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1. INTRODUCTION 

Due to the challenges of global warming, many countries have proposed carbon neutral plans 

to achieve net zero carbon dioxide emissions by the middle of this century. Finding the path for 

achieving the carbon neutral commitment with the lowest costs has thus become a significant 

challenge around the world. As a market-driven instrument of environmental regulation with high 

flexibility, an emission trading scheme (ETS) is believed to relieve energy and environmental 

stress in a more cost-effective way than other measures (Gallagher et al., 2019). It also has 

substantial mitigation potential with little negative impact on industrial competitiveness (Joltreau 

and Sommerfeld, 2019). Understanding the tradeoffs of economic agents between profitability 

objective and environmental compliance costs after ETS intervention is essential for effective 

governance. Although several attempts have been made to measure the impacts of an ETS on 

corporate performance (Xiao et al., 2021; Zhu et al., 2019), much less attention has focused on the 

cost dynamics attributed to ETS-induced efficiency changes. 

This paper addresses this by examining China’s ETS pilot policy to quantitatively estimate 

the impact of the ETS requirements on the cost of utilities. As the main contributor to greenhouse 

reduction, the power generation industry in China has been required to make significant changes 

to meet the need for climate mitigation (Duan et al., 2021). China has launched the carbon trading 

market in 2021 and initially covers the power industry, accounting for nearly 40% of China’s 

carbon emissions. China’s carbon trading reforms started in 2011, where the power generation 

industry in the provinces/megacities of Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, 

and Shenzhen is covered. Power generation enterprises are expected to take the lead in carbon 

reduction efforts. However, thermal power enterprises in China have been facing unprecedented 

pressure from both the supply and demand sides (Liu et al., 2021). Strict emission reduction targets 

and control measures could therefore further aggravate the financial distress being experienced by 

thermal power enterprises. Therefore, the financial problems of thermal power enterprises are of 

considerable concern, and understanding the cost implications of the ETS pilot projects is relevant 

for addressing the financial stress of power plants and helping them to maintain a sustainable 

electricity supply while optimizing the economic costs of the carbon policy in general.  

Our research question is twofold: when does the ETS affect the production cost and the 

associated cost efficiency of the thermal power plants, and are these effects different across the 

pilot provinces if the localized conditions vary? Our identification strategy relies on the difference-

in-differences (DID) inference where the power plants in the pilot provinces comprise the treated 

group and the plants in the non-pilot provinces comprise the control group. As the ETS pilot policy 

took two years to implement after its announcement, we could distinguish the policy shock in two 

stages: the announcement and formal implementation. To examine the cost dynamics attributed to 

the two-stage policy shocks, both total production cost and cost efficiency are used as proxies to 

reflect the cost dynamics, which allows us to explore whether power plants have made genuine 
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efforts rather than just tentatively cut down inputs or production to reduce emissions, because an 

improvement in cost efficiency leads to sustained cost savings. 

The results of the DID estimation illustrate that during the announcement stage, the plants in 

the pilot provinces experienced an insignificant increase in total costs relative to the plants in the 

non-pilot provinces. When the pilot policy entered into force after 2013, we found a significant 

reduction in production costs for the treated group, which implies that the ETS announcement 

encouraged them to undertake actions to prepare for the change that will be necessary with the 

incoming carbon emission reduction requirements. Therefore, when the implementation stage 

starts officially, the plants are well prepared to cut emissions more cost-efficiently. We observed 

similar results if total costs were replaced by cost efficiency, as there was an insignificant 

downward adjustment of cost efficiency for the pilot power plants in the announcement stage but 

a significant increase in cost efficiency when the policy was formally implemented.  

Several challenges were identified that may affect the validity of our results. First, the 

estimated policy effects may not result from the difference between the treated and control groups. 

We address this by constructing an event-study model to test the parallel trend assumption. Our 

results confirmed the existence of a parallel trend before the shocks. Second, potential endogeneity 

may arise if the ETS pilot provinces were not randomly selected. To address this issue, we employ 

the propensity score matching (PSM) before the DID estimation by constructing a counterfactual 

control group composed of non-pilots that had the same probability of being selected as pilots 

(Peikes et al., 2008). Our results survived in the matched DID estimation. Third, there are 

confounding policies, such as the SO2 pilot policy and provincial CO2 emission reduction targets 

in both the 12th Five-Year Plan (FYP) and the 13th Five-Year Plan. Our results remained after 

introducing a new policy dummy to capture the confounding effects. Fourth, cost efficiency is 

estimated through stochastic frontier specification, where the efficiency is truncated between 0 and 

1. We thus apply the Tobit model to address the data truncation. All of these checks confirmed the 

robustness of our results.  

We then uncover the condition through which power plants in one pilot province differ from 

those in other pilot provinces. Our results illustrate that the treatment effects of the ETS differed 

across pilot provinces. Drawing on external forces from localized characteristics, both market and 

non-market factors, we find that the degree of marketization, environmental enforcement, and 

carbon dependence are three potential mechanisms that induce the heterogeneity. High-level 

marketization leads to more active and sensitive adaption to grasping business opportunities via 

fierce market competition, strict environmental policy enforcement increases potential regulatory 

pressure and makes firms take affirmative measures to avoid compliance cost, which means that 

regions with stronger market competition and policy enforcement allow firms to deal more 

proactively with shocks from the ETS. However, regions with a higher carbon dependence have 

difficulties transitioning to a low-carbon energy system due to technology lock-in and resistance, 

which hamper improvements in efficiency. Therefore, the effectiveness of the ETS depends not 
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only on the actions of the plants covered by the scheme, but also on the external forces being 

exerted where the plant is located. An appropriate design of the ETS policy should consider these 

external factors to smooth the barriers that may mute the efficacy of the policy.  

Finally, we quantify the cost savings attributed to the ETS. As the underlying effects of the 

ETS depend on the localized conditions, we estimate the effects by regions. Therefore, we employ 

the synthetic control method proposed by Abadie and Gardeazabal (2003) for regional analysis. 

We find that the cost efficiency in Shanghai, Guangdong, and Tianjin experienced a slight drop in 

2011 when the pilot policy was announced, and then rose gradually relative to the synthetic control 

plants when the formal implementation began in 2013 or 2014, which is in line with our DID 

results. By comparing the regional difference, it can be seen that the ETS significantly improved 

the cost efficiency for plants in Shanghai, Guangdong, and Tianjin. Also, the estimated average 

annual cost efficiency improvement during the period 2013–2017 was 9.34 percentage points in 

Guangdong, 9.31 in Shanghai, and 5.76 in Tianjin. The cost saving attributed to ETS-induced 

efficiencies can be calculated by multiplying the efficiency improvement with the total costs of 

the plants. The results show that there was a total cost saving of 29.75 million RMB for plants in 

Shanghai, Guangdong, and Tianjin over the 2013–2017 period, accounting for 29.94 % of the total 

cost in 2017. However, the effects are invisible for thermal power plants in Chongqing and Hubei. 

The validity of the synthetic control results passed the placebo test as suggested by Galiani and 

Quistorff (2017). 

This study makes three main contributions to the existing literature. First, we add to the 

discussion of policy instruments, in particular the debates on the price versus quantity instrument, 

for promoting carbon mitigation and a low-carbon economy. Our results shed light on the cost-

effective advantage of a carbon ETS by proving the significant role of carbon trading in enhancing 

the cost efficiency of thermal power plants. This also provides a promising solution for the survival 

of thermal power plants, which is a pressing problem under the dual goals of power stability and 

carbon reduction. Second, our study enhances our understanding of the policy process on 

regulating carbon mitigation in the policy-making stage framework. We demonstrate firms’ 

manifestations towards different policy stages by providing a comparison between the 

announcement and formal implementation stages. It implies that power plants respond to the 

announcement of the regulation and try to avoid further regulatory compliance costs after the 

formal implementation. Finally, we also add to the literature on the effectiveness of the ETS in 

different localized circumstances by highlighting the conditions that could effectively expand the 

benefits of the ETS for the cost performance of thermal power enterprises. Our findings therefore 

provide the theoretical inspiration for accelerating the carbon reduction process. 

Recommendations for policy are also presented to assist governments to design an ETS policy 

scheme that promotes carbon market reforms. 

The remainder of the study is organized as follows. Section 2 summarizes the related literature. 

Section 3 presents the theoretical framework, methodology, data sources, and explanation of the 

Electronic copy available at: https://ssrn.com/abstract=4440774



 

5 

 

variables. Section 4 illustrates the main results with robustness checks and discusses the conditions 

under which the effects of the ETS become significant. Section 5 presents a regional analysis by 

synthetic control and quantifies the cost savings associated with efficiency improvements, and 

Section 6 provides the discussion and conclusion. 

2. LITERATURE REVIEW 

Based on Porter hypothesis, effective design and implementation of environmental regulation 

could stimulate firms’ innovation and enhance their competitive advantage (Porter, 1991). 

Weitzman (1974) proposed the important efficiency distinction between equivalent price and 

quantity controls in the regulated market. Economists have long debated this question, and 

previous research has also extended the discussion over the use of these two tools in climate change 

mitigation (Pizer, 2002). The price-based instrument is favored because of the cheaper costs and 

higher incentives to abate (Tyler and Cloete, 2015), while the preferences for the quantity-based 

policy are due to the fewer cost uncertainties, higher efficiency, and the advantage in inducing 

socially optimal technology choice (Krysiak, 2008; Narita and Requate, 2021). Among different 

regulation tools for carbon mitigation, hybrid ETS policies have gained more support as they yield 

sizeable cost reductions (Abrell and Rausch, 2017). As a market-based management mechanism, 

ETS creates strong motivation for firms to internalize the pollution costs through active reforms 

in a more cost-effective way (Gallagher et al., 2019).  

ETS policy has been applied in different national contexts and created unique opportunities, 

such as ETS in the EU, Switzerland, the U.S., Canada, New Zealand, Korea and China 

(Narassimhan et al., 2018). Efforts have been devoted to explore the optimal mechanisms for 

effective carbon market, such as setting of appropriate carbon prices, and allocation methods of 

allowances and introducing new instruments (Hintermayer, 2020; Newbery et al., 2019; Peng et 

al., 2021). Although with different cap stringency and allocation practices across nations, existing 

studies have demonstrated the promising co-benefits due to the implementation of ETS (Bayer and 

Aklin, 2020; Calel and Dechezleprêtre, 2016; Teixidó et al., 2019).   

