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Depth Selection for Deep ReLU Nets in Feature
Extraction and Generalization

Zhi Han, Siquan Yu, Shao-Bo Lin, and Ding-Xuan Zhou

Abstract—Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition
without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has
triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep
learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity
of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the
adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite
features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the
optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical
experiments including toy simulations and a real application of earthquake seismic intensity prediction.

Index Terms—Deep nets, feature extractions, generalization, learning theory
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1 INTRODUCTION

Systemic machine learning process frequently comes

down to two steps: feature extraction and target-
driven learning. The former focuses on designing prepro-
cessing pipelines and data transformations that result in
a tractable representation of data, while the latter utilizes
learning algorithms related to specific targets, such as re-
gression, classification and clustering on the data repre-
sentation to finish the learning task. Studies in the second
step abound in machine learning [5] and numerous learning
schemes such as kernel methods [15], neural networks [20]
and boosting [21] have been proposed. However, feature
extraction in the first step is usually labor intensive, which
requires elegant feature engineering techniques by taking
advantages of human ingenuity and prior knowledge.

To extend the applicability of machine learning, it is
crucial to make learning algorithms be less dependent of
human factors. Deep learning [23], [16], which has been
successfully used in image classification, natural language
processing and game theory, provides a promising tech-
nique in machine learning. The heart of deep learning is
to adopt deep neural networks (deep nets for short) with
certain structures to extract data features and design target-
driven algorithms, simultaneously. As shown in Figure 1,

e 7. Han is with the State Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang, China and
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy
of Sciences, Shenyang, China.

e S. Yu is with the State Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang, China and
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy
of Sciences, Shenyang, China and also with the School of Information
Science and Engineering, Northeastern University, Shenyang, China.

e S.B. Lin is with the Center of Intelligent Decision-Making and Machine
Learning, School of Management, Xi’an [iaotong University, Xi’an, Chi-
na.

e D.X. Zhou is with the School of Data Science, Liu Bie Ju Centre for
Mathematical Sciences and Department of Mathematics, City University
of Hong Kong, Hong Kong, China.

o Corresponding author: S. B. Lin (sblin1983@gmail.com)

deep learning embodies the utilities of feature extraction
algorithms such as bag of feature (BOF), local binary pattern
(LBP), histogram of oriented gradient (HOG) and classifica-
tion algorithms like support vector machine (SVM), random
forest, via tuning parameters in a unified deep nets model.
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Fig. 1: Magic behind deep learning

The great success of deep learning in applications
demonstrates the feasibility of deep nets in specific learning
tasks. However, whether deep learning is generalizable to
other learning tasks relies on rigorous theoretical verifica-
tions, which is unfortunately at its infancy. In particular, it is
highly desired to clarify the following three important prob-
lems: 1) which data features! can be extracted by deep nets;
2) how to set the depth of deep nets in special learning tasks;
3) how about the generalization ability of deep learning
algorithms. The first problem refers to the representation
performance of deep nets, needing tools from information
theory like coding theory [38] and entropy theory [18].
The second one concerns approximation abilities of deep
nets with different depth, requiring approximation theory

1. Data feature in this paper means priors for presentation learning
according to the terminology in the nice review paper [3]. It includes
both the a-priori information of target functions and structures of the
input space.
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techniques such as local polynomial approximations [48],
covering number estimates [25] and wavelets analysis [52]
to quantify powers and limitations of deep nets. The last
one focuses on the generalization capability of deep learning
algorithms in machine learning, for which statistical learn-
ing theory as well as empirical processing [10] should be
utilized.

Although lagging heavily behind applications, recent
developments of deep learning theory provided some ex-
citing theoretical results on these problems. For example,
[44] proved that deep nets succeed in extracting some ge-
ometric structures of data, which has been adopted in [8]
to design deep learning algorithm for regression problems
with data generated on manifolds; [7] found that deep
nets can extract local position information of data, which
was recently employed in [31] to construct deep nets in
handling sparsely located data; [38] proved that deep nets
can extract piecewise features of data, which was utilized
in [24] to develop learning algorithms to learn non-smooth
functions efficiently. All these interesting studies presented
theoretical verifications on the power of deep learning in
the sense that deep nets succeed in extracting data features
and deep learning significantly improves the generalization
capabilities of learning schemes in-hand.

