electronic copy available at: https://ssrn.com/abstract=3902775



 

14 
 

price at provincial level and by generation fuel types. The on-grid electricity price is set to be 

the same for power plants located in the same province and using the same fuel type. 

The Almanac of China's Waterpower and Compilation of Statistical Materials of Electric 

Power Industry (NBS 2008–2015) reports the provincial-level investment by fuel source in the 

electricity sector. We apply the conventional perpetual inventory strategy4 to calculate the 

stock of investment in electricity generation by fuel source. After that, each power plant’s 

investment stock is approximated according to the ratio of its installed capacity to that of the 

sum of installed capacity in our sample within each type of fuel power generation in that 

province. All monetary non-climate variables are deflated to constant 2007 prices by a 

consumer price index. 

4.4. Cooling technologies and water source variables 

Details on cooling technologies and water sources used for the power plants in the sample are 

drawn from the Materials of National Energy Efficiency Benchmarking Competition for 

Thermal Power Units 2012 (China Electricity Council [CEC] 2013). The database in this report 

links power plants to cooling technologies, water sources, and other technical parameters. We 

distinguish water-use characteristics within a given plant by cooling technologies or water-use 

sources when the plant runs several thermal power generators.  

In China, 18.5% of generators in operation adopts air cooling and 81.5% uses water cooling 

technology (Zhang and Li, 2020). Among all water cooling technologies, once-through 

technology for generators is mainly used in the coastal area with relatively low investment 

costs, while recirculating cooling technology can fit all kinds of natural circumstance and is 

the most adaptive technology. Air-cooling technology is the most expensive one and mainly 

located in water shortage area like northwest and northern China. The two grid corporations 

will coordinate the type of cooling technology within the grid according to water withdrawal 

quotas set by government. 

We match time-invariant water-use information with the time series of generation data at the 

plant level. The summary statistics by cooling technologies and water source for each power 

 
4 The investment stock is calculated by applying the conventional perpetual inventory strategy.  𝐾𝑗𝑡 = (1 −

𝜎𝑗)𝐾𝑗,𝑡−1 +△ 𝐾𝑗𝑡, 𝐾𝑖0 = 𝐼𝑗0(1+𝑔𝑗)/(𝑔𝑗 + 𝜎𝑗), where 𝐾𝑗𝑡 denotes the real investment stock of province j in year t, 

△ 𝐾𝑗𝑡  is the real incremental capital stock and 𝜎𝑗 is the rates of depreciation in each province (taken from Wu 

(2009)). 𝐾𝑖0 and 𝐼𝑗0 are the initial capital and investment stock and 𝑔𝑗 denotes the province-specific growth rates 

of investment, which are replaced with average GDP growth rates.  
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plant are provided in Appendix table AT1. Once-through and recirculating systems are the two 

traditional and most prevalent cooling types. Dry and hybrid-cooled technology, classified into 

Other Ⅲ for coal type, account for a sizable share of cooling technologies. Other II for hydro 

shows cooling technologies for hydro turbines, which do not require water for cooling. Other 

Ⅲ for nuclear refers to the cooling technology for nuclear fuel.  

In terms of water sources, the Other group refers to coal plants that do not withdraw water and 

all hydro plants. The Seawater group is mainly for nuclear power plants. Appendix table AT1 

shows that more than one third of coal plants rely on surface water withdrawal, followed by 

seawater and groundwater withdrawal. Municipal wastewater withdrawal constitutes a small 

portion of the distribution in the sample.  

 

5. Results and discussion 

5.1. Main results 

The benchmark results are presented in Table 2, with the estimation based on yearly data. The 

results for PDSI as the water scarcity indicator show strong evidence of a substantial decline 

in hydroelectric generation when water scarcity increases (a reduction in the PDSI). From 

columns (2)–(4) in Table 2, we find that most estimated coefficients of the PDSI variable exert 

significant effects on the electricity generation mix and are generally consistent in sign and 

magnitude across a range of fixed effects model specifications. Meanwhile, we show a 

significant increase in coal and nuclear generation, implying a substitution between 

technologies.  

Specifically, a one-standard-deviation reduction in PDSI results in an approximate 2.05×108 

kWh decline in power generation in per hydro plant. The decrease in hydroelectricity 

generation is mainly offset by nuclear and coal-fired electricity generation. A one-standard-

deviation decrease in PDSI (𝜎=2.32) causes a 1.45×108 kWh increase in nuclear generation in 

per nuclear plant and a 0.28×108 kWh increase in coal generation in per coal plant. The 

displaced hydroelectricity cannot be fully offset by thermal power generation and there is a 

0.32×108 kWh electricity shortage for the substitution of per power generation in China during 

the sample period, which means with increasing drought, electricity shortages may become 

more frequent and severe. 
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The industrial sector accounts for more than half of total electricity consumption. The firm 

productivity will be significantly affected by the increased electricity shortage. In fact, the 

electricity shortage also reflects the quality of power supply in a given period. In January of 

2011, the reported power shortage exceeds 30 million kW all over China and nineteen 

provinces had to implement electricity rationing. Many factories in Zhejiang province had to 

take the action of “shutting down for one day for every three-days operation”. This led to 

significant economic losses for both the firms and the country. 

We are also aware that so far our discussion focuses on the supply shortage. The demand for 

electricity may fall at the times of drought. The power shortage attributed to drought could be 

over-estimated. For example, when suffering from drought climate, the electricity demand 

from the agricultural sector would fall accordingly. However, as agricultural sector consumes 

only 2.2% of total electricity, the change in demand could be relatively small. 

In addition, drought could increase the demand for groundwater pumping and the demand for 

cooling. This implies that droughts may have more serious consequence then what we expect. 

In our model, CDD represents the non-linear measure of temperature and reflects the variations 

in electricity demand in the presence of temperature change. The coefficients of CDD in Table 

imply that 1% increase in CDD is associated with up to 0.03% rise in electricity generation. 