China has recently become the trading market with the largest carbon emissions coverage in 

the world. Prior research has illustrated the importance of understanding the specific mechanism 

of China’s ETS, which helps to identify and settle the obstacles to achieving carbon neutral 

commitment (Chen et al., 2021; Liu and Zhang, 2021). Since its official launch of ETS pilot policy, 

discussion on China’s ETS impact and effectiveness has boomed over recent years. A large and 

growing body of research has highlighted the positive environmental effects of China’s ETS, 

especially on carbon reduction (Gao et al., 2020; Xuan et al., 2020). Previous evidences show that 

the ETS-induced carbon mitigation could be achieved via improvement in energy and technical 

efficiency, lower energy consumption, fuel switch, or industrial structure adjustment (Y. Hu et al., 
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2020; Zhu et al., 2022). In line with from Porter hypothesis, a growing body of research also 

stresses the long-run positive effect of the ETS on promoting low-carbon innovation (J. Hu et al., 

2020; Zhu et al, 2019), and green total factor productivity (Li et al., 2022). Renewable energy 

could also be the beneficiary of the ETS, for example, Liu and Zhang (2021) found that ETS has 

promoted the local development of non-fossil energy, such as the share of hydropower, nuclear, 

wind power and photovoltaic power. Considering regional development, research has tried to 

provide evidences on ETS’s regional economic and social dividend, such as recovering GDP losses 

(Wu and Gong, 2021), improving employment (Yu and Li, 2021), and inducing poverty alleviation 

(Zhang and Zhang, 2020). 

Despite these identified benefits, recent evidence has also indicated a negative impact of ETS 

policy in the short term. ETS could decrease productivity and employment in related industrial 

sub-sectors, and thus fail to avoid a negative shock on competitiveness (Zhang and Duan, 2020). 

Moreover, the administration and compliance costs incurred due to the complex implementation 

process of ETS could become a significant burden for the relevant sectors and firms (Wang et al., 

2018). This cost burden could be extremely higher for the power sector, which may further shift 

more mitigation burden to the industry sector due to the tighter ETS target (Pietzcker et al., 2021). 

Thermal power plants in China are responsible for electricity system safety maintenance and 

system peak adjustment, while they are currently going through a difficult transition phase (Liu et 

al., 2021). Considering the dual role in reducing emissions and maintaining power stability, the 

financial performance of power plants under the ETS implementation is worthy of attention. 

Although previous research has highlighted firm’s efforts in pursuit of higher efficiency, much 

less attention has been paid to whether the economic loss caused by carbon reduction could be 

covered by efficiency improvement. Moreover, variations in cost performance due to ETS-induced 

efficiency change remains unknown, especially for entities in highly-regulated sectors such as 

power generation industry. Therefore, this study has tried to answer these questions based on power 

plants’ operating data, which allows us to track how the system strives to balance environmental 

and economic demands arising from the implementation of carbon pricing policies. 

3. RESEARCH DESIGN 

3.1 Theoretical framework 

Cost analysis 

We formalize a theoretical model for analyzing the cost performance of power plants. We 

start with the function of cost performance below: 

𝐶 = 𝑓(𝑉, 𝑍; 𝛽) (1) 

Internal factors of a power plant are the key to determining its cost performance. Therefore, 𝑉 
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refers to a vector of plant-level explanatory variables that could influence the plants’ cost 

performance. Specifically, 𝑉 considers factors such as output measured by total electricity power 

generation output (output), the price of inputs such as capital (𝑝𝑒) and labor (𝑝𝑙), the endowment 

structure (klr), and undesirable output of pollution (erso2). Moreover, regional environment could 

act as an important factor for the operation and management of business entities, further affecting 

their cost performance (Alsaleh and Abdul-Rahim, 2018). We thus additionally considering a 

vector of provincial factors related to economy, policy, technology and environment conditions as 

explanatory variables represented by 𝑍. These provincial-level variables include GDP per capita 

(pergdp), industry structure (indratio), foreign direct investment (fdi_r), investment in pollution 

control (indinvest), marketization degree (market), environmental enforcement (penalty), policy 

uncertainty (epustd), technological innovation capacity (totalpat) and carbon dependence 

(carbongdp).  

Policy analysis 

An effective strategy to estimate the ETS impact could be to compare the differences in cost 

performance of pilot plants and non-pilot plants before and after ETS policy came into effect. 

Following Ashenfelter and Card (1985), in a simplified model with two regions (pilot, non-pilot) 

in two time periods (pre, post), the difference can be estimated as, 

𝛽̂𝐷𝐷 = (𝐶𝑝̅𝑖𝑙𝑜𝑡
𝑝𝑜𝑠𝑡 − 𝐶𝑝̅𝑖𝑙𝑜𝑡

𝑝𝑟𝑒 ) − (𝐶𝑛̅𝑜𝑛−𝑝𝑖𝑙𝑜𝑡
𝑝𝑜𝑠𝑡 − 𝐶𝑛̅𝑜𝑛−𝑝𝑖𝑙𝑜𝑡

𝑝𝑟𝑒 ) (2) 

where(𝐶𝑝̅𝑖𝑙𝑜𝑡
𝑝𝑜𝑠𝑡 − 𝐶𝑝̅𝑖𝑙𝑜𝑡

𝑝𝑟𝑒 ) evaluate the changes in cost performance before and after ETS policy took 

effect in pilot plants, and (𝐶𝑛̅𝑜𝑛−𝑝𝑖𝑙𝑜𝑡
𝑝𝑜𝑠𝑡 − 𝐶𝑛̅𝑜𝑛−𝑝𝑖𝑙𝑜𝑡

𝑝𝑟𝑒 ) refers to the changes in cost performance of 

non-pilot plants. The estimator 𝛽̂𝐷𝐷 represents the difference between these two changes and can 

be considered as the treatment effect after excluding interference of externalities. 

3.2 Empirical method 

Difference-in-Differences model 

We choose DID model as our identification strategy to compare the cost performance of 

power plants with and without implementation of the ETS pilot policy. DID model helps reduce 

other exogenous interference by calculating the estimator 𝛽̂𝐷𝐷 as discussed above (Blackburn et 

al., 2020). The quasi-experiment in China’s ETS pilot policy creates two groups of power plants 

in the treated and untreated provinces respectively, which is advantageous for conducting DID 

analysis. Previous research has also shown the validity of DID method in analyzing China’s ETS 

policy (Chen et al., 2021). 

The treatment group comprises thermal power plants located in the pilot provinces, and the 

control group comprises plants in the non-pilot provinces. China’s ETS pilot policy was 

implemented in two phases: the pilot provinces were announced in 2011, and formal 

implementation occurred after 2013, allowing us to distinguish between the announcement effect 
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and trading effect (Cui et al., 2021). It is assumed that regulated plants began preparing their carbon 

emission controls after the ETS announcement, while essential information such as carbon market 

quotas and carbon price could only be ensured after the official launch of the trading market. Policy 

recipients may behave differently at different policy stages (Ladino et al., 2021), and identifying 

these differences could enhance our understanding of the policy process on regulating carbon 

mitigation in the policy-making stage framework. In this study, we thus consider the impact of 

both the ETS announcement and its implementation on the pilot power plants. We use the DID 

methodology to estimate whether there is a significant difference in cost performance between 

ETS and non-ETS power plants by adopting the following equation. 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 + 𝛽2𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 + 𝜆𝑋𝑖𝑡 + 𝜂𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡 (3) 

where i and t refer to power plant and year, respectively. 𝑌𝑖𝑡 is the dependent variables of total 

cost and cost efficiency, and 𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 and 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 are the interactive terms of treated 

pilot provinces and policy intervention year. 𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 takes the value of one for all plants sitting 

in the pilot provinces after 2011, the year of the ETS announcement, and 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 equals one 

for pilot provinces after the formal implementation year of 2013 for Guangdong, Shanghai, and 

Tianjin provinces and 2014 for Chongqing and Hubei provinces. Therefore, 𝛽1 and 𝛽2 measure 

the ETS announcement effect and implementation effect, respectively. 𝑋𝑖𝑡 is a set of covariates 

that will influence total cost and cost efficiency, including both plant-level and provincial-level 

characteristics, 𝜆 denotes the estimated coefficients for covariates. 𝜂𝑖 and 𝛾𝑡 denote plant fixed 

effect and year fixed effect, respectively, controlling for the firm-level and year-level unobservable 

factors that could affect cost performance of power plants, and 𝜀𝑖𝑡 is the error term.  

Event study  

The validity of DID estimates is based on the parallel trend assumption that any external 

shocks other than the policy treatment would affect the pilot and non-pilot groups in a similar 

manner (Xiao et al., 2021). Therefore, the main concern in DID analysis is that the observed 

distinction between the power plants in the pilot and control provinces may not be the result of the 

policy treatment. A common diagnostic approach is to look at whether the outcomes in the 

treatment and control groups differ significantly before the policy change (Freyaldenhoven et al., 

2019; Fuest et al., 2018). Event study allows to test this parallel trend assumption by providing 

comparison of yearly outcome trends in two groups (He et al., 2020). Therefore, we adopt an event 

study approach to detect trends before the ETS policy came into effect, and to present the yearly 

dynamic effect after the ETS announcement and implementation.   

We use the following form of event studies: 

𝑌𝑖𝑡 = ∑ 𝛽𝑗𝐷𝑡
𝑗
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖

4

𝑗=−5

+ 𝜆𝑋𝑖𝑡 + 𝜂𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡, (4) 
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where plant and year are indexed by i and t, notation for years is t = 1, 2, …, T0, …T, 𝑌𝑖𝑡 is the 

cost outcome, including total cost and cost efficiency, 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 indicates whether a power 

plant sits in the pilot province, and 𝐷𝑡
𝑗
 is a set of time dummies equal to 1 if 𝑡 = j and 0 otherwise. 

The coefficient estimation of 𝛽𝑗 thus could be conducted separately for each year except the base 

year of T0, which is set to 2010, one year before the ETS pilot announcement. 𝑋𝑖𝑡 concludes both 

plant-level and provincial-level control variables, identical with the previous DID model, 𝜂𝑖 is a 

set of plant fixed effects, 𝛾𝑡 is a set of year fixed effects, and 𝜀𝑖𝑡 is the error term. 

3.3 Data source 

Thermal power plant data from 2006 to 2017 were collected from Compilation of Statistical 

Data of China's Power Industry and Survey of China Electricity Council. For provincial-level data, 

economic policy uncertainty (EPU) index data were obtained from Yu et al. (2021). To measure 

the degree of provincial marketization, the provincial market index from the China Market Index 

Database was employed. To calculate carbon intensity, carbon emission data were collected from 

the China Emission Accounts and Datasets (www.ceads.net). The number of environmental 

administrative penalty cases were found in the China Statistical Yearbook on Environment. Other 

provincial level data were calculated from data in the China Statistical Yearbook. 