The problem is, however, that there are strongly exclu-
sive correspondences between data features and network
depth for these theoretical studies in the sense that each
data feature requires a unique network depth and vice-
verse. To be detailed, a hierarchal structure corresponds to
a hierarchal deep net with the same depth [36]; smooth-
ness a-priori information [48] is related to a deep net with
accuracy-dependent depth; a translation-invariance proper-
ty requires a convolutional neural network with accuracy-
dependent layers [6]; and a rotation-invariance property is
associated with a deep net with tree structures and four
layers [9]. Such exclusive correspondences hinder heavily
the use of deep nets in feature extraction, since data
features such as the smoothness information, hierarchal
structure, transformation-invariance are practically difficult
to be specified before the learning process. Furthermore, it is
questionable to determine the network depth for simultane-
ously extracting multiple data features like the translation-
invariance and rotation-invariance, which is pretty common
in practice. Our first purpose is to break through the feature-
depth correspondences by means of proving that deep nets
with certain depth can extract several data features and vice-
verse.

We consider extracting both single data features such as
smoothness, rotation-invariance, sparseness and composite
data features combining smoothness, rotation-invariance
and sparseness to demonstrate the adaptivity of network
depth to features and vice-verse. Intuitively, it is diffi-
cult for deep ReLU nets to extract smoothness features
due to the non-smooth property of the ReLU function
o(t) = max{t,0}. A natural remedy for this, as shown in
[48], is to deepen the network with an accuracy-dependent
depth to eliminate the negative effect of non-smoothness.
Since under some specified capacity measurements such
as the number of linear regions [37], Betti numbers [4],
number of monomials [12] and covering numbers [18], the
capacity of deep nets increases exponentially with respect
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to the depth, large depth usually means large capacity costs
for feature extraction. Furthermore, from an optimization
viewpoint, large depth requires to solve a highly noncon-
vex optimization problem [16, Sec. 8.2] involving the ill-
conditioning of the Hessian, the existence of many local
minima, saddle points, plateau and even some flat regions,
making it difficult to design optimization algorithms for
such deep nets with convergence guarantees. Based on
these, we provide a theoretical guidance for depth selection
to extract data features by showing that deep nets with
various depths, larger than a specified value, are capable
of extracting the smoothness and other data features. This
shows an adaptivity of the depth to data features in the
sense that any data features from a rich family can be
extracted by deep nets with various depths. Conversely, we
also provide theoretical guarantees on the adaptivity of the
data feature to depths by showing that deep ReLU nets with
some specific depth succeed in extracting the smoothness,
spareness and composite features. All these remove the
feature-depth correspondences in feature extraction for deep
ReLU nets.

From feature extraction to machine learning, the tug
of war between bias and variance [10] indicates that the
prominent performance of deep nets in feature extraction is
insufficient to demonstrate its success. The good generaliza-
tion ability is frequently built upon the balance between the
accuracy of feature extraction and capacity costs to achieve
such an accuracy. This exhibits a bias-variance dilemma in
selecting the capacity of deep nets. Different from shallow
learning such as kernel methods and boosting, recent s-
tudies [22], [18] presented a depth-parameter dilemma in
controlling the capacity of deep nets in the sense that dif-
ferent depth-parameter pairs may yield the same capacity.
These two dilemmas as well as the optimization difficulty
[16, Sec. 8.2] pose an urgent issue for deep learning theory
on selecting the depth to guarantee the good generalization
ability of deep learning algorithms. Our second purpose is
not only to pursue the optimal generalization error for learn-
ing schemes based on deep nets, but also to demonstrate the
depth selection strategy to realize this optimality.

We study the generalization ability of deep nets with
different depths via empirical risk minimization (ERM).
Based on the established adaptivity of the depth to data
features in feature extraction, we establish almost optimal
generalization error bounds for deep nets with numerous
depth-parameter pairs. Our results show that the feature
extraction step is necessary when the learning task is some-
what sophisticated and deep nets succeed in extracting deep
data features of the data distribution, which illustrates the
necessity of depth in deep learning. However, we also prove
that the depth for realizing the optimal learning perfor-
mance of deep nets is not unique. In fact, with depth larger
than some specified value, all deep nets theoretically perfor-
m similarly and can achieve the optimal generalization error
bounds. The only difference is that deeper nets involve less
free parameters.