Compared with the coefficients of water scarcity index, CDD shows a relatively marginal effect 

on electricity generation. However, the positive effect of CDD indicates that the seasonal 

climate factor may increase the demand for electricity and may cause more brownouts or power 

crises during the drought climate. 

We then identify the plants located near ten major rivers shown in Figure 2(a) and estimate 

whether the baseline results are sensitive to drought with different local river conditions. We 

find all the 25 hydro plants are located near the major rivers in China. 135 out of 195 coal-fired 

plants are close to the major rivers. As nuclear plants located in coastal area and mainly 

withdraw seawater for cooling, we thus exclude nuclear plants from the sample. We construct 

a dummy variable for coal plants located near the major rivers in China (the major rivers run 

through the cities where the plants are located) and interact it with water shortage index. The 

results are shown in Table 3. We identify that the decrease in water availability declines hydro 

electricity generation significantly. For coal power generation, it is less affected by water 

shortages when it closes to the river. However, coal plants far away from major rivers tend to 
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increase the generation to substitute the decline in hydro generation, as they are less affected 

by water availability. 

We also find regional disparity in electricity shortages across six grid regions, which means 

with increasing drought. The southern power grid (SPG) shows the highest level of electricity 

shortage associated with water scarcity. The results are displayed in Table 4.  

Although nuclear generation may consume more water resources than coal-fired generation 

(Rodriguez et al. 2013; Zhang et al. 2016), nuclear power stations are mainly located in the 

south-east coastal area and use seawater instead of fresh water. It is therefore much easier for 

nuclear plants to adapt to the declining availability of water resources for nuclear power 

generation. More importantly, the central government advocates that the transition from fossil 

fuels to clean technology for power generation (World Nuclear Association 2020). As the 

China Electricity Council (2012) reported, aggregate power generation increased by 11.7% in 

2011 compared with 2010, with hydro generation decreasing by 3.5% and coal and nuclear 

generation increasing by 14.1% and 16.9%, respectively.  

China has been managing the utilization of scarce water resources in the power sector, 

including strategies for water withdrawal standards, water drawing permits and water resources 

fee, to decline water use intensity in coal power generation. Additionally, when water 

availability decreases, the two Grid Corporations --- the State Grid Corporation of China and 

China Southern Power Grid, will coordinate and reallocate the type of cooling technology for 

power generation within power grid according to water withdrawal quotas set by government 

(Zhang, et al., 2016). Thus, nuclear and coal generation will provide ramping services to meet 

aggregate consumption. 

Our results shed light on the inefficiency of the dispatch system in China to some extent. 

Different from the “merit order” dispatch approach where generators are dispatched in order 

of increasing variable cost of operation, the “fair” dispatch system has long been used in China 

where generators are allocated administratively the same annual utilization hours. Although 

the efficiency-based dispatch system began as a pilot in some provinces, they have faced strong 

opposition from coal-fired power plants as the new dispatch makes coal-fired plants losers in 

the market and exacerbates imbalances in the electricity supply (Kahrl et al. 2013). Many 

provinces have switched back to the administrative planning dispatch system; therefore, when 

water scarcity induces a reduction in hydroelectric generation, the flexibility to switch to 
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alternative generators is low. The extra supply from other generators is thus not enough to meet 

the demand, resulting in an electricity shortage.  

In China, coal fired plants contribute to over 60% of total power generation (Zhang, et al., 

2016). The rule of “fair order” creates an economically inefficient dispatch system. Under this 

circumstance, a significant amount of cheap variable renewables (VRE) electricity generation 

is curtailed to meet the target full-load hours of conventional generation. Even without 

suffering from drought climate, the VRE like wind, photovoltaic and hydro electricity 

generation is replaced by more expensive fossil fuels on the basis of allocated generation hours 

especially in the Northwest and North Central regions (IEA, 2019). Therefore, technology 

substitution we have estimated may not be entirely attributed to drought events. The 

inefficiency of the dispatch system in China may also be one of the reasons for the substitution. 

5.2. Alternative measures of water availability 

As demonstrated in Table 5, when we replace the water scarcity index for PDSI with SPEI or 

precipitation, the main results are broadly robust. A statistically significant reduction in hydro 

power generation is observed when using SPEI or precipitation as the water shortage index. It 

also shows a potential shift towards less water-intensive fossil fuel technology in the electricity 

sector in China.  

5.3. Accounting for seasonal changes  

Yearly average drought indicators may level off certain information. To accurately reflect the 

seasonal shocks, we divide the yearly PDSI index into four quarters to study how seasonal 

water availability affects the generation mix. The results are displayed in Appendix table AT2. 

Coal-fired and hydro generation are susceptible to seasonal variations over time. The results 

demonstrate that the water availability in dry (Q1 and Q4) versus the wet seasons (Q2 and Q3) 

are different. We note that there are clear technology shifts in wet seasons, Q2 (from April to 

June) and Q3 (from July to September). 

The results show that the estimated coefficients of PDSI are positive for hydro technology 

during the wet season in Q2 within 10% confidential interval while coal power generation are 

not affected. And the estimated coefficients of PDSI are negative for coal-fired technology 

during the wet season in Q3 and are statistically significant within 10%. This result indicates 

that a one-standard-deviation drought induces a decrease in hydro generation by about 1.95–

3.06×108 kWh in Q2, which is partially offset by the increase in coal-fired generation of around 
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0.33–0.42×108 kWh in Q3. The results are similar for SPEI and precipitation. In addition, 

during dry season in Q1 and Q4, our results indicate that when water availability declines, coal, 

and hydro electricity generation increase to some extent. 