As we focus on the ETS effect on thermal power plants in the pilot provinces, Beijing and 

Shenzhen are excluded because there are no thermal power plant data for these two cities. 

Therefore, in this study, we only consider the cost performance of power plants in five pilot 

provinces: Shanghai, Guangdong, Tianjin, Chongqing, and Hubei. Our final dataset included 92 

thermal power plants in China for the period 2006–20171, of which 18 power plants were in the 

treated group of ETS pilot provinces. Our dataset contains the observation period of at least three 

years both before and after policy treatment and allows us to carry out the research. Descriptive 

statistics are shown in Table 1[[table 1 about here]]. 

3.4 Variable 

Two dependent variables 

This study mainly utilizes two dependent variables to measure policy effects on cost outcome, 

total cost, and cost efficiency. We collect plant-level data to examine the internal cost shift before 

and after the policy change. Total cost is used to study the direct effect of the policy on power 

plants’ cost changes. However, in response to the increasing carbon emission costs resulting from 

the ETS, plants may conduct proactive measures such as technology improvement, equipment 

upgrading, and process optimization, which result not only in a reduction in total costs but also 

changes in the theoretical cost frontier. To explore this potential effect, cost efficiency is estimated 

to see whether the ETS leads to internal upgrading and improvements in efficiency in thermal 

power plants. 

 

1 Unbalanced panel data due to missing data in 2016-2017 for few power plants. 
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Measurement of cost efficiency of thermal power plants 

We calculate cost efficiency for each power plant from 2006 to 2017 to explore whether plants’ 

cost efficiency has been improved through internal upgrading. Cost efficiency is calculated by 

conducting a stochastic frontier analysis, which has been widely used in efficiency research (Zhang, 

2017; Zhang and Adom, 2018). Following the basic formulation proposed by Aigner et al. (1977), 

we construct the optimal cost frontier, which is specified as the function of input prices, output, 

and a set of explanatory factors (Filippini and Greene, 2016). Moreover, Mundlak’s (1978) 

specification is adopted with the explanatory variables to control potential, unobserved, individual-

specific heterogeneity (Filippini and Zhang, 2016). After log-transformation of cost function, 

maximum likelihood estimation can be used to determine the parameter values in the cost function, 

sample data can be used to determine the theoretical minimum cost for each power plant, and the 

ratio of theoretical minimum cost to actual total cost can be used to determine cost efficiency. The 

detailed steps in the stochastic frontier analysis are provided in Appendix S3. 

Independent variable  

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 and 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 are two dummy variables for measuring plants covered by 

the CO2 emissions trading policy after treatment. Specifically, they are constructed by interacting 

a pilot dummy variable that represents whether the power plant is in the ETS pilot provinces with 

dummy variables of policy announcement year (2011) and implementation year (2013 for 

Guangdong, Shanghai, and Tianjin and 2014 for Chongqing and Hubei), respectively. 

Control variables 

Plant-level covariates 

Electricity output. Electricity power generation is the direct output of power plants and 

reflects the plant's installed capacity and production efficiency (Tzimas and Georgakaki). Higher 

power output usually requires for more labor and capital inputs, accompanied by higher production, 

operation and maintenance costs. 

Input price. The main inputs are energy and labor, which directly affect cost (Filippini and 

Greene, 2016). We include the prices of labor and energy per unit as the input prices for electricity 

production. Specifically, lnpe is total energy cost divided by the amount of energy consumption, 

and lnpl is total labor cost divided by the amount of labor. Moreover, both labor cost and energy 

cost are adjusted by the provincial electricity price to avoid the influence of inflation on cost. 

Endowment structure. The capital labor ratio is used to measure endowment structure, which 

refers to the ratio of the quantities of the two main inputs, capital input and labor input, for power 

plants (Chen et al., 2021). In this study, capital refers to the installed power capacity and labor is 

measured by total employees, representing the basic internal resource allocation in electricity 

production.  
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SO2 emission. SO2 is one of the main pollutants emitted by thermal power plants, and is also 

regarded as an important measure for the level of air pollution. SO2 emission per unit of power 

generation could reflect a plant’s environmental management and cleanliness performance in 

electricity production (McLinden et al., 2016).  

Province-level covariates  

GDP per capita (lpergdp). GDP per capita reflects the regional economy development level. 

Considering higher demand for electricity in economically developed areas, GDP per capita could 

potentially influence the operations and financial performance of power plants. It is calculated by 

annual provincial GDP divided by total population and constructed in a logarithmic form (Xiao et 

al., 2021).  

Industry structure (indratio). Industry structure is assessed by calculating the ratio of added 

value of the secondary industry to GDP. The proportion of secondary industry indicates the 

development of industry and the regional industrial economic structure (Huang and Du, 2020). It 

could influence the regional power supply and demand situation and may further affect operation 

efficiency of power plants. 

Foreign economy (fdi_r). The ratio of foreign direct investment to annual GDP is used to 

measure economic openness (Yang et al., 2021). Since the development of infrastructure such as 

electricity is an important factor attracting foreign investment, the ratio of foreign direct 

investment could be considered as a potential factor affecting the development of power plants. In 

order to avoid the influence of exchange rate fluctuations, we also adjust foreign direct investment 

by the annual exchange rate. 

Environmental investment (lindinvest). Environmental investment reflects provincial 

environmental protection and pollution control efforts, and is expected to help reduce 

environmental pollutants from the power sector. It is assessed by the treatment of industrial 

pollution in log form (Xuan et al., 2020). 

Policy uncertainty (epustd). We use the economic policy uncertainty index to evaluate the 

policy environment. The uncertainty of policy may affect the policy risks as perceived by power 

plants and thus influence their operational and management activities (Yu et al., 2021). 

Innovation capacity (ltotalpat). Regional innovation capacity reflects the development and 

intensity of regional innovation systems, further influencing technical performance of regional 

subjects. Regional innovation capacity is measured by the number of total patent applications in 

the logarithm (Liu and Zhang, 2021). 

Marketization (market). Marketization reflects the dynamics of the market and advancement 

of the market economy, which could affect business entities’ capacity of market responsiveness 

and resource allocation. Following Wang et al. (2019), we use the comprehensive market index, 

which considers the relationship between government and market, development of the non-state 
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economy, product market, factor market, market intermediary organization, and legal system 

environment.  

Environmental enforcement (lpenalty). A higher intensity of environmental law enforcement 

could also lead to enterprises experiencing higher environmental pressures (Blundell, 2020). 

Environmental enforcement is measured by the number of provincial environmental administrative 

penalty cases in the logarithm.  

Carbon dependence (carbongdp). Carbon dependence describes the level of carbon pollutants 

emitted during economic development and could also reflect the difficulty and potential burden of 

reducing carbon dioxide emissions. Carbon dependence is measured by total provincial CO2 

emission inventory divided by annual GDP (Zhang and Duan, 2020). 

4. MAIN RESULTS 

4.1 Baseline results 

In order to identify the effect of the ETS announcement and implementation, we test three 

aspects: (a) only 𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒, (b) only 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡, (c) both 𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 and 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡. 

We first estimate the ETS effect on the total costs of thermal power plants. Columns (1) and (2) in 

Table 2[[table 2 about here]] show that the ETS effect on power plant costs is not significant 

when considering the policy announcement and implementation separately. Next, we consider both 

policy announcement and implementation in one equation (Table 2 column 3), and although the 

results are not significant, there is initially an increase in power plant costs after the year of 

announcement and then a decrease in costs after the formal implementation year. The results 

indicate that the ETS announcement may provide a warning for the pilot power plants that 

encourages them to begin to prepare for the changes that will be necessary with the incoming 

carbon emission reduction requirements, which means that when the implementation stage starts 

officially, the plants are well prepared to cut emissions with the most cost-efficient approach. 

There are two possible reasons for the cost reduction. The first reason is that the pilot power 

plants directly compressed spending on capital and labor or cut down their electrical production to 

reduce carbon emissions (Zhang and Duan, 2020). This can be regarded as a short-term response, 

as it is not sustainable if the plant is to remain competitive. The second reason is that thermal 

power enterprises improved their cost efficiency by undertaking internal reform measures in their 

operations and management, such as improving resource utilization efficiency, conducting 

technological innovation, optimizing operation processes, and so on. The latter is what we 

expected from the ETS policy as enhancement in cost efficiency will lead to sustained cost savings 

in the long run. Therefore, we evaluate the ETS effect on the cost efficiency of pilot power plants 

to see whether it induces continuous improvement in cost performance.  
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The results in Table 2 column (6) shows that cost efficiency may initially be reduced (not 

statistically significant) and then be significantly improved due to the ETS implementation. 

Enhancement of cost efficiency implies that the cost reductions are not a temporary situation 

resulting from directly cutting down expenditure or output, but rather that the power plants in the 

pilot provinces have undertaken long-term reform measures, such as upgrading their facilities, 

technologies, or management when confronted by the environmental regulation stress. Our results 

are in line with Cui et al. (2021), who argue that firms’ respond to the ETS by conserving energy, 

switching to low-carbon fuels, reducing labor and capital inputs, and improving firm productivity 

to reduce emissions while maintaining the same level of output. This also sends a good signal that 

the ETS policy has forced thermal power enterprises to carry out internal reforms to reduce 

compliance costs. Moreover, since the pilot power plants are assumed to undertake long-run 

internal reform measures to reduce carbon emission, the remaining reduction in total cost in 

addition to the cost efficiency may also be explained by other benefits from decarbonization efforts. 

For example, power plants could spend less expenditure on sewage charges or environmental taxes, 

or apply more subsidies for their clean transition, such as optimizing energy structure and 

enhancing resource recycling. 

4.2 Test for parallel trend assumption 

The most important premise for the DID analysis is to satisfy the parallel trend assumption. 

In other words, to provide evidence that pilot and non-pilot areas had similar trends before the ETS 

policy. Therefore, we adopt the event study method to test the trend before and after the ETS policy. 

The policy effects on total cost and cost efficiency from 2006 to 2017 are shown in Figures 1(a) 

and 1(b) [[fig 1 about here]]. The default baseline year is 2010, one year before the ETS policy 

announcement.  