In a nutshell, our analysis implies three interesting
findings in understanding the success of deep learning.
The first is the flexibility on automatically selecting the
accuracy in extracting data features via tuning the network
parameters, which is different from the classical two-step
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learning scheme presented in Figure 1 that usually involves
extremely high capacity costs to fully extract data features.
The second is the versatility of deep nets with fixed depth
in the sense that they can extract various data features. The
third one is that if the depth is larger than a specified value,
we can always get a deep net estimator with almost optimal
theoretical guarantee. The problem is, however, that it is
difficult to design efficient optimization algorithms to solve
ERM on deep nets with large depth (see [16, Sec. 8.2] and
[1] for example)?. Under this circumstance, it is numerically
difficult to get a deep net estimator with large depth from
the optimization viewpoint. As a result, there is practically
an optimal depth to realize the established optimal gen-
eralization error bounds, just as our experimental results
exhibit.

The rest of the paper is organized as follows. In the
next section, we introduce deep nets and show some recent
developments of deep nets in feature extraction. Section
3 focuses on the depth selection for deep ReLU nets in
extracting single data features, while Section 4 devotes to
the depth selection in extracting composite data features.
In Section 5, we are interested in the generalization error
analysis for implementing ERM on deep nets. Section 6
exhibits some numerical results to verify our theoretical
assertions. In the last section, we draw a simple conclusion
and present some further discussions.

2 NECESSITY OF DEPTH IN FEATURE EXTRAC-
TION

Let d € N be the dimension of input space. Denote
r o= (W . . 2@®) € 1¢ := [-1,1]% Let L € N and
do,dy,...,dy € Nwithdy = d. For b = (b, ... hd)T ¢
R, define &(h) = (o(hM),...,o(h4)))T. Deep ReLU
nets with depth L and width d; in the j-th hidden layer
can be mathematically represented as

Mdg,.. g0} (x) = @- (@), (1)

where
hi(z) = G(Wi - h—1(z) + b)),  k=1,2,....L, ()
ho(z) =z, @ € R, by € R%, and Wy = (W) 2% isa

dy X dj,—1 matrix. Denote by H4,,... 4, -} the set of all these
deep nets. When L = 1, the function defined by (1) is the
classical shallow net.

The structure of deep nets is reflected by structures
of weight matrices W), and threshold vectors b_;; and d,
k=1,2,..., L. Besides the deep fully connected networks
[48] that counts the number of free parameters in the k-
th layer to be dydy_1 + di>, we say that there are ny, free
parameters in the k-th layer, if the weight matrix W}, and
thresholds by, are generated through the following three
ways. The first way is that there are totally n; tunable
entries in W, and b_;;, while the remainder dpdy_1 + di. — ng

2. Here, the difficulty means that larger depth requires more free
parameters under an over-parameterization setting to guarantee the
convergence of SGD to a local minimization of ERM of high quality
and larger depth results in more local minima, saddle points and flat
regions.

3. If k=L, the number is d;,d;,_1 + 2d, by taking the outer weights
into accounts
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entries are fixed. An example is deep sparsely connected
neural networks. The second way is that W}, and I;k are
exactly generated by n;, free parameters including weight-
sharing. The third way is that the weight matrix is generated
jointly by both the above ways. Like the most widely used
deep convolutional neural networks, we count the number
of free parameters according to the third way by considering
both sparse connections and weight-sharing [51], [52], [53].
It should be mentioned that such a way to count free
parameter is different from [48] which considers deep fully
connected neural networks. The different way to count
free parameters is consistent with the structure of deep
nets, which is the main reason why we can improve the
approximation result of [48].

2.1 Capacity measurements of deep nets

It is meaningless to pursue the outperformance of deep nets
over shallow nets without considering the capacity costs,
since the universality of shallow nets [11], [26] demonstrates
that shallow nets can extract an arbitrary data feature as
long as the network is sufficiently wide. We adopt the
concept of covering number [50] which is widely used in
statistical learning and information theory to measure the
capacity to cast the comparison into a unified framework.

Let B be a Banach space and V' be a subset of B. Denote
by N (e, V,B) the e-covering number of V under the metric
of B, which is the minimal number of elements in an e-net of
V. Intuitively, the e-covering number measures the capacity
of V via counting the minimal number of balls in B with
radius € covering V. Figure 2 showes that the 0.1-covering
number of A is 19 while that of B is 10, coinciding with the
intuitive observation that A is larger than B.