The seasonal fluctuations can be explained by following reasons. Although there is ample water 

in the wet seasons, the water flows are regulated to support agriculture, the dam usually drains 

away water during the wet season that occurs in Q2 and Q3 (Tan 2016). During the dry season 

of Q1 and Q4, hydroelectric generation can increase by adjusting load utilization hours for 

generators; however, in the wet season in Q2 and Q3, hydroelectric generation decreases due 

to restricted water resources and flow. Therefore, at these times when water is scarcer, it is 

necessary to utilize coal-fired generation to meet the demand for electricity. For the dry seasons, 

the hydro power plants can take advantage of stored water in the dam during the dry season in 

Q1 (from January to March) and Q4 (from October to December). This is because hydroelectric 

power stations in the sample are storage hydropower plants and use reservoirs to accumulate 

water (Gaudard et al., 2018). 

5.4. Accounting for nonlinearity 

Next, we use the drought severity bins of the PDSI variable to show whether the monthly 

nonlinear relationship between water scarcity and power generation exists 5 . We estimate 

Equation (3) and the results are listed in Appendix table AT3.  

Figure 3 provides a graphical illustration of the results. Each point in the graphs estimates the 

marginal effect, that is to say, to what extent an additional month imposing on PDSI a particular 

bin of water scarcity distribution affects electricity generation. The 95% confidence bands of 

coefficient estimations of PDSI bins are portrayed by the shaded areas. The horizontal axis is 

PDSI, while the vertical axis of Figures 2(a) and 2(b) denotes the log electricity generation of 

the sample plants and the log of coal-fuel type generation, respectively. Moving from left to 

right, the figures show the water abundance marginal effect from extremely arid conditions to 

extremely wet conditions. A remarkable finding is that electricity generation responds 

positively to severe drought or extreme wet. However, the results show most of the coefficients 

of the water scarcity distribution bins in the arid condition are statistically pronounced, which 

suggests that, the power generation are more susceptible to the drought condition than the moist 

 
5 Further, we follow Eyer and Wichman (2018) and disaggregate the water scarcity index of PDSI distribution 

into (−∞, -5), [-5, -2), [-2, 0), [0,2), [2,5), and [5,+∞) six bins. The results are showed in Appendix table AT4 

and are similar to that of the seven bins definition. 
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condition. The figures demonstrate that the marginal effects of frequency of drought or water 

abundance imposed by the variations in the water scarcity indicator are increasingly larger, 

especially at the driest edge of the water abundance spectrum. This result indicates that a 

change from moderate drought to extreme drought will enhance the electricity generation of 

both the total and coal-fired sectors.  

The results are consistent throughout the distribution of PDSI. Specifically, an additional 

month at the (−∞, -5) [-5, -3), and [-3, -1) bin can lead to a substantial increase in annual per 

electricity generation by 0.17×108 kWh, 0.12×108 kWh, and 0.10×108 kWh, respectively, 

while generation increases by 0.07×108 kWh with an additional month falling into the near 

normal water bins of [-1, 1), holding all else the same.  

For coal-fired generation, an additional month in the (−∞, -5), [-5, -3), [-3, -1), and [-1,1) bins, 

conditioned on a yearly standard deviation for PDSI, results in a power generation increase by 

around 0.25×108 kWh, 0.12×106 kWh, 0.08×106 kWh, and 0.06×106 kWh, respectively. For 

an additional month in the extreme wet bin of [5,+∞), average power plant and per coal-fired 

power generation increase by 0.11×108 kWh, respectively.  

5.5. Placebo tests 

One may argue that the estimated technology substitution is driven by newly built generators 

or regular maintenance. To rule out such possibilities, we have provided additional analyses in 

Appendix table AT5.   

Specifically, we obtain information on the actual completed investment in new electric power 

construction (NEW) to capture the confounding effects attributed to the newly built generators. 

This information is obtained from the Almanac of China's Waterpower (NBS 2008–2015) and 

the Compilation of Statistical Materials of Electric Power Industry (CEC 2009–2011 & 2014). 

To rule out the effect of regular maintenance, we construct the variable of service factor (SF). 

It is one indicator for electricity reliability that considers the lack of availability of active 

generators due to planned or unplanned outages. The service factor is measured by the ratio of 

service hours to period hours. The data are obtained from the Report of National Power 

Reliability Index (CEC 2012–2016) and the Statistics Analysis of National Power Reliability 

(Cheng and Zhou 2010). We tabulate both variables by fuel source in the electricity sector. 

As shown in Appendix table AT6, we find that the effects of both the newly built generators 

and maintenance services on the technology mix of electricity generation are insignificant or 
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negligible in magnitude compared to that attributed to water scarcity. Therefore, we have strong 

evidence that the electricity shortages in China during the period 2007–2014 were mainly 

driven by water scarcity.  

 

6. Further analysis 

In this section, we re-estimate our model by looking into the characteristics of the electricity 

generators’ cooling technology and the source of water. We also discuss whether there are 

spatial effects on water stress-induced technology substitution across power grids.  

6.1 Effects of generators’ water withdrawal characteristics 

We examine the effects of water scarcity based on the characteristics of the electricity 

generators’ cooling technology and water sources.  

The results are shown in Table 6 and Table 7. In general, increasing water scarcity is correlated 

with reductions in electricity generation from plants that do not use water for cooling, while 

droughts result in hydro generation being displaced by increased generation from thermal 

plants that use nuclear and coal with once-through and recirculating cooling technologies. 

Moreover, the results indicate that there is no statistically significant generation shift from 

plants using dry and hybrid cooling technologies. At present, dry-cooled and hybrid-cooled 

systems are far less prevalent in China than once-through and recirculating systems due to the 

relatively high operating costs. In the dataset used for the study, hydroelectric power plants use 

no cooling technology and are grouped into the Other Ⅱ subcategory. A one-standard-deviation 

increase in water scarcity results in a reduction in hydroelectricity generation by 2.062×108 

kWh per plant and an increase in nuclear generation by 1.47×108 kWh and an increase in coal-

fired generation that uses once-through and recirculating cooling systems by 0.61×108 kWh 

and 0.39×108 kWh, respectively.  