As is shown in Figure 1, the coefficients in the pre-ETS period (before 2011) do not show 

obvious differences between the pilots and non-pilots, which meets the parallel trend assumption 

for the DID analysis. In the post-regulation period (after 2011), the effect of the ETS 

announcement is not significant for the first two years; however, a clear downward trend in the 

ETS effect on total cost appears after 2013, the year of the ETS implementation. This indicates 

that the ETS has reduced the costs of power plants since 2013. A consistently clear upward trend 

of policy effect on cost efficiency can be observed in the same period. Moreover, results from 

event study analysis also address the expectation effect before ETS implementation, as no non-

clear differences are found between the pilots and non-pilots before 2011. 

We also perform other methods to test the parallel trend. We first follow Liu and Zhang (2021) 

and conduct a set of pre-period placebo intervention tests by adding the interaction terms of 

Treatment*Post2007, Treatment*Post2008, Treatment*Post2009 and Treatment*Post2010. If there is no 

significant difference in cost outcome between pilot and non-pilot plants in the above parallel trend 

analysis, the estimated coefficients of the treatment*post are expected to be statistically 
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insignificant. Otherwise, there may be some unobservable factors other than the ETS that induce 

the higher cost performance of the pilot plants. The results in Appendix Table 1 show that the 

coefficients of the interaction terms are insignificant for both total cost (columns 1-4) and cost 

efficiency (columns 6-9), which addresses this concern. 

We also follow the method of J. Hu et al. (2020) to test the parallel trend by using pre-ETS 

period data. A time trend variable (Trend) is constructed to measure time linear trends between the 

pilot and non-pilot provinces, which are assigned values of 1, 2, 3, 4, 5 in 2006, 2007, 2008, 2009, 

2010, respectively. As it is assumed there were no systematic differences in cost trends between 

the pilot and non-pilot areas before the ETS policy announcement, the coefficient of 

treatment×trend is supposed to be statistically insignificant. The results in Appendix Table 1 

columns (5) and (10) support this assumption, which once again suggests that the parallel trend 

assumption of the DID approach is not violated. 

4.3 What makes the policy effect different? 

We then explore potential factors that could impact on the effectiveness of the ETS, as the 

actual effects on cost performance of the ETS may vary in practice. Since China ETS policy started 

in pilot provinces and has been recently expanded for nationwide implementation, it is important 

to explore different provincial policy elements and identify key mechanisms that could influence 

ETS policy effectiveness. It allows us to give more specific and practical policy implications for 

enhancing ETS effectiveness. We thus try to uncover the local conditions that could effectively 

expand ETS benefits from the perspective of policy implementation environment (marketization 

degree), policy enforcement intensity (environmental enforcement) and difficulty in achieving 

policy goals (carbon dependence). Based on the benchmark DID model, we further interact 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 with these three provincial characteristics that may act as the impact mechanisms in 

Table 3[[table 3 about here]]. 

A. Impact of Marketization 

Policy implementation environment is a crucial influencing factor in determining policy 

effectiveness (Haggerty et al., 2018). As a market-driven instrument, the ETS policy could be 

particularly influenced by the local market economy development (Ren et al., 2020). The external 

market environment exerts pressures on enterprises, which need to adjust their competition 

strategy formulation to adapt to survive and prosper (Collis, 1991, Scherer & Ross, 1990). Market 

competition factors of transaction volume, price, cost, and competitiveness directly affect trading 

activities and market efficiency (Healy et al., 2014). High-level marketization promotes capital 

flow, market element development, and resource allocation (Wu, 2002), and in a high-level 

marketization environment, the more efficient and competitive enterprises are more likely to obtain 

business opportunities and resources via market competition (Gao et al., 2010; Xie, 2017), which 

could lead to more active internal adjustments, more sensitive market adaption, and potentially 

higher production efficiency for enterprises (Cui et al., 2020). Therefore, in order to grasp the 
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competition opportunities and winning advantages, power plants are more likely to engage actively 

in emissions trading with higher efficiency under the circumstances of rapid market development 

and fierce competition. When carbon emissions are brought into the market, enterprises respond 

more quickly in the face of market reform resulting from the ETS. Based on this view, 

advancement of the market economy is considered an important catalyst for ETS policy 

effectiveness. 

The marketization index is adopted in this study to reflect market economy development 

according to Wang et al. (2019). In Table 3 columns (1) and (4), we aim to estimate whether 

heterogeneity in provincial market development could influence ETS effectiveness. The 

significantly positive coefficients of 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 *market in both the cost and cost efficiency 

equations show that the development of provincial marketization contributes to the cost savings 

and efficiency enhancement induced by the ETS pilot policy. The results are consistent with Chen 

et al. (2021) and J. Hu et al. (2020), who found that the marketization level enhances the positive 

effect of the carbon ETS on entities’ efficiency or innovation performance. 

B. Impact of environmental enforcement 

Local environmental enforcement regime could reflect the orientation of environmental 

official, the institutional capacity of enforcement teams, and the external political support 

(Francesch-Huidobro et al., 2012). The intensity of environmental enforcement is assumed to be a 

key factor in the effective implementation of a carbon emission trading market. For policy 

recipients, as “rational” economic entities, the core organizational goal is profit maximization 

(Schoemaker, 1993). The level of environmental supervision and enforcement will impact on an 

enterprise’s management decisions about how they will adapt to the policy requirements and 

enforcement (Heyes and Kapur, 2009; Pashigian, 1982). In areas with stricter environmental 

regulations, enterprises will be vigilant about policy requirements and rules and implement 

adaptive strategies to avoid penalties (Sun et al., 2019). Thus, the greater the intensity of 

environmental law enforcement, the higher the costs faced by enterprises for non-compliance, and 

the more likely enterprises will follow the ETS regulations to avoid violation penalties (Blundell, 

2020). For policy enforcers, the operation of the ETS requires a high level of execution, such as 

collection and management of emission information, supervision of market transactions, 

punishment of non-compliance with trading rules, and management of levies on excessive 

pollution. A high intensity of policy enforcement provides necessary support and ensures orderly 

operated market transaction for the implementation of emission trading (J. Hu et al., 2020).  

To test whether environmental law enforcement affects ETS policy effectiveness, we use the 

interaction between 𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 and the number of environmental administrative penalty cases. 

The results from Table 3 columns (2) and (5) show that the ETS has a greater promoting effect on 

cost reduction and cost efficiency improvement in regions with higher policy enforcement intensity, 

which is consistent with J. Hu et al. (2020). It implies that plants have taken active measures to 
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enhance cost efficiency and relieve the cost burdens of adapting to the policy regulation pressure. 

Therefore, policy enforcement is essential for ensuring ETS effectiveness, as it affects the 

behaviors and strategies of both ETS market managers and participants. Support from local 

governments, especially those responsible for environmental law enforcement, could be an 

important contributing factor in the effective implementation of China's ETS.  

C. Impact of carbon dependence  

Due to different local resource endowments and economic development process, the difficulty 

of achieving environmental policy objectives could vary substantially across regions. Regional 

dependence on high carbon-emitting industries is a major obstacle to achieving carbon reduction 

targets (Janipour et al., 2020). Arthur (1989) first put forward the theory of path dependence in the 

process of technological evolution, which explains that the advantage of scale return for early 

entrants makes it difficult for the latecomer technology to gain benefits. Regional economies could 

therefore become locked into development paths that lose dynamism (Martin and Sunley, 2006). 

Similarly, a carbon-based energy system that benefits from long-term incremental returns may also 

create a lock-in effect that hampers the transition to low-carbon alternatives (Erickson et al., 2015). 

Participants who are benefitting from the existing fossil fuel-intensive system will try to maintain 

it, which further reinforces the lock-in of existing technology systems and impedes low-carbon 

innovation (Liu et al., 2017). Therefore, the primary carbon emission intensity of different regions 

could affect ETS effectiveness on plant cost performance. Regions with higher carbon dependence 

may have higher resistance to low-carbon energy systems and technological innovation, resulting 

in reduced ETS effectiveness on the cost efficiency improvement of pilot plants. 

We adopt the indicator of carbon emissions per GDP to measure carbon emission intensity. 

In line with our hypothesis, it is found that carbon emission intensity imposes a significant negative 

ETS impact that leads to higher costs and lower cost efficiency of power plants (Table 3, columns 

(3) and (6)). This finding supports the conjecture that provinces with a higher economic 

dependence on carbon-intensive industries experience more pressure when preparing for the ETS, 

as they have more difficulty reducing emissions due to the significantly higher costs of introducing 

and reforming low-carbon technologies and facilities. A relatively more tolerant attitude towards 

pollution due to high economic dependence on polluting entities could be another reason, as there 

may be less motivation for radical transformation. On the other hand, those with a lower emission 

intensity can respond more flexibly to the ETS reform and achieve more cost savings. A potential 

problem is that current difficulties with emissions reduction may depend more on emission status 

in the previous period. Therefore, in our unreported results, we also test whether a one-year lag of 

carbon intensity affects current cost performance. The results remain consistent and shows 

robustness of the negative ETS effect on both cost savings and cost efficiency. 

Therefore, we conclude that there are four potential factors that will influence ETS 

effectiveness in improving power plants’ cost performance. A higher degree of marketization, 
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stricter environmental enforcement, and lower carbon dependence provide a favorable 

environment for thermal power plants to achieve more cost savings and higher cost efficiency 

when facing the emissions reduction pressure required by the ETS policy. 

4.4 Robustness check 

A. PSM-DID analysis 

A significant challenge is that the ETS pilot provinces were not randomly selected, which can 

result in potential endogeneity issues and violate DID assumption. Although we have controlled 

provincial economic, policy, technology and environment factors in the model, the DID model and 

event study design that we adopted are still subject to potential estimation bias from selection. To 

relieve the non-random selection bias of the ETS treatment, the propensity score matching method 

and difference-in-difference model (PSM-DID) are integrated to examine the robustness of the 

baseline DID results. PSM is first performed to match the pilot and non-pilot groups. The basic 

idea is to create a counterfactual control group composed of non-pilots that had the same 

probability of being selected as pilots (Peikes et al., 2008). First, a logistic regression is applied to 

estimate propensity scores, and the radius matching procedure within calipers of 0.05 is conducted 

to obtain control groups. Second, the DID model is applied using the treatment group and new 

counterfactual control group after matching, which dropped those unmatched observations with 

the PSM procedure. 

The PSM-DID results in Appendix Table 2 show that both the baseline and heterogeneous 

analyses are robust after dropping the unmatched samples. Therefore, the matching process 

between the treated and control groups does not significantly affect our main outcomes. Also, the 

balancing test of the PSM procedure is shown in Appendix Table 3, indicating no significant 

differences between covariates in the treated and untreated group after matching. All standardized 

biases are less than 18%, which suggests a high matching quality of data pairs.  