Fig. 2: Covering numbers of different sets

The quantity H(s, V,B) = log, N (g, V,B) is called the
g-entropy of V' in B which is close to the coding length in
information theory according to the encode-decode theory
[13]. Thus, it is a powerful capacity measurement to show
the expressivity of V' in B. Furthermore, the e-covering num-
ber determines the limitation of approximation ability of V'
[18] and also the stability of learning algorithms defined on
V' [10]. All these demonstrate the rationality of adopting the
covering number to measure the capacity of deep nets.
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Denote by H,, 1, the set of all deep nets with L hidden
layers, n free parameters and by

Hu g = {bn,p € Hup : [0”], b, |ai] < R,

1<i<dy,1<j<dy1,1<k<L} 3)

the set of deep nets whose weights and thresholds are
uniformly bounded by R, where R is some positive number
that may depend on n, di, and L. The boundedness assump-
tion is necessary since it can be found in [34], [18] that there
exists some deep nets with two hidden layers and finitely
many neurons possessing an infinite covering number.

The following lemma proved in [18] presents a tight
estimate for the covering number of deep ReLU nets.

Lemma 1. Let H,, 1 » be defined by (3). Then

N (&M, L2(1Y) < (ORDya)*ET e (g
where Doy = maxo<¢<r, d¢ and C is a constant depending
only on d.

It was deduced in [19, Chap. 16] that
R
log N'(, Hn,1,, L' (I9)) = O (nlog ?) . )

Comparing Lemma 1 with (5), we find that, up to a log-
arithmic factor, deep nets with controllable magnitudes of
weights do not essentially enlarge the capacity of shallow
nets, provided that they have the same number of free
parameters and the depth of deep nets is at most log n. Fur-
thermore, Lemma 1 implies that the depth plays a similar
role as the number of parameters in controlling the capacity
of deep nets, when ¢ is not extremely small. This shows a
novel depth-parameter dilemma in controlling the capacity.

2.2 Limitations of shallow nets in extracting features

The study of approximation capability of shallow nets is a
classical topic in neural networks. We refer the readers to
a fruitful review paper [40] for details on this topic. Com-
pared with the classical linear approaches like polynomials,
shallow nets with sigmoidal activation function possess
better approximation ability [35] and are capable of conduct-
ing dimension-independent error estimates under certain
restrictions on target functions [2]. More importantly, the
universality [11], [26] showed that shallow nets can extract
any data feature as long as the network is sufficiently wide.
However, with fixed width, they have limitations in feature
extraction, in terms of saturation [29], non-localization [7],
[41], non-sparse approximation [27], [31] and bottleneck in
extracting the smoothness feature [34], [30]. In particular, it
was shown in [34] that shallow nets whose capacity satisfies
(5) cannot extract the smoothness features within accuracy
O(n~"/(4=1)) with high probability, where r denotes the
degree of smoothness.

For shallow nets with ReLU (shallow ReLU nets), the
limitation is even stricter. It was shown in [14] that there
exist some analytic univariate functions which cannot be
expressible for shallow ReLU nets. Recently, [48, Theorem
6] proved that any twice-differentiable nonlinear function
defined on I cannot be e-approximated by ReLU networks
of fixed depth L with the number of free parameters less
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than ce~1/(2(£=2)) where c is a positive constant depending
only on d. A direct consequence is that a ReLU network
with depth L = 3 and n free parameters cannot extract the
simple “square-feature”, i.e., 2, within accuracy n~2"" for
an arbitrary 7 > 0. By noting ¢ is an infinitely differentiable
function, it is well known that there exist linear tools to
approximate 2 within accuracy of order n~T [39] for an
arbitrarily large I' < oo. All these results showed that
shallow nets, especially shallow ReLU nets, are difficult to
extract data features and thus have bottlenecks in complex
learning tasks.

2.3 Necessity of the depth for ReLU nets

Advantages of deep nets over shallow nets were firstly
revealed by [7] in the sense that deep nets can provide
localized approximation but shallow nets fail. Since then,
a great number of data features including those for s-
parseness, manifold structures, piecewise smoothness and
rotation-invariance are proved to be unrealizable by shallow
nets but can be easily extracted by deep nets. Under the
capacity constraint (4) that is similar to (5) for shallow nets,
the summary of advantages of deep ReLU nets in feature
extraction are listed in the following Table 1.