In terms of water sources, increased water shortages can trigger an increase in electricity 

generation from power plants that use surface water or municipal wastewater. A one-standard-

deviation decrease in PDSI results in a 0.49 × 108 kWh and 0.77×108 kWh increase in 

generation from surface water-based or municipal wastewater-based plants, respectively. This 

situation may be due to the decision makers recognising that surface water or municipal 

wastewater are more reliable sources of water for cooling than other fluctuating levels of fresh 

water. As seawater is abundant, generation by nuclear plants that draw seawater for cooling is 
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less affected by the water shortages. This finding corresponds to our previous result that 

showed an increase in nuclear generation during periods of water shortage.  

The impact of groundwater is not significant. In fact, groundwater has been strictly controlled 

for power plant withdrawal in northern China, in particular in the regions with water shortages. 

The central government also prohibits the use of groundwater for newly constructed or 

expanded power stations. More importantly, the central government encourages power plants 

to utilize the wastewater from municipal sewage treatment plants for cooling purposes 

(National Bureau of Statistics of China 2004). Our result with regard to the increased use of 

municipal wastewater confirms such actions enacted by the government. 

We then drop hydro plants and construct a sub-sample applying cooling technologies to 

investigate how generation is allocated across coal and nuclear. The results displayed in 

Appendix Table AT6 indicate that droughts cause increase in power generation for nuclear and 

coal using one-through and recirculating cooling technologies. It is consistent with full sample 

results. We also show how electricity generation allocation is dependent on the water sources. 

Appendix Table AT7 indicates power plants that withdraw fresh water are sensitive to water. 

We find that reduction in water availability triggers an increase in electricity generation for 

power plants that use surface water and a reduction in power generation for plants using 

groundwater.  

We then drop hydro plants and construct a sub-sample applying cooling technologies to 

investigate how generation is allocated across coal and nuclear. The results displayed in 

Appendix Table AT6 indicate that droughts cause increase in power generation for nuclear and 

coal using one-through and recirculating cooling technologies. It is consistent with full sample 

results. We also show how electricity generation allocation is dependent on the water sources. 

Appendix Table AT7 indicates power plants that withdraw fresh water are sensitive to water. 

We find that reduction in water availability triggers an increase in electricity generation for 

power plants that use surface water and a reduction in power generation for plants using 

groundwater.  

Power sector in China is a relative monopoly industry. Five generation corporations own a 

large share of the national generation capacity. They decide the generation technologies based 

on factors such as local water availability, hydrological conditions as well as technical and 

economic considerations when constructing, re-building or expanding generators. Plants 

themselves therefore cannot switch cooling technologies after putting into use. 
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6.2 Spatial effects of water scarcity on inter-grid transmission 

We have shown that water scarcity in one region induces technology substitution in the same 

region. Next, we discuss whether there is a spatial effect across regions through the inter-grid 

transmission. If the power grids are well connected and free to transmit without barriers, we 

would expect that water scarcity in one grid region could induce technology substitution in 

other grid regions.  

We construct water scarcity indices for the six power grids by calculating the average value of 

PDSI for each of the six grid regions. To verify the existence of a spatial effect, in addition to 

our original model specification, the new indices are interacted with the technology variables 

in the other five grid regions. We first test whether the water scarcity in the region where the 

Southern Power Grid Corporation (SPGC) is located affects the technology mix in the region 

where the State Grid Corporation is located. The results are shown in column 1 of Table 8. The 

technology substitution within the SPGC region remains, which is consistent with our main 

findings. The estimated coefficients for the new interaction terms are all insignificant, which 

suggests that water scarcity in the SPGC region has no spatial effects on the technology 

substitution for State Grid Corporation, implying that the inter-grid transmission is negligible. 

Thus, it would appear that the current dispatch system is not sufficiently flexible to 

accommodate the induced water shortages in one region by utilizing the technology from other 

regions. Furthermore, we also find that within the five grid regions that are under the control 

of the State Grid Corporation, technology substitution and thus inter-grid transmission are 

limited. This is evidenced by the statistically insignificant effects of the interaction terms 

between the water scarcity of one grid and the technology variables in the other four grid 

regions within the State Grid Corporation. Therefore, we conclude that there is no spatial effect 

via inter-grid transmission. 

The results imply the inefficiency of the dispatch and transmission system in China power grid 

network to certain extent, if not completely. The lack of a nationwide barrier-free, inter-grid, 

generation dispatch and transmission system could intensify the negative impact of water 

stress-induced power shortages. 

Dispatching in China follows the administrative fair dispatch rule rather than a merit order. 

Fair dispatch rule overlooks the incentives for plants to be efficient. Dispatch centers are 

affiliated to the grid companies with multi-level hierarchy. Grid companies act as a single 

transmission and distribution system operator, and thus have negative effects on system 

Electronic copy available at: https://ssrn.com/abstract=3902775



 

24 
 

efficiency. Before 2015, the cross-regional (interprovincial or interregional) mid- and long-

term trading in China contributed approximately 2% to 10% of the total power transactions. 

The sellers and buyers were selected administratively. Such contracting was intended to make 

provincial grids more resilient and improve efficiency of the power system. However, most of 

the cross-regional power trading was dominated by government. For instance, coal power 

transmission is required to trade from the Northwest region to the Central or Northern regions 

and hydropower transmission is required to trade from the Central to the Southern region 

following a national strategy.  

The authority increasingly realized that cross-regional would benefit the whole system 

efficiency. However, the barriers for resistance from provincial governments because of 

institutional interests make the interregional trading difficult (IEA, 2019). Although Grimm et 

al. (2022) find it may not be always efficient to minimize redispatch cost in the case of market-

based redispatch compared to the cost-based one, the lessons learnt from China’s electricity 

reform suggest that without a market-based pricing system, more efficient system operation 

and power shortage mitigation could be hard to achieve. 

7. Environmental costs 

We further investigate the environmental impact of water scarcity by estimating the main result. 

Based on process chain analysis and life cycle analysis methods, Jiang (2015) calculates 

greenhouse gas emissions from nuclear power chain life cycle is 6.2-11.9g•CO2/kWh in China. 