B. Excluding potential effect of confounding factors 

The DID approach also assumes no other confounding factors that might affect the outcome 

variable simultaneously with the policy treatment. Therefore, we control other factors with 

potential impact on plants’ cost efficiency over the same period. First, as the SO2 pilot scheme was 

implemented in 2007, which was within our research period, we construct a dummy variable 

SO2ETS to control for its confounding impact on power plants. SO2ETS is equal to 1 if the plant 

sits in a pilot province for the SO2 ETS, which included Jiangsu, Zhejiang, Tianjin, Hubei, Hunan, 

Inner Mongolia, Shanxi, Chongqing, Shaanxi, Hebei, and Henan. Even with the lower significance 

of the carbon mitigation impact mechanism, the core results when considering the SO2 ETS 

program are still robust (Appendix Table 4). 

Second, China's State Council has set CO2 emission reduction targets for each province in 

both the 12th FYP (2011-2015) and the 13th FYP (2016-2020) for controlling greenhouse gas 
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emissions. Provincial emission control targets may further affect the performance of power plants 

in different provinces. Therefore, we additionally include the variable Co2Target in our model to 

control for the impact of this work plan, which is constructed based on the provincial target rate 

for reducing CO2 emissions per unit of GDP2. Our main results when considering the provincial 

CO2 emission reduction targets are consistent (Appendix Table 5). 

C. Adopting different model specifications 

In this paper, the explained variable costeff refers to cost efficiency, which is censored data 

ranging from 0 to 1. A potential concern lies in that an ordinary regression model may omit the 

problem of censored data; therefore, we use the Tobit model to test the robustness of the cost 

efficiency results in Appendix Table 6 columns (1)–(4). Moreover, since we have control of both 

the plant-level and provincial-level covariates, a possible problem is that costeff is estimated at 

plant level, and the plant-level characteristics may cause a multicollinearity problem in the DID 

analysis. Therefore, we drop the plant-level covariates and use provincial-level controls to estimate 

the treatment effect on cost efficiency. The results are shown Appendix Table 6 columns (5)–(8). 

The results in Appendix Table 6 support the robustness of our analysis.  

5. FURTHER ANALYSES OF FIVE PILOT PROVINCES 

5.1 Synthetic control method 

In the above analysis, we discussed the treatment effect of the ETS on all pilot provinces. In 

this section, we aim to further specify the ETS effect on cost efficiency in different pilot provinces. 

We focus on the provincial effect of cost efficiency as it is more reflective of the internal upgrading 

activities undertaken by the enterprises. It is considered more important that thermal power 

enterprises achieve consistent cost savings.  

To undertake this provincial analysis, we employ the synthetic control method proposed by 

Abadie and Gardeazabal (2003). This method has several advantages. First, the SCM method helps 

to address selection bias by constructing a counterfactual unit for each treated unit. Targeted 

evaluation on different treated units is thus allowed to evaluate heterogeneity in policy 

implementation. Second, the optimal weight used to construct the control counterpart is 

determined by the data and their matching results, which avoids the bias from subjective choice. 

Third, as we control for plant-level covariates when conducting the DID analysis, the SCM helps 

to address the potential multicollinearity problem in the traditional DID model. Therefore, we 

further utilize the SCM method to measure the treatment effect of the ETS on cost efficiency in 

different provinces.  

 

2 As there is no specific provincial-level target for CO2 emission reduction in the 11th Five-Year Plan (2006-2010), Co2Target 

before 2011 is set to be 0. 
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Following Abadie et al. (2010), we presume that there are J+1 units, with the first unit being 

treated and the remaining units making up the control pool. 𝛼̂1𝑡 is the estimator of the intervention 

effect for treated unit at time t. 𝑦1𝑡
𝐼  is the observed outcome for the treated unit in period 𝑡. 

Supposing that T is the number of whole time periods and 𝑇0 is the pretreatment period, for 𝑡 >

𝑇0, the treatment effect can be given as follows:  

𝛼̂1𝑡 = 𝑦1𝑡
𝐼 − 𝑦̂1𝑡

𝑁 (5) 

where 𝑦1𝑡
𝑁  is the supposed counterfactual outcome if the treated unit was not treated. This 

synthetic counterfactual of a treated unit is constructed by combining the other control units 

linearly in the SCM method. For 𝑡 > 𝑇0, 𝑦1𝑡
𝑁  can be estimated with:  

𝑦̂1𝑡
𝑁 = ∑ 𝑤𝑗

∗𝑦𝑗𝑡

𝐽+1

𝑗=2

(6) 

where W* is an optimal vector of weights to minimize the distance between the preintervention 

covariates for the treated unit and control units. If 𝑋1 is a vector of pretreatment covariates for 

the treated unit and 𝑋0 is a vector of the same covariates for the untreated units, the discrepancy 

between 𝑋1 and 𝑋0𝑊 can also be expressed as: 

∥ 𝑋1 − 𝑋0𝑊 ∥𝑉= √(𝑋1 − 𝑋0𝑊)′𝑉(𝑋1 − 𝑋0𝑊) (7) 

where V can be considered to be some symmetric and positive semidefinite matrix to get the 

minimum root mean squared prediction error (RMSPE). In other words, it helps the synthetic 

control unit to approximate the outcome trajectory of the treated unit during the pretreatment stages, 

thus minimizing the preintervention discrepancy between the treated and control units. 

5.2 Provincial treatment effect 

Figure 2[[fig 2 about here]] provides the cost efficiency between the treated power plants 

and synthetic control plants in five pilot provinces, showing that the trend for the ETS treatment 

effect is similar in pilot provinces such as Guangdong, Shanghai and Tianjin. Initially it shows a 

slight drop in 2011 and then it gradually increases and surpasses the cost efficiency of synthetic 

control plants. The positive effect is enlarged after ETS implementation, especially over the period 

of 2013-2015, and contracted between 2016 and 2017. The different outcome between 

announcement and implementation stage is consistent with the previous baseline analyses, which 

showed that the average treatment effect is initially negative after the ETS announcement and then 

reverses to be significantly positive following the implementation of the ETS in 2013, though the 

former effect is not significant. Therefore, these analyses again illustrate that the announcement of 

the ETS leads to preparation for emissions reduction in the pilot power plants, which results in 

additional costs and temporary loss of cost efficiency. The reversal of the trend occurred after the 

pilot plants had adapted to the policy intervention by collecting enough information and upgrading 
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their devices and technology, eventually benefitting from the implementation of the ETS policy. 

Moreover, the reduction of positive treatment effect in 2016 may due to China’s announcement to 

establish a national carbon emissions trading market, which is accompanied by the refinement of 

relevant market rules and regulations. The new reaction and adjustment of the power plants may 

affect the continuous improvement of cost efficiency. The rebound of the positive treatment effect 

in 2017 may indicate that the ETS could provide an incentive for long-term cost efficiency growth. 

Our results imply that the cost efficiency of pilot plants could be improved due to active 

internal reform measures, pilot plants without the ETS intervention are thus assumed to be have 

less incentive for upgrading technology and optimizing operation. The drop of the fitted synthetic 

control curve in Figure 2 provides some evidences that the cost efficiency of synthetic control units 

decreases compared with treated plants. This may result from two potential reasons. First, 

considering the increasing cost burden of power plants in China, the reduction of efficiency could 

be due to the lack of active efforts for improving production and operational capacity (Zhang and 

Adom, 2018). Second, with the development of technology especially in pilot power plants, the 

optimal cost efficiency is supposed to be higher and lead to the lower cost efficiency of power 

plants in non-pilot provinces. 

The ETS treatment effect of each separate pilot province is then compared to determine the 

significance of the treatment effect. We undertook the placebo test to test the validity of the 

synthetic control analysis. Appendix Table 7 shows the p-values that denote the proportion of 

placebo effects from the control units that have posttreatment RMSPE at least as great as the treated 

unit (Galiani and Quistorff, 2017). The comparison of the significance of the provincial treatment 

effect reveals that the ETS significantly improves cost efficiency in Shanghai, Guangdong, and 

Tianjin; however, there was no positive effect on cost performance of thermal power plants in 

Chongqing and Hubei.  

There are several potential reasons for the difference. According to information on carbon 

exchanges in the pilot provinces, the carbon market in Chongqing is the least active, with lower 

trading volume and poorer transaction transparency. The allowance allocation in Chongqing is 

based on firms’ self-declaration and allows for ex-post adjustment, resulting in lower compliance 

pressure. The compliance rate of the Chongqing carbon market in 2013–2014 was only 70%, which 

is much lower than the other pilots and supports the low ETS effectiveness in Chongqing. Given 

the better trading volume and liquidity in the Hubei carbon market, the insignificant positive effect 

in Hubei could be partially explained by our mechanism analysis. For example, for carbon 

dependence, Hubei is the only pilot province in central China and its heavy industrial structure 

means it has the highest carbon intensity among all pilots (Cao et al., 2021), which may increase 

its cost burden when adapting to the carbon trading reform requirements and cause a low ETS 

effectiveness on cost performance.  

One main assumption of SCM analysis is that the intervention has no effect on the cost 
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performance before the treatment period, which has been discussed in the event study analysis. 

Another assumption is that the cost performance of the non-pilot units is not affected by the ETS 

pilot policy intervention in the pilot provinces, known as the assumption of no interference 

between units (Abadie et al., 2010). In the context of our analysis, several potential ways may 

result in the violation of this “no interference” assumption. One concern is that the implementation 

of ETS policy may raise the awareness of carbon reduction in non-pilot provinces and induce 

similar responsive measures, contaminating the donor pool. Since the national unified carbon 

emissions trading market was officially announced at the end of 2017, it is expected that the 

preparation of national carbon emission trading would not severely affect the untreated power 

plants during the research period. However, previous findings showed the exist spillover effects 

of ETS on improving the green total factor productivity and reducing carbon emission in non-pilot 

cities and provinces (Li et al., 2022; Yang et al., 2022; Zhu et al., 2022). Although there is no 

enough evidence indicating its influence on plant-level financial performance in non-pilot 

provinces, it is still possible that these factors could contaminate the donor pool and further lead 

to underestimation of the cost efficiency improvement for treated power plants. If this is what 

actually happens, our study provides a relatively conservative estimate of the ETS policy effect. 

Another concern is that the power enterprises may choose the strategy to transfer some high-

polluting operation from plants in pilot provinces to those in non-pilot provinces. This is not a 

serious concern as the power supply and demand situation within each province were quite 

different, and the power plants need to strictly obey the local grid dispatch regulations. Moreover, 

China's inter-provincial power trading was not mature during our research period, which makes it 

less possible for the trading or other similar coping strategies between power plants. Therefore, it 

is expected that this concern would not seriously affect the results. 