TABLE 1: Deep nets in feature extraction (within accuracy
€, r-smooth function and d,,,-dimensional manifold)

Ref. | Features Parameters | Depth
[7] Localized approximation | 2d + 1 2

[31] | k-spatially sparse k(2d+1) 2

[44] | Smooth+Manifold g=dm/7T 4

[38] | Piecewise smooth g=a/r Finite
[41] | ¢; radial+smooth e 1/r log(e~1)
[43] | k-sparse (frequency) klog(e™T) | log(e™T)

To extract the “square-feature”, the following lemma has
been shown in [48, Proposition 2] to verify that deep ReLU
nets can overcome the bottleneck of shallow ReLU nets.

Lemma 2. The function f(t) = t* on the segment [0, 1] can be
approximated with any error € > 0 by a ReLU network having
the depth and free parameters of order O(log(1/¢)).

Due to the non-smoothness of ReLU, it is difficult
for a shallow ReLU net with fixed width to extract s-
mooth features within an arbitrary accuracy ¢. However,
by deepening the network, Lemma 2 shows that deep
ReLU nets succeed in finishing such a task with only
O(log(1/¢)) free parameters. With Lemma 2 and the relation
t1 -ty = [(t1 + t2)? — t? — t3]/2, deep ReLU nets can
be used as a “product-gate” [48, Proposition 3] to extract
the “product” relation between variables. Then, deep ReLU
nets with O(log(1/¢)) hidden layers and free parameters
can approximate arbitrary polynomials defined on 1% [43].
Therefore, even for some simple data features, deep ReLU
nets theoretically beat shallow ReLU nets, showing the
necessity of the depth in feature extraction. However, as
shown in [16, Sec. 8.2] and [1], both the convergence issue of
the stochastic gradient descent algorithm and the gradient
vanishing phenomenon make it be difficult to practically
derive a deep ReLU net estimator, which hinders the use-
fulness and efficiency of Lemma 2. Figure 3 presents the
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difficulty for deep ReLU nets in extracting a 2-dimensional
“square-feature” defined as f(t) = t? + t3. For each depth,
the network of the best performance is chosen and shown
in the figure as a representation for the depth, by searching
various (tens of) combinations of widths and step sizes. The
statistics of each depth are made from 100 trials. The relation
between accuracy and depth is recorded in Figure 3 (a) and
that between the frequencies of valid models and depth is
recorded in Figure 3 (b). As shown, the network performs
less robust when it gets deeper.

10 £
o

N

(a) Accuracy and depth (b) Valid model and depth

Fig. 3: The role of depth for approximating ? using SGD

To end this section, we mention that the “square-gate”
in Lemma 2 also holds for shallow nets with analytic acti-
vation functions and large weights [9]. With extremely large
weights, it was proved in [34] that there is a deep net with
two hidden layers and analytic activation functions that
can approximate any continuous function to an arbitrary
accuracy. Since large weights are difficult to be numerically
realized, we focus on deep ReLU nets which require the
magnitude of weights to be at most O(¢~Y) for some 6 > 0.

3 DEPTH SELECTION FOR EXTRACTING A SINGLE
FEATURE

In this section, we introduce several data features and study
the role of depth in extracting these data features to break
through the feature-depth correspondences. Since there are
numerous symbols involved in different data features, we
provide a table of notations as follows.

TABLE 2: Notations

L: number of layers

d;: width in the j-th layer

r: smoothness index

R: bound of parameters

d*: group structure dimension
Dj: size of the j-th group

n: number of parameters
d: input dimension

1t sparseness index

B: bound of coefficients
J: group structure degree
B: degree of polynomials

3.1

In a seminal review paper [3], Bengio et al. presented a
fruitful review on intuitive and experimental explanations
for the success of deep learning in feature extraction. From
a numerical Viewpoint, deep nets can extract numerous data
features including those for smoothness, hierarchical organi-
zation, shared factors, manifold structures and sparsity, part
of which were theoretically verified in the recent paper [18].
In particular, [18] rigorously proved that with the similar
capacity costs measured by the covering number, deep nets
beat shallow nets in extracting data features listed in Table

Data features
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1 while perform not essentially better than shallow nets in
extracting the smoothness feature.

Let f* : 19 — R be a function to model the potential
relation between input and output, i.e., y ~ f*(x) with
z € I and y € R the input variable and output variable
respectively. Both structures of = and properties of f* are
regarded as data features. In the following, we introduce
the smoothness feature of f*.