The coal power and hydro-electric chain life cycle emit 1072.4g•CO2/kWh and 0.81-

12.8g•CO2/kWh, respectively. This implies, as a result of water induced technology 

substitution, a one-standard-deviation reduction in PDSI would raise plant-level CO2 

emissions by 32000 tons annually. With an average price for carbon emission being 5.50 USD 

per ton during 2013–2015 in China (Slater 2019), the extra cost for each thermal power plant 

to emit additional CO2 is equivalent to 0.18 million USD per year. This monetary value could 

be much higher considering the substantially increased carbon price in China recently. In year 

2021, carbon price has reached to the highest level of US$ 13.7 per ton, which implies the 

environmental cost could increase to 0.44 million USD. 

Furthermore, we provide a precise estimation of how frequency of drought severity or water 

abundance affects CO2 emissions at plant level. By examining CO2 emissions based on 

nonlinearity results, it shows that an additional month in the (-∞, -5), [-5, -3), [-3, -1), [-1, 1), 

[1, 3), [3, 5) and [5,∞) bins can lead to an increase in annual average CO2 emissions from each 
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coal power plant by roughly 27064 tons, 12632 tons, 9071 tons, 6404 tons, 2517 tons, 499 tons 

and 12078 tons, respectively. In the extreme case, the impact of one additional month in the 

most severe water shortage bin will increase the cost up to 0.15 million USD per plant per year. 

In the arid period, coal-fired power plants can barely meet the needs of cooling by drawing 

water. In such situations, the coal-fired plants tend to adopt dry or hybrid cooling systems that 

require less or no water for cooling (Rodriguez et al. 2013). Therefore, in dry periods, carbon 

emissions are higher compared to the ample water period. 

 

8. Conclusion 

This paper answers how utility plants choose technologies for electricity generation in response 

to the changing water availability. We find power plants replace hydroelectricity by coal-fired 

generation and nuclear power, which results in unexpected additional use of coal and an 

increase in carbon emissions. When taking into account the characteristics of water cooling for 

generators, we find drought leads to a transition in technology from hydroelectric power plants 

to plants that use once-through and recirculating cooling technologies. In terms of water 

sources, we find evidence that severe water shortages can trigger increasing electricity 

generation from power stations that use surface water or municipal wastewater.  

In addition, we have introduced the water availability bins to address the monthly nonlinear 

relationship between the severity of water scarcity (abundance) and power generation. The 

result indicates that a change from moderate drought to extreme drought will encourage 

electricity generation from coal-fired plants, as coal-powered technology is less water-

intensive than hydro-powered technology. When water availability is at very low levels, hydro 

or nuclear power are unable to provide the rapid ramping services required to address the 

demand for electricity.  

More specifically, in this paper, we have provided an explanation for the persistent electricity 

shortages that have been experienced in China in early 2000s. Our analysis shows clearly that 

the reduction in hydroelectric generation induced by water scarcity cannot be fully offset by 

thermal power generation. This scenario suggests that water resource constraints have a 

pronounced negative effect on electricity supply in China. We also recognize that coal-fired 

power and hydroelectricity are susceptible to seasonal trends over time, with clear technology 

shifts in the second and third quarter of a year. As the decrease in hydroelectric generation can 

only be partially offset by coal-fired plants, water scarcity may result in electricity shortages in 
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the second and third quarter of a year in particular. By looking into the spatial effects of water 

scarcity, we find water scarcity-induced power shortages cannot be compensated for by 

electricity supply from other regions via inter-grid transmission. This situation may also 

provide indirect evidence of the inefficiency of the current power dispatch and transmission 

system.  

The environmental implications of water scarcity on carbon-intensive coal generation appears 

to be increasing. We find CO2 emissions are increasing in association with the rising use of 

coal as a fuel source for electricity generation. We also note that a change from moderate 

drought to extreme drought will largely increase CO2 emissions. In the arid period, coal-fired 

power plants cannot withdraw sufficient water to meet the needs of cooling. Therefore, the 

coal-fired electricity sector is likely to adopt dry or hybrid cooled systems that require less or 

no water for cooling. In this circumstance, the coal-fired power plants will have relatively 

higher CO2 emissions compared to periods when ample water is available. The estimated 

average carbon emissions increase attributed to water scarcity-induced technology substitution 

for plant-level is up to 32000 tons per year, resulting in an additional cost of 0.18 million USD. 

Our findings offer new insights to assist with the adaptation to the decline in water availability 

in the Chinese power sector. Future policy makers should consider the potential negative 

impact of drought and the constraints of water resources on the level of CO2 emissions.  

Our results for policy implications is subject to several major caveats. First, our work is a novel 

approach to the relationship between water scarcity and the selection of electricity technology. 

However, as the power sector is a state-controlled industry and our dataset incorporates only 

observations of power plants with installed capacity of over gigawatts that are affiliated with 

the five giant generation corporations, and the precise information on the switching cost from 

one technology to another is missing. The induced technology selection is more a reflection of 

government decision than reaction by individual plants. What we estimate is thus an average 

effect of government response to drought rather than the market effect of individual generators. 