To additionally figure out the question that whether our SCM estimations could be driven by 

chance, we then conduct placebo tests by considering cases that if we had treated other non-pilot 

plants randomly instead of plants in pilot provinces. In the calculations undertaken in the analyses 

above, we consider the characteristics of each separate power plant in the treated provinces. 

Moreover, as a robustness check, we regard the power plants in the treated provinces as one unit; 

specifically, we calculate the mean value of all variables and create a plant that represents the mean 

status of all power plants in each treated province. We then adopt the SCM again and obtain the 

placebo test results. The results are similar, in that there is significantly improved cost efficiency 

in Guangdong, Shanghai, and Tianjin but not in Chongqing and Hubei (Appendix Figure 1). 

5.3 Cost saving 

Based on the results of the synthetic control method, Figure 3(a)[[fig 3 about here]] shows 

the comparison of the ETS treatment effect between different pilot provinces from 2011 to 2017. 

Specifically, we calculate the average treatment effect of the ETS on power plants’ cost efficiency 

in each pilot province from 2013 to 2017, as the treatment effect is statistically significant after 

2013. The estimated average annual cost efficiency improvement is 9.34 percentage points in 
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Guangdong, 9.31 in Shanghai, and 5.76 in Tianjin. The cost saving from cost efficiency 

improvements can be speculated using the following equation:  

𝐶𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 =  𝐶𝑜𝑠𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 × 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡  

The cost savings calculated using the above equation are shown in Figure 3(b). As the treatment 

effect of Hubei is not statistically significant, the cost savings of Chongqing and Hubei are shown 

in grey in Figure 3(b). The cost saving for thermal power plants in each pilot is different when 

both total cost and cost efficiency improvement are considered. The carbon emission trading 

achieves annual cost savings of about 0.33 million RMB for each thermal power plant in 

Guangdong, which accounts for 9.11% of the total cost, 0.52 million RMB per plant (8.90% of 

total cost) annually in Shanghai, and 0.28 million RMB per plant (5.56% of total cost) annually in 

Tianjin. In sum, the ETS-induced cost efficiency improvement of power plants in these three pilot 

provinces saved a total of around 5.95 million RMB per year. Therefore, the total cost savings in 

Shanghai, Guangdong, and Tianjian during the five-year period 2013–2017 was approximately 

29.75 million RMB, accounting for 29.94% of the total cost in 2017.  

It should be noted that the cost saving discussed above is only the direct economic cost saving 

based on the plant-level analysis of cost efficiency. Other benefits, such as environmental and 

health benefits of emission reductions, and employment benefits may also be significant. For 

example, Guo et al., (2020) estimated that China’s ETS has led to the reduction in production-

based emissions by 6.5 Mt CO2 and consumption-based emissions by 4.6 Mt CO2 over the post-

treatment period of 2011-2015. Assuming that one ton of CO2 reduction could generate $147 in 

the national average health co-benefits (Wang et al., 2021), the health co-benefits with ETS 

implementation could be estimated as approximately $1.6 billion. Moreover, Zhang and Zhang et 

al. (2020) found the implementation of China’s ETS in 2013 has increased annual rural residents’ 

income by about 752.6 RMB and increased the ratio of rural employment to total employment by 

2.35% over the period of 2014-2017, which accounts for 9.5% of the income of rural residents and 

7.11% of rural employment. Therefore, the actual cost saving of ETS including those from indirect 

benefits could be much larger than our estimates.  

6. DISCUSSION AND CONCLUSION 

This study examined the effects of China’s carbon emissions trading policy on the production 

costs of thermal power plants. We conducted a DID analysis between plants in pilot and non-pilot 

provinces after the ETS announcement and also after the ETS formal implementation. The results 

showed that China’s ETS policy seemed to initially marginally reduce power plants’ cost 

efficiency following the announcement in 2011, and then significantly improve the cost efficiency 

after the implementation in 2013. We also discussed under what conditions the ETS pilot was 

effective in saving power plants’ costs. It was found that a higher degree of marketization, stricter 
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environmental policy enforcement, and lower carbon dependence help to increase the effectiveness 

of the ETS on cost performance. Provincial results from synthetic control analysis also show that 

cost efficiency was enhanced for power plants in Shanghai, Guangdong, and Tianjin, leading to 

significant cost savings for those pilot power plants. However, this positive effect was not found 

for pilot plants in Chongqing and Hubei provinces.  

Based on our analysis, there are several implications for promoting carbon market reforms. 

First, carbon emission trading is a promising instrument for use in achieving the carbon neural 

commitment in a cost-effective way. As China’s carbon ETS for the power sector has been 

expanded nationwide since 2021, the future national market is expected to witness even larger 

gains due to the enhanced cost efficiency of participants. The specific ETS implementation, such 

as the quotas and how they are allocated, need to be carefully considered, as participants' 

enthusiasm for emissions reduction should be encouraged to the greatest extent. 

Second, different regional conditions need to be considered in the governance of the carbon 

emission trading market. Specific measures are needed to promote regional marketization 

development, conduct strict environmental enforcement, and develop low-carbon industries to 

reduce carbon dependency, as they support the carbon trading system. Meanwhile, considering the 

significant role of these different localized factors, it is suggested to pay more attention on the 

effectiveness of the national ETS in the western and central region of China where the economy is 

not well developed but carbon emissions are heavy. It is necessary to consider their cost burden 

and introduce more incentive tools and risk management tools that could encourage polluters to 

participate and help them to create a virtuous cycle. In turn, participants’ positive carbon reduction 

actions could accelerate the transformation of the whole industry structure. 

Third, for entities involved in the carbon ETS, our study sends a positive signal that active 

participation in the trading market is beneficial for their long-term sustainability. Specifically, ETS 

requirements not only help to keep carbon emissions within necessary limits and address corporate 

social responsibility, but also lead to potential higher cost efficiencies through application of 

efficient and clean technology, equipment, or procedures. Therefore, early and active participation 

in the carbon trading market is a key measure for firms to achieve a balance between commercial 

value and social value. 

This research is limited in several aspects and presents several directions for future research. 

First, we estimated the plant-level cost performance based on observed total cost and calculated 

cost efficiency considering data availability. More detailed and precise measurement of the internal 

processes for cost efficiency change in pilot plants can be explored. Second, although we have 

explored the potential cost strategies of power plants, firm-level response strategies of power 

enterprises have not been discussed. Future studies could combine the specific cost strategy of the 

power enterprises under the carbon ETS policy to better identify their response actions. Third, this 

study only discussed the cost savings of ETS implementation before 2017 due to the lack of more 
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detailed plant-level data. With the development of China’s ETS, the change in carbon price and 

carbon quotas could affect the cost performance of power plants. It is also worth identifying 

whether cost efficiency improvements could be sustainable in the long term, and how long this 

benefit will last in offsetting part of the carbon compliance cost.  
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Table 1: Descriptive Statistics 

Variable Definition Units Obs Mean Std. Dev. Min Max 

Explained variable 

lntcost Total cost, in log form Yuan 1102 15.5867  1.2402  11.7027  25.7815  

costeff Cost efficiency -- 1102 0.8353  0.0958  0.1485  0.9848  

Covariates (Plant level) 

lnoutput Annual power output, in log form billion KWH 1102 4.5254  0.5669  3.1781  9.0366  

lnpe 
Standardized energy price calculated by total energy cost/ energy consumption, in log 

form  
Yuan 1102 6.8322  1.3416  5.1218  22.2862  

lnpl Standardized labor price calculated by total labor cost/ the amount of labor, in log form Yuan 1102 8.7139  1.1575  5.4438  21.2946  

klr Capital-labor ratio % 1102 0.3842  0.8155  0.0309  7.5000  

Lnerso2 SO2 emission per unit of power output, in log form 10,000 tonnes 1102 8.5916  0.4792  3.6442  9.0867  

Covariates (Provincial level) 

lpergdp GDP per capital, in log form 100 million yuan 1102 10.5358  0.5698  8.7165  11.8212  

indratio Value-added of the secondary industry /GDP % 1102 0.4127  0.0650  0.2352  0.5738  

fdi_r Foreign direct investment/GDP % 1102 0.0043  0.0078  0.0000  0.1038  

lindinvest Investment in the treatment of industrial pollution, in log form 10,000 yuan 1102 12.3952  0.7419  10.5117  14.1637  

epustd Economic policy uncertainty index -- 1102 22.5105  15.4700  0.3348  86.2528  

ltotalpat Number of total patent application, in log form Number 1102 10.5919  1.5414  6.5088  13.3500  

market Market index -- 1102 8.0675  1.8171  4.1380  11.2330  

lpenalty Number of environmental administrative penalty cases, in log form Number 1102 8.0506  1.0741  4.2195  10.5567  

carbongdp Carbon emission per GDP 10,000 tonnes/yuan 1102 2.4588  1.6343  0.5943  8.6053  
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Table 2: Baseline analysis 

 DV=total cost DV=cost efficiency 

 (1) (2) (3) (4) (5) (6) 

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 -0.0459  0.0082 -0.0041  -0.0237 

 (0.0758)  (0.0667) (0.0232)  (0.0262) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡  -0.0917 -0.0961*  0.0220 0.0348** 

  (0.0656) (0.0509)  (0.0152) (0.0157) 

       

Plant-level controls Yes Yes Yes Yes Yes Yes 

Provincial controls Yes Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes Yes 

Plant fixed effect Yes Yes Yes Yes Yes Yes 

       

Constant 1.2818 1.2571 1.2174 1.0632 0.9715 1.0865 

 (2.9885) (2.8314) (3.0040) (0.9226) (0.8888) (0.9250) 

Observations 1102 1102 1102 1102 1102 1102 

Within R2 0.9237 0.9239 0.9239 0.0910 0.0927 0.0940 

Note: This table reports baseline estimates of ETS effect on total cost and cost efficiency for pilot power plants. Cols.1-3 report the estimate for total cost and cols.4-6 report 

the estimate for cost efficiency. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, 

lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.  
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Table 3: Heterogeneity analysis with different impact mechanisms 

 DV=Total cost DV=Cost efficiency 

Impact Mechanism Marketalization Penalty Carbongdp Marketalization Penalty Carbongdp 

 (1) (2) (3) (4) (5) (6) 

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 0.0072 0.0132 0.0121 -0.0235 -0.0248 -0.0248 

