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Chinas Low-earbon Economic Transitions towards Carbon Neutrality:

Characteristics and Mechanisms
JIN Wei® WANG Dihai” and ZHANG Lin®

(a: Ma Yinchu School of Economics Tianjin University;
b: School of Economics Fudan University;
¢: School of Energy and Environment City University of Hong Kong)
Summary: Transiting to a low-carbon economy for carbon neutrality while promoting economic growth is one of the key
issues facing China to address climate change and sustainable development. At the United Nations General Assembly in
September 2020 China has pledged to peak carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. The
thought-provoking questions are as follows: how should China make strateqic plans according to the national low-carbon
development strategy and make use of mechanisms such as emission reduction regulation technological innovation and
industrial transformation to promote the goal of carbon neutrality? How will the target constraint of carbon neutrality affect
the path of China’s future economic growth and transformation? Understanding how different carbon emission reduction
mechanisms influence each other and how they affect economic growth and transformation are theoretical issues that need to
be answered urgently in the academic community. A theoretical analysis of these issues is the main objective of this paper.

This paper uses provincial panel data to empirically examine the stylized facts of Chinas low-carbon transition. Carbon
pricing emission efficiency improvement and capital restructuring are robust mechanisms for low-carbon transition. A green
growth model is developed to specify the interactions between carbon-intensive capital clean capital cumulative carbon
stocks and the social cost of carbon emissions. The model analyzes the mechanism through which low-carbon transition
could proceed with a focus on the effects of carbon pricing efficiency improvement and capital restructuring on transitional
dynamics of green growth. The calibrated model is used to quantitatively simulate the time path of low-carbon transition
under different scenarios with the carbon neutrality goal.

The main findings are that carbon pricing emission efficiency improvement and capital restructuring are three
important mechanisms through which low-carbon transition can meet the goal of carbon neutrality. The three mechanisms are
differentiated but complementary. Carbon pricing that captures the social costs of carbon emission creates a price incentive
mechanism of low-carbon transition to limit the use of high-carbon assets and carbon emissions. However the economic
constraint of carbon pricing incurs transition costs such as stranded assets. Emission efficiency improvement reduces the
carbon intensity through the learning-by-doing effect thereby mitigating carbon emission increases as the size of production
scale expands. Capital restructuring acts to expand the share of low-carbon capital and shrink that of high-carbon capital
which helps limit emissions caused by economic growth and mitigate transition costs incurred by carbon pricing. These three
mechanisms can work cohesively and contribute to endogenous growth in the context of carbon neutrality. While striving to
achieve the net—zero emission goal production consumption and investment can continue to grow and the target of carbon
emission reduction will not lead to an outcome of growth stagnation.

The policy implications drawn from our research are that low-carbon transition towards carbon neutrality lies in
coordinating carbon pricing emission efficiency improvement and low-carbon industrial restructuring. First it is important
to strengthen the building of carbon markets by expanding sectoral coverages of the carbon market to reflect the scarcity of
emission quotas. By doing so the market can form the expectation of low-carbon asset value appreciation and creates the
incentive for low-carbon technical upgrading of high-carbon enterprises. Second it is also important to think about the way
to achieve carbon neutrality from the perspective of improving production technology and emission efficiency. The power
industry must reduce the emission intensity by promoting clean technologies such as wind and solar energy. For
manufacturing that inevitably uses fossil energy in production it is necessary to promote the use of high-efficiency
equipment and carbon capture and storage technologies for maintaining the asset value of high-carbon capital. Third it is
important to establish an incentive mechanism to guide capital investment towards low-carbon industries and foster green
industries such as renewable energy clean production energy conservation and pollution control. By restricting high—
carbon industries and directing investment towards low-carbon industries low-carbon industrial restructuring will not only
help achieve the carbon neutrality goal but also create a new engine for economic growth.

This paper contributes to green growth literature which mainly focuses on factors of low-carbon economic transition from
the empirical perspective. There is a lack of theoretical works analyzing the mechanism of green growth for carbon
neutrality. To our knowledge this paper for the first time explores the mechanism of Chinas low—carbon transition for the
target of carbon neutrality. Our paper contributes to a detailed exposition of the general equilibrium effect of carbon pricing
emission efficiency improvement and capital restructuring on low-carbon transition. It also makes numerical simulation and
quantitative evaluation of the time path and inherent characteristics of China’s low-carbon transition. Our paper thus
contributes to a thorough understanding of low-carbon transition for carbon neutrality through the lens of empirical testing
theoretical analysis and quantitative simulation.

Keywords: Carbon Neutrality; Low-carbon Transition; Carbon Pricing; Emission Efficiency; Capital Restructuring
JEL Classification: O11 044 P28 Q43 Q54
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