Another caveat is that technologies based on renewable sources are absent in our analysis. In 

addition, long-run water availability can affect the construction of new power plants and thus 

shift the construction selection for differently fuelled power plants. In our study, we have not 

taken such effects into consideration.  
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Tables 

Table 1 Data statistics description  

Variables (Units) Mean (Standard Deviation) Minimum Maximum Source 

Plant-month sample 

PDSI (--) -1.43 (2.32) -8.08 6.77 The Climate Data Guide (2019) 

SPEI (--) 0.01 (1.02) -2.59 2.69 The Climate Data Guide (2019) 

Precipitation (cm) 8.20 (9.06) 0.00 118.59 Terrestrial Air Temperature and Precipitation 

(2017) 

Plant-year sample 

Electricity generation (108 

kWh) 

84.69 (64.01) 1.33 982.93 China Electric Power Yearbook (2008–2015) 

Cooling degree days (degree 

days) 

94.35 (107.96) 0.00 576.50 Terrestrial Air Temperature and Precipitation 

(2017) 

Installed capacity (GW) 1.69 (1.43) 1.00 22.40 China Electric Power Yearbook (2008–2015) 

Province-year sample 

Price (constant 2007 

yuan/103 kWh) 

350.85 (70.73) 158.87 660.15 Electricity Pricing Supervision Report 

(2008–2015) 

Stock of electricity source 

investment (constant 2007 

108 yuan) 

490.47 (352.57) 0.00 3100.00 Almanac of China's Waterpower (2008–

2015) & Compilation of Statistical Materials 

of Electric Power Industry (2009–2011 & 

2014) 
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Table 2 Baseline results 

Notes: The table presents results from the fixed effects panel data estimation. The dependent variable is the logarithm of power generation at the plant level. The 

key independent variables are interactions between yearly average PDSI and fuel type. CDD is a nonlinear climatic variable for cooling degree days. Other control 

variables contain installed capacity, electricity price and fixed assets investment. Robust standard errors adjusted for clustering at the power plant-year level are in 

parentheses. The sample spans 2007 through 2014. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 
 

Dependent variable 

Ln(generation)  

Model _ PDSI baseline 

(1)  (2)  (3)  (4)  

PDSI × Coal -0.129** (0.060) -0.104* (0.060) -0.132** (0.065) -0.097 (0.061) 

PDSI × Hydro 0.635*** (0.166) 0.762*** (0.168) 0.457 (0.324) 0.595** (0.241) 

PDSI × Nuclear -0.985*** (0.354) -0.730* (0.416) -1.366*** (0.378) -1.130*** (0.405) 

Ln(CDD) 0.022 (0.019) 0.025 (0.022) 0.023 (0.020) 0.029 (0.022) 

Control variables Yes  Yes  Yes  Yes  

Observations 1800  1800  1800  1800  

No. of coal plants 195  195  195  195  

No. of hydro plants 25  25  25  25  

No. of nuclear plants 5  5  5  5  

Within R-squared 0.111  0.110  0.107  0.104  

Plant fixed effects Yes  Yes  Yes  Yes  

Year fixed effects Yes  Yes  Yes  Yes  

Power grid ×Year fixed effects No  Yes  No  Yes  

Power plant type ×Year fixed effects No  No  Yes  Yes  
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Table 3 Water scarcity effect on technology by location 

Dependent variable 

Ln(generation)  

Model _ location Model _ location Model _ location Model _ location 

(1) (2) (3) (4) 

PDSI × Coal× Non-river -0.277*** (0.084) -0.212** (0.085) -0.301*** (0.078) -0.239*** (0.087) 

PDSI × Coal× Major-river -0.079 (0.058) -0.067 (0.062) -0.083 (0.056) -0.055 (0.063) 

PDSI × Hydro 0.638*** (0.165) 0.771*** (0.167) 0.458* (0.233) 0.601** (0.239) 

CDD Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes 

Observations 1800 1800 1600 1600 

No. of coal plants 195 195 195 195 

No. of hydro plants 25 25 25 25 

No. of nuclear plants 5 5 5 5 

Within R-squared 0.112 0.111 0.108 0.104 

Plant fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Power grid × Year fixed effects No Yes No Yes 

Power plant type × Year fixed effects No No Yes Yes 

Notes: The table presents results for effects of water scarcity on fuel type by location. The dependent variable is the logarithm of power generation 

at the plant level. The key independent variables are interactions between yearly average PDSI, fuel type and dummy variable for plants located 

near the major river or not. CDD is a nonlinear climatic variable for cooling degree days. Other control variables contain installed capacity, 

electricity price and fixed assets investment. No interactions for hydro plants as all the 25 hydro plants are close to the major rivers in China. 

Robust standard errors adjusted for clustering at the power plant-year level are in parentheses. The sample excludes nuclear power plants and 

spans 2007 through 2014. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4 Spatial heterogeneity of electricity shortage 

Power grid region PDSI (SD) Coal (108 kWh) 

Increase 

Hydro (108 kWh) 

Decrease 

Nuclear (108 kWh) 

Increase 

Electricity Shortage 

(108 kWh) 

Total 2.32 0.28 2.05 1.45 0.32 

NPG 1.93 0.23 1.71 1.21 0.27 

NEPG 2.75 0.33 2.44 1.72 0.38 

EPG 1.90 0.23 1.68 1.19 0.26 

CPG 2.06 0.25 1.82 1.29 0.29 

NWPG 2.09 0.25 1.85 1.31 0.29 

SPG 2.88 0.34 2.55 1.81 0.40 

Note: SPG represents the southern power grid. NPG represents the north China power grid. EPG represents the east China power grid. NEPG represents the 

northeast power grid. NWPG represents the northwest power grid. CPG represents the central China power grid. 
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Table 5 Results for alternative water scarcity indicators 

Dependent variable 

Ln(generation)  

Model _ SPEI Model _ Precipitation 

(1)  (2) (3)  (4) (5) (6) (7) (8) 

SPEI(P) × Coal -0.385*** -0.382*** -0.324*** -0.312** -0.001*** -0.000 -0.001** -0.000 
 

(0.084) (0.132) (0.086) (0.127) (0.000) (0.000) (0.000) (0.000) 

SPEI(P) × Hydro 0.035 0.243 -0.390 -0.219 0.002 0.003 0.001 0.002 
 

(0.336) (0.361) (0.450) (0.511) (0.003) (0.003) (0.003) (0.004) 

SPEI(P) × Nuclear -0.718* -0.532 -0.984** -0.791* -0.001 0.000 -0.001 0.000 
 

(0.433) (0.440) (0.458) (0.473) (0.001) (0.001) (0.001) (0.001) 