 (0.0673) (0.0668) (0.0671) (0.0263) (0.0262) (0.0263) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 1.4250** 0.5513** -0.3325** -0.1969* -0.1033 0.1027** 

 (0.6625) (0.2681) (0.1520) (0.1092) (0.0697) (0.0420) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡# 

Mechanism 

-0.1485** -0.0767** 0.2848* 0.0226* 0.0163** -0.0819* 

(0.0658) (0.0325) (0.1618) (0.0115) (0.0082) (0.0428) 

       

Plant-level controls Yes Yes Yes Yes Yes Yes 

Provincial controls Yes Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes Yes 

Plant fixed effect Yes Yes Yes Yes Yes Yes 

       

Constant 1.5775 1.1334 1.0029 1.0316 1.1044 1.1481 

 (2.9151) (2.9998) (3.0278) (0.9204) (0.9249) (0.9261) 

Observations 1102 1102 1102 1102 1102 1102 

Within R2 0.9246 0.9243 0.9242 0.0958 0.0963 0.0968 

Note: This table reports heterogeneous estimates of ETS effect on total cost and cost efficiency for pilot power plants with different impact mechanisms. Cols.1-3 report the 

estimate for total cost and cols.4-6 report the estimate for cost efficiency. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, 

indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in 

parentheses, * p<0.1, ** p<0.05, *** p<0.01. 
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Figures 

Figure 1: Effects of carbon emission trading policy from event study 

  

Figure 1(a) Total cost Figure 1(b) Cost efficiency 

Note: Figure 1 shows the geometric illustration of ETS pilot policy using the event study method. Figure 1(a) reports the effects on total cost, and Figure 1(b) shows the effects 

on cost efficiency. Base year is 2010. 
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Figure 2: Treatment effects of carbon emission trading policy from synthetic control method 

 

Guangdong 

 

Shanghai 

 

Tianjin 

    

Chongqing 

 

Hubei 

Note: Figure 2 shows the change of cost efficiency due to the ETS policy on each treated province and its synthetic control unit using the synthetic control method.  
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Figure 3: Cost efficiency improvements and cost savings from efficiency improvements based on results from synthetic control method 

Figure 3(a) Cost efficiency improvement Figure 3(b) Cost saving 

Note: Figure 3(a) shows the estimate for annual treatment effect for ETS in Guangdong, Shanghai and Tianjin with the synthetic control method. According to the p-values 

calculated by the Synth_runner package in Stata. Figure 3(b) shows the estimated average cost savings by multiplying cost efficiency by total cost of power plants.  
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Appendix S1: Tables 

Appendix Table 1: Parallel trend test 

 DV=Total cost DV=Cost efficiency 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Treatment * Post2007 0.0629     -0.0261     

 (0.0629)     (0.0236)     

Treatment * Post2008  0.0381     -0.0222    

  (0.0652)     (0.0254)    

Treatment * Post2009   0.0124     -0.0215   

   (0.0740)     (0.0288)   

Treatment * Post2010    0.0013     -0.0249  

    (0.0834)     (0.0290)  

Treatment *Pretrend     0.0055     -0.0037 

     (0.0226)     (0.0108) 

           

Constant 0.8740 0.8222 0.9138 0.9777 7.3490** 1.0830 1.1319 1.1626 1.2070 -0.4438 

 (2.8835) (2.9538) (3.0089) (3.0631) (3.0079) (0.8909) (0.9113) (0.9318) (0.9444) (1.4819) 

Observations 1102 1102 1102 1102 460 1102 1102 1102 1102 460 

Within R2 0.9236 0.9236 0.9236 0.9236 0.8410 0.0920 0.0921 0.0924 0.0930 0.3238 

Note: This table reports placebo test of different policy year and parallel trend test on total cost and cost efficiency for pilot power plants. Cols.1-4 and cols. 6-9 report 

placebo tests for total cost and cost efficiency, respectively. Columns 5 and 10 report the trend of total cost and cost efficiency during the pretreatment period, 

respectively. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, 

ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix Table 2: Robustness analysis with PSM-DID method 

 DV=Total cost DV=Cost efficiency 

Impact Mechanism Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 0.1146 0.1069 0.1259* 0.1390* -0.0570** -0.0561* -0.0596** -0.0553* 

 (0.0709) (0.0695) (0.0720) (0.0735) (0.0285) (0.0282) (0.0285) (0.0305) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 -0.1450** 1.6082** 0.5908** -0.3351** 0.0406** -0.1713* -0.1265* 0.1235*** 

 (0.0690) (0.6820) (0.2855) (0.1552) (0.0198) (0.0973) (0.0738) (0.0460) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡# 

Mechanism 

 -0.1702** -0.0877** 0.2500  0.0206* 0.0199** -0.0990** 

 (0.0687) (0.0343) (0.1578)  (0.0111) (0.0086) (0.0443) 

         

Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

         

Constant -3.4167 -3.3104 -3.5079 -3.2194 1.8153** 1.8025** 1.8360** 1.7814** 

 (2.7139) (2.6308) (2.7048) (2.5842) (0.7849) (0.7725) (0.7903) (0.7851) 

Observations 718 718 718 718 718 718 718 718 

Within R2 0.9294 0.9307 0.9302 0.9310 0.1573 0.1599 0.1626 0.1632 

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants by adopting the PSM-DID method. The pretreatment value from 

2006 to 2010 of lpergdp, indratio, fdi_r, lindinvest and carbongdp are selected as covariates in the propensity matching procedure. Cols.1-4 report the estimate for total cost 

and cols.5-8 report the estimate for cost efficiency. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include market, lpenalty, ltotalpat and 

epustd. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table 3: Propensity score matching results 

Covariates Treated Control %bias t p>t 

 Before matching  

lpergdp 10.621 10.030 130.50 11.18 0.000 

indratio 0.430 0.444 -26.00 -1.93 0.055 

fdi_r 0.002 0.001 72.70 6.37 0.000 

lindinvest 12.068 12.171 -15.20 -1.28 0.202 

carbongdp 1.523 3.383 -142.30 -9.84 0.002 

 After matching  

lpergdp 10.388 10.396 -1.80 -0.11 0.915 

indratio 0.441 0.440 2.30 0.16 0.874 

fdi_r 0.002 0.002 -1.70 -0.12 0.904 

lindinvest 12.215 12.094 18.00 1.13 0.261 

carbongdp 1.717 1.711 0.50 0.06 0.948 
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Appendix Table 4: Robustness analysis with considering effect of SO2 emission trading scheme 

 DV=Total cost DV=Cost efficiency 

Impact Mechanism Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 0.0082 0.0072 0.0132 0.0121 -0.0237 -0.0235 -0.0248 -0.0248 

 (0.0697) (0.0703) (0.0698) (0.0701) (0.0274) (0.0275) (0.0274) (0.0275) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 -0.0961* 1.4250** 0.5513* -0.3325** 0.0348** -0.1969* -0.1033 0.1027** 

 (0.0532) (0.6926) (0.2803) (0.1589) (0.0164) (0.1142) (0.0728) (0.0439) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡# 

Mechanism 

 -0.1485** -0.0767** 0.2848*  0.0226* 0.0163* -0.0819* 

 (0.0688) (0.0340) (0.1691)  (0.0120) (0.0086) (0.0448) 

SO2ETS -0.6181*** -0.6027*** -0.6209*** -0.6559*** 0.0625 0.0602 0.0631 0.0734 

 (0.2237) (0.2181) (0.2223) (0.2260) (0.0945) (0.0939) (0.0944) (0.0953) 

         

Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

         

Constant 1.6678 2.0026 1.5645 1.4471 1.0753 1.0243 1.0973 1.1387 

 (2.9878) (2.9028) (2.9890) (3.0162) (0.9297) (0.9250) (0.9297) (0.9310) 

Observations 1102 1102 1102 1102 1102 1102 1102 1102 

Within R2 0.9640 0.9643 0.9642 0.9641 0.3210 0.3223 0.3227 0.3231 

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants after considering effect of SO2 emission trading scheme. Cols.1-

4 report estimates for total cost and Cols.5-8 report estimates for cost efficiency. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. Provincial controls include 

lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors clustered by plant are reported 

in parentheses, * p<0.1, ** p<0.05, *** p<0.01.  
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Appendix Table 5: Robustness analysis with considering effect of provincial CO2 emission reduction targets 

 DV=Total cost DV=Cost efficiency 

Impact Mechanism Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 0.0897 0.0888 0.0930 0.0933 -0.0414 -0.0412 -0.0421 -0.0424 

 (0.0638) (0.0639) (0.0643) (0.0644) (0.0273) (0.0274) (0.0274) (0.0275) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 -0.0992* 1.4259** 0.4873* -0.3287** 0.0354** -0.1971* -0.0894 0.1019** 

 (0.0536) (0.6812) (0.2517) (0.1459) (0.0154) (0.1099) (0.0696) (0.0405) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡# 

Mechanism 

 -0.1489** -0.0695** 0.2765*  0.0227* 0.0148* -0.0801* 

 (0.0675) (0.0304) (0.1534)  (0.0116) (0.0081) (0.0414) 

CO2reduce -0.0876*** -0.0876*** -0.0862*** -0.0873*** 0.0190** 0.0190** 0.0187** 0.0189** 

 (0.0299) (0.0299) (0.0299) (0.0299) (0.0075) (0.0075) (0.0075) (0.0075) 

         

Plant-level controls Yes Yes Yes Yes Yes Yes Yes Yes 

Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

         

Constant 0.9028 1.2637 0.8316 0.6956 1.1547 1.0997 1.1699 1.2147 

 (2.8960) (2.8189) (2.8955) (2.9180) (0.9157) (0.9124) (0.9161) (0.9167) 

Observations 1102 1102 1102 1102 1102 1102 1102 1102 

Within R2 0.9265 0.9272 0.9269 0.9268 0.1071 0.1088 0.1089 0.1097 

Note: This table reports robust estimates of ETS effect on total cost and cost efficiency for pilot power plants after considering effect of provincial CO2 emission reduction 

targets in China’s 12th and 13th Five-Year Plan. Cols.1-4 report estimates for total cost and Cols.5-8 report estimates for cost efficiency. Plant-level controls include lnoutput, 

lnpe, lnpl, klr and lnerso2. Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are 

controlled. Standard errors clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix Table 6: Robustness analysis with different model specifications 

 Tobit model Tobit model without plant-level control 

 Baseline Marketalization Penalty Carbongdp Baseline Marketalization Penalty Carbongdp 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝐸𝑇𝑆𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒 -0.0237 -0.0235 -0.0248 -0.0248 -0.0196 -0.0197 -0.0207 -0.0207 