CDD Yes Yes Yes Yes Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1800 1800 1800 1800 1800 1800 1800 1800 

No. of coal plants 195 195 195 195 195 195 195 195 

No. of hydro plants 25 25 25 25 25 25 25 25 

No. of nuclear plants 5 5 5 5 5 5 5 5 

Within R-squared 0.108 0.104 0.106 0.100 0.105 0.102 0.103 0.097 

Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Power grid × Year fixed effects No Yes No Yes No Yes No Yes 

Power plant type × Year fixed effects No No Yes Yes No No Yes Yes 

Notes: The table presents results for alternative water scarcity indicators. The dependent variable is the logarithm of generation at the plant level. The key 

independent variables are interactions between fuel type and alternative yearly average water scarcity variables including SPEI (Column 1-4) and Precipitation 

(Column 5-8). CDD is a nonlinear climatic variable for cooling degree days. Other control variables contain installed capacity, electricity price and fixed assets 

investment. Robust standard errors adjusted for clustering at the power plant-year level are in parentheses. The sample spans 2007 through 2014. * p < 0.10, ** p 

< 0.05, *** p < 0.01. 
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Table 6 Water scarcity effect on the choice of technology for cooling 

Dependent variable 

Ln(generation)  

Model _ CT Model _ CT Model _ CT Model _ CT 

(1) (2) (3) (4) 

PDSI × Once-through -0.302*** (0.095) -0.216** (0.089) -0.297*** (0.093) -0.208** (0.088) 

PDSI × Recirculating -0.185** (0.083) -0.188** (0.093) -0.194** (0.087) -0.196** (0.097) 

PDSI × Other Ⅰ for coal 0.060 (0.079) 0.061 (0.081) 0.053 (0.077) 0.072 (0.084) 

PDSI × Other Ⅱ for hydro 0.636*** (0.167) 0.772*** (0.174) 0.457* (0.235) 0.603** (0.247) 

PDSI × Other Ⅲ for nuclear -0.999*** (0.366) -0.768** (0.366) -1.364*** (0.427) -1.156*** (0.398) 

CDD Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes 

Observations 1800 1800 1800 1800 

No. of coal plants 195 195 195 195 

No. of hydro plants 25 25 25 25 

No. of nuclear plants 5 5 5 5 

Within R-squared 0.114 0.112 0.110 0.106 

Plant fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Power grid × Year fixed effects No Yes No Yes 

Power plant type × Year fixed effects No No Yes Yes 

Notes: The table presents results for effects of water scarcity on the choice of technology for cooling. The dependent variable is the logarithm of power generation 

at the plant level. The key independent variables are interactions between yearly average PDSI and electricity generators’ cooling technology. Other Ⅰ for coal 

refers to power plants for which adapt dry cooled and hybrid cooled systems. Hydroelectric power plants use no cooling technology and are grouped into the Other 

Ⅱ subcategory. CDD is a nonlinear climatic variable for cooling degree days. Other control variables contain installed capacity, electricity price and fixed assets 

investment. Robust standard errors adjusted for clustering at the power plant-year level are in parentheses. The sample spans 2007 through 2014. * p < 0.10, ** p 

< 0.05, *** p < 0.01. 
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Table 7 Water scarcity effect on technology by water sources 

Dependent variable 

Ln(generation)  

Model _ WS Model _ WS Model _ WS Model _ WS 

(1) (2) (3) (4) 

PDSI × Surface water -0.237** (0.118) -0.223* (0.124) -0.221* (0.116) -0.194 (0.124) 

PDSI × Groundwater 0.366 (0.265) 0.337 (0.263) 0.325 (0.262) 0.292 (0.259) 

PDSI × Municipal wastewater -0.404* (0.244) -0.354 (0.252) -0.415* (0.247) -0.383 (0.256) 

PDSI × Seawater -0.129 (0.135) -0.044 (0.123) -0.135 (0.139) -0.060 (0.125) 

PDSI × Other 0.166 (0.118) 0.205 (0.125) 0.110 (0.120) 0.167 (0.125) 

CDD Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes 

Observations 1800 1800 1800 1800 

No. of coal plants 195 195 195 195 

No. of hydro plants 25 25 25 25 

No. of nuclear plants 5 5 5 5 

Within R-squared 0.109 
 

0.106 
 

0.107 
 

0.102 
 

Plant fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Power grid × Year fixed effects No Yes No Yes 

Power plant type × Year fixed effects No No Yes Yes 

 Notes: The table presents results for effects of water scarcity on the technology by water sources. The dependent variable is the logarithm of power generation at 

the plant level. The key independent variables are interactions between yearly average PDSI and electricity generators’ water sources. Other water source refers to 

electricity plants that do not consume or withdraw water or where their water source is not indicated. CDD is a nonlinear climatic variable for cooling degree days. 

Other control variables contain installed capacity, electricity price and fixed assets investment. Robust standard errors adjusted for clustering at the power plant-

year level are in parentheses. The sample spans 2007 through 2014. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 8 Spillover effects of water scarcity on inter-grid transmission 

Dependent variable Model_ SPG Model_ NPG Model_ EPG Model_ NEPG Model_ NWPG Model_ CPG 

Ln(generation) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

PDSI× Coal -0.119* -0.109 -0.219** -0.226** -0.224** -0.211** -0.243*** -0.173* -0.232*** -0.217** -0.226*** -0.211**  
(0.069) (0.074) (0.091) (0.101) (0.087) (0.103) (0.091) (0.105) (0.085) (0.104) (0.085) (0.103) 

PDSI× Hydro 0.636** 0.713* 0.929* 1.239** 0.872* 1.010* 0.729 0.746 0.895* 1.037* 0.816 0.969*  
(0.293) (0.371) (0.474) (0.534) (0.488) (0.537) (0.493) (0.549) (0.480) (0.534) (0.530) (0.540) 