 (0.0259) (0.0259) (0.0259) (0.0260) (0.0235) (0.0236) (0.0236) (0.0236) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 0.0348** -0.1969* -0.1033 0.1027** 0.0340* -0.1893* -0.0844 0.0967** 

 (0.0155) (0.1078) (0.0688) (0.0414) (0.0195) (0.1087) (0.0703) (0.0455) 

𝐸𝑇𝑆𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡# 

Mechanism 

 0.0226** 0.0163** -0.0819*  0.0218* 0.0140* -0.0757* 

 (0.0113) (0.0081) (0.0423)  (0.0116) (0.0079) (0.0450) 

         

Plant-level controls Yes Yes Yes Yes No No No No 

Provincial controls Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

Plant fixed effect Yes Yes Yes Yes Yes Yes Yes Yes 

         

Constant 1.1378 1.0844 1.1604 1.2121 0.4153 0.3595 0.4328 0.4765 

 (0.9578) (0.9522) (0.9572) (0.9591) (0.6959) (0.6956) (0.6939) (0.7006) 

Observations 1102 1102 1102 1102 1102 1102 1102 1102 

Log Likelihood 1235.2 1236.3 1236.6 1236.9 1219.3 1220.2 1220.2 1220.6 

Note: This table reports robust estimates of ETS effect on cost efficiency for pilot power plants with Tobit model and Tobit model without plant-level control. Cols.1-4 report 

Tobit estimates and cols.5-8 report estimates from fixed effect model without plant-level control variables. Plant-level controls include lnoutput, lnpe, lnpl, klr and lnerso2. 

Provincial controls include lpergdp, indratio, fdi_r, lindinvest, epustd, market, lpenalty, ltotalpat and carbongdp. Year and plant fixed effects are controlled. Standard errors 

clustered by plant are reported in parentheses, * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix Table 7: Synthetic control method results 

SCM Guangdong Shanghai Tianjin Chongqing Hubei 

2011 -0.0014 -0.0120 -0.0072 0.0107 -0.0182 

  0.9604 0.8278 0.6046 0.5556 0.3366 

2012 0.0081 0.0022 0.0014 0.0165 -0.0222 

  0.7968 0.9733 0.9778 0.6889 0.5401 

2013 0.0720** 0.0653 0.0425 0.0249 -0.0243 

  0.0378 0.1813 0.2645 0.7778 0.8171 

2014 0.1372*** 0.1357** 0.0829 0.0368 -0.0255 

  0.0073 0.0346 0.1538 0.8000 0.8817 

2015 0.1543*** 0.1467** 0.0924 0.0513 -0.0265 

 0.0052 0.0365 0.1795 0.7778 0.9131 

2016 0.0224** 0.0352*** 0.0295** 0.0092 0.0076 

 0.0470 0.0068 0.0279 0.5556 0.5767 

2017 0.0810** 0.0825** 0.0407* 0.0014 -0.0051 

  0.0110 0.0308 0.0992 0.9222 0.8079 

Note: Synth_runner command in Stata were used to calculate the p-values of the placebo test.
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Appendix Table 8: Stochastic frontier analysis results 

Panel A: SFA estimationsa,e 

 DV=Total cost 

 (1) (2) (3) 

lnoutput 0.2823*** 0.2553*** 0.2724*** 

 (0.0000) (0.0000) (0.0000) 

lnpe 0.2940*** 0.1519*** 0.1956*** 

 (0.0000) (0.0000) (0.0000) 

lnpl 0.9259*** 0.9074*** 0.9538*** 

 (0.0000) (0.0000) (0.0000) 

klr -0.4789*** -0.4769*** -0.4952*** 

 (0.0000) (0.0000) (0.0000) 

lnerso2 0.3239*** 0.1218*** 0.1600*** 

 (0.0000) (0.0000) (0.0000) 

Year fixed effect Yes Yes Yes 

Mundlak's specification No Yes Yes 

Region fixed effect No No Yes 

Constant 1.5233*** -0.3478 -0.4578* 

 (0.0000) (0.2454) (0.2911) 

Lambda 4.1754*** 7.5962*** 2.5824*** 

 (0.0000) (0.0000) (0.0000) 

Observations 1102 1102 1102 

Panel B: Estimated efficiencyb 

 tre trem tremld 

 (1) (2) (3) 

Mean 0.8140 0.8352 0.8353 

Minimum 0.2182 0.4518 0.1485 

Maximum 0.9875 0.9914 0.9848 

Standard deviation 0.1149 0.1091 0.0958 

Correlationc,e tre trem treml 

tre 1 0.9298*** 0.8891*** 

trem 0.9426*** 1 0.8477*** 

treml 0.9509*** 0.8926*** 1 

Notes: a Panel A reports results from SFA estimation. b Panel B reports descriptive statistics of estimated 

cost efficiency. c For the correlations, lower triangular cells report Pearson’s correlation coefficients, 

upper triangular cells are Spearman’s rank correlation. d As model (4) controls for the most fixed effects 

to address the possible omitted variable biases, we use the estimate efficiency (treml) from this model 

for our cost efficiency analysis. In fact, in the unreported results, we find that the use of alternative 

efficiency scores from other models do not affect our results. e Standard errors are in parentheses, * p<0.1, 

** p<0.05, *** p<0.01. 
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Appendix S2: Figures 

Appendix Figure 1: Placebo test for synthetic control method 

Guangdong 

  

Shanghai 

 

Tianjin 

 

                     Chongqing 

 

Hubei 

Note: This figure shows the treatment effect on cost efficiency from ETS pilot policy on each treated province and the placebo tests for different synthetic control units using 

the synthetic control method.  
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Appendix S3: Stochastic Frontier Analysis 

The stochastic frontier model was originally developed by Aigner et al. (1977). 

The basic formulation of the stochastic frontier model is:  

𝑦 = 𝛽′𝑋 + 𝑣 + 𝑢 (A. 1) 

where y is the goal attainment measured by goal attainment, and 𝛽′𝑋 + 𝑣  is the 

optimal frontier goal pursued by the individual, such as the minimum cost or maximal 

production. 𝛽′𝑋  is the explanatory part which determines the frontier and 𝑣 ∼

𝑁[0, 𝜎𝑢
2] denotes the stochastic part. These two parts compose the ‘stochastic frontier’. 

𝑢 denotes the inefficiency term, where 

𝑢 = |𝑈| ∼ 𝑁[0, 𝜎𝑢
2] (A. 2) 

𝑢 also refers to the amount by which the individual fails to achieve the optimal goal 

(frontier). 

In this study, we adopt stochastic frontier analysis to estimate the cost efficiency 

of thermal power plants. The cost frontier is firstly constructed using the following 

equation: 

𝑇𝐶 = 𝑓(𝑌, 𝑋, 𝑃; 𝛽)𝑒𝑣𝑒𝑢 (A. 3) 

where TC is the minimum cost to produce the electricity power, and 𝑓(𝑌, 𝑋, 𝑃; 𝛽) 

denotes the deterministic part for the cost frontier. Specifically, TC is the total cost, Y 

refers to output measured by total electricity power generation, P is the price of inputs, 

including 𝑃𝐿 and 𝑃𝐸, which are the prices of capital (the installed power capacity) and 

labor (total employees), respectively, X is the vector of explanatory variables that affect 

the expense cost, 𝑒𝑣  is the stochastic component of the cost frontier, and 

𝑓(𝑌, 𝑋, 𝑃; 𝛽)𝑒𝑣 denotes the optimal minimum cost and the deviation from this optimal 

cost due to inefficiency is captured by 𝑒𝑢. Following the linear function, we further 

control the ratio of capital to labor (KL), SO2 emission per unit of power generation 

(SO2), and fixed effects of time (𝑑𝑡) and region (𝑙𝑗), which are measured by a vector of 

year dummies and region dummies3, respectively. The modified equation can be written 

as follows: 

ln 𝑇𝐶 = ln 𝑓(𝑌, 𝑃𝐿 , 𝑃𝐸 , 𝐾𝐿, 𝑆𝑂2, 𝑑𝑡 , 𝑙𝑗; 𝛽) + 𝑉 + 𝑈 (A. 4) 

Moreover, we also adopt Mundlak’s (1978) specification here to control for 

potential unobserved individual heterogeneity. Mundlak (1978) put forward a method 

to further consider the correlation between explanatory variables and the individual 

specific term 𝜂𝑖. The unobserved characteristics from the inefficiency term can thus be 

 

3 A set of region dummy variables are constructed based on the divisions of North China, Northeast China, East 

China, South China, Southwest China, Central China, and Northwest China.  
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partially separated from the inefficiency term by adding this auxiliary equation into the 

main frontier model. 

𝜂𝑖 = 𝜇𝑖 + 𝛾𝑖 (A. 5) 

𝜇𝑖 = 𝑀̅𝑖𝜋 =
1

𝑇
∑ 𝑀𝑖𝑡𝜋

𝑇

𝑡=1

 (A. 6) 

𝛾𝑖 ∼ 𝑖𝑖𝑑(0, 𝜎𝛿
2) (A. 7)

where 𝑀𝑖𝑡 is the vector of explanatory variable, 𝑀𝑖 is a vector of the mean value for 

the respective explanatory variables, and 𝜋 is a vector of estimated coefficients. The 

persistent inefficiency term is 𝛾𝑖 > 0  after separating the time-invariant provincial 

factors that do not affect the inefficiency. Provincial factors with short-run rigidities that 

have an impact on the inefficiency are captured by 𝜇𝑖𝑡 > 0. 

The cost function with econometric specifications after adding the auxiliary 

equation is:  

ln 𝑇𝐶 = ln 𝑓(𝑌, 𝑃𝐿 , 𝑃𝐸 , 𝐾𝐿, 𝑆𝑂2, 𝑑𝑡, 𝑙𝑗; 𝛽) + 𝑀̅𝑖𝜋 + 𝜇𝑖𝑡 + 𝛾𝑖 + 𝜈𝑖𝑡 (A. 8) 

By adopting the above equation, the overall cost efficiency can then be computed 

based on estimation results as in the following equation: 

𝐶𝑜𝑠𝑡𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖𝑡 =
𝑇𝐶𝑖𝑡

𝐹

𝑇𝐶𝑖𝑡
= exp(−𝑈𝑖𝑡̂) (A. 9) 

where 𝑇𝐶𝑖𝑡
𝐹 is the minimum expense cost of the ith plant at time t and 𝑇𝐶𝑖𝑡 is the 

observed total cost. 
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