PDSI× Nuclear -1.036*** -1.064** -1.278*** -1.311*** -1.403*** -1.300*** -1.168** -1.299*** -1.478*** -1.300*** -1.698*** -1.301***  
(0.329) (0.418) (0.403) (0.498) (0.499) (0.500) (0.504) (0.499) (0.473) (0.500) (0.490) (0.500) 

PDSISPGC× Coal 0.181 0.388 
          

 
(0.436) (0.746) 

          

PDSISPGC× Hydro 1.362 2.013 
          

 
(1.255) (2.511) 

          

PDSISPGC× Nuclear 0.448 0.000 
          

 
(0.609) (0.000) 

          

PDSINPG× Coal 
  

0.110 -6.293 
        

   
(0.354) (6.301) 

        

PDSINPG× Hydro 
  

0.293 0.000 
        

   
(0.517) (0.000) 

        

PDSINPG× Nuclear 
  

1.284** 0.000 
        

   
(0.585) (0.000) 

        

PDSIEPG× Coal 
    

-0.043 -0.705 
      

     
(0.282) (1.817) 

      

PDSIEPG× Hydro 
    

1.074 0.000 
      

     
(1.117) (0.000) 

      

PDSIEPG× Nuclear 
    

0.000 0.000 
      

     
(0.000) (0.000) 

      

PDSINEPG× Coal 
      

0.137 2.933*** 
    

       
(0.189) (0.939) 

    

PDSINEPG× Hydro 
      

-0.677 0.000 
    

       
(0.583) (0.000) 

    

PDSINEPG× Nuclear 
      

0.422 0.000 
    

       
(0.280) (0.000) 

    

PDSINWPG × Coal 
        

-0.364 -0.791 
  

         
(0.469) (0.651) 

  

PDSINWPG× Hydro 
        

0.347 0.051 
  

         
(1.483) (1.553) 

  

PDSINWPG× Nuclear 
        

0.3 0.000 
  

         
(0.706) (0.000) 

  

PDSICPG× Coal 
          

0.436 -1.071            
(0.608) (3.732) 

PDSICPG× Hydro 
          

3.227 0.000            
(3.153) (0.000) 

PDSICPG× Nuclear 
          

1.632 0.000 
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(1.513) (0.000) 

CDD Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1800 1800 1472 1472 1472 1472 1472 1472 1472 1472 1472 1472 

Number of Coal plants 195 195 165 165 165 165 165 165 165 165 165 165 

Number of Hydro plants 25 25 16 16 16 16 16 16 16 16 16 16 

Number of Nuclear plants 5 5 3 3 3 3 3 3 3 3 3 3 

Within R-squared 0.115 0.105 0.128 0.130 0.130 0.119 0.136 0.125 0.128 0.120 0.130 0.119 

Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Power grid × Year fixed effects No Yes No Yes No Yes No Yes No Yes No Yes 

Power plant type × Year fixed effects No Yes No Yes No Yes No Yes No Yes No Yes 

Notes: The table presents the spillover effects of water scarcity on inter-grid transmission. The dependent variable is the logarithm of generation at the plant level. 

SPGC represents the Southern Power Grid Corperation. NPG represents the north China power grid. EPG represents the east China power grid. NEPG represents 

the northeast power grid. NWPG represents the northwest power grid. CPG represents the central China power grid. NPG, NEPG, NWPG, EPG and CPG belong 

to State Grid Corporation of China. SPG belongs to South Power Grid Company Limited. We construct water scarcity indices for the six power grids by calculating 

the average value of PDSI for each of the six grid regions. To verify the existence of a spatial effect, in addition to our original model specification, the new indices 

are interacted with the technology variables in the other five grid regions. CDD is a nonlinear climatic variable for cooling degree days. Other control variables 

contain installed capacity, electricity price and fixed assets investment. Robust standard errors are in the bracket. The sample spans 2007 through 2014. * p < 0.10, 

** p < 0.05, *** p < 0.01. 
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Figures 

 Figure 1: Degree of drought in China over time 

Note: Figure represents Chinese yearly average water shortage over time. The lines inside the boxes show the median 

value. The lower and upper hinge of the boxes present the 25th and 75th percentiles of the variables. The whiskers on 

the bottom and top display the lower and upper adjacent values, respectively. The outside values are plotted with dots.  

Source: The Climate Data Guide (2019), China Electric Power Yearbook (2008–2015). 
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Figure 2: Spatial distribution of power plant and power grid 

Notes: (1) The dots in Figure 2(a) display the location of power plants investigated in this study. We use one dot in a specific city to represent the 

power plants located in the same city. The blue lines show the ten major water systems in China. (2) Figure 2(b) overlays the power grid of China. 

NEPG represents the northeast power grid, consisting of Liaoning, Jilin, Heilongjiang and the eastern part of Inner Mongolia. NPG represents the 

north China power grid, consisting of Beijing, Tianjin, Hebei, Shanxi, Shandong and the western part of Inner Mongolia. NWPG represents the 

northwest power grid, consisting of Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang. EPG represents the east China power grid, consisting of 

Shanghai, Jiangsu, Zhejiang, Anhui and Fujian. CPG represents the central China power grid, consisting of Jiangxi, Henan, Hubei, Hunan, Sichuan 

and Chongqing. SPG represents the southern power grid, consisting of Guangdong, Guangxi, Guizhou, Yunnan and Hainan. Although NEPG, NPG, 

NWPG, EPG and CPG belong to State Grid Corporation of China, inter-grid transmission is limited. Due to lack of sufficient data, Tibet, Taiwan, 

Hong Kong and Macao are excluded from this research. 
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Figure 3: Monthly drought frequency variation effects on generation 

Notes: The blue curve represents point estimation of drought bins. Each point in the graphs estimates the marginal effect, that is to say, to what 

extent an additional month, imposing on PDSI at particular bin of water scarcity distribution, affects electricity generation. The 95% confidence 

intervals are the shaded areas. Histograms at the bottom demonstrate the percentage distribution of each water scarcity bin in the sample. The blue 

histogram displays the near normal water bin. 
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