Definition 1. Let ¢co > Oand r = s+v with s € Ny := {0} UN
and 0 < v < 1. We say a function f : 19 — R is (r, cp)-smooth
if f is s-times differentiable and for every a; € No, j =1,...,d
with oy + -+ + og = s, its s-th partial derivative satisfies the
Lipschitz condition

o°f

a1 g
Oz ... 0xy

o°f

- 6$a1 axad (I/) SCOH-T_Z'/HS, (6)
1 e d

(z)

where x,2' € 1% and ||x||y denotes the Euclidean norm of x.
Denote by Lip(™0) the set of all (r, co)-smooth functions defined
on T4,

The smoothness feature of f* illustrates that x ~ z’

implies f*(z) ~ f*(2). It is a standard feature to describe
f* and has been used in vast literature [7], [25], [17], [38],
[48], [49], [32]. However, it remains open whether deep
ReLU nets can achieve the optimal performance of algebraic
polynomials for realizing the smoothness feature, though
encouraging developments have been made in [48], [38].
Furthermore, as pointed out in [3], the smoothness feature of
f* is insulfficient to get around the curse of dimensionality,
which requires additional structure features of x. To this
end, we introduce the following group structure feature for
the input.

Definition 2. Let 3,d* € N and D;,...,Dg4- € N satisfy
d = Dy + -+ Dg-. We say x possesses a (D1, ..., Dg~)-
group structure of order j with respect to f*, if there exists some
polynomials Py ,, k = 1,...,d* defined on 1P* and of degree at
most y and a function g : RY — R such that

fflz) = g[Pl,J(x(l), Py
Py (x4 Par D (D], )

The group structure depicts the relation between differ-
ent input variables. The case d* = d and P ,(t) = ¢ for
k =1,...,d denotes that all variables in = are independent.
The rotation-invariance assumption [9] is included in the
case d* = 1 and implies that variables in « possess strong
dependence. The group structure assumption is more gen-
eral than the manifold assumption [8], rotation-invariance
assumption [9] and sparseness assumption [43] via impos-
ing different restrictions on P .

To show the outperformance of deep nets, we impose
both the smoothness assumption on f* and group structure
assumption on the input. Such a smooth-structure assump-
tion abounds in applications. For d* = 1 and P ,(z) =
()2 + ... + (D)2, the smooth-structure assumption
refers to a radial function that plays an important role in de-
signing earthquake early warning systems [42]. For d* < d
and Py, (zM,.. 2Py = (20)2 ... 4 (2(P1))2) the
feature assumption is related to a partially radial function
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that is important in predicting the magnitude of earthquake
[47]. For d* = d and

g(Py (M), ... Pay(z D) = P (2W) - 4 Py (z(D),

the smooth-structure assumption corresponds to the well
known additive model [25] with polynomial kernels in
statistics. If there exists some P ,(-) = 0, the assumption
then implies sparseness which is standard in computer
vision [33].

3.2 Depth selection for extracting the group structure

It was shown in [35] that for some fixed activation function,

i.e., analytic and non-polynomials, shallow nets with (5 d+d

neurons can approximate any polynomial defined on I¢ of
degree 8 € N within an arbitrary accuracy. However, if
the polynomial is sparse, then shallow nets fail to catch
the sparseness information [27] in the sense that the same
number of neurons is required to approximate sparse and
non-sparse polynomials. However, [27], [43] found that
deep nets essentially improve the performance of shallow
nets by using the “product-gate” property of deep nets [48].
In particular, for deep ReLU nets, the following lemma was
proved in [43, Proposition 3.3].

Lemma 3. Forany 0 < ¢ < 1 and { € N, there exists a deep
ReLU net [] : R® — R with O[(1 + log¥)log(¢/e)] depth
and O[(1 + log ) log(£/e)] free parameters such that for any
Ui, ..., ug satisfying |ux| < 1,k =1,..., ¢, there holds

¢
H(ul,...,uz)— Huk <e
k=1

Noting that each monomial defined on I¢ of degree
at most 8 can be rewritten as 8 products of elements in
[0,1], it requires a deep net with O[(1 + log ) log(5/¢)]
depth and free parameters to extract the monomial feature
according to Lemma 3. Based on the “product-gate-unit”
(PGU), we can construct a deep net such that for any u-
sparse polynomials, there are only u+O[(1+log 3) log(3/¢)]
free parameters involved to extract this structure feature,
which is much smaller than (5 Ay ) provided p is small and
¢ is not extremely small.

Although the above interesting result illustrates the
power of depth in extracting structure features, the depth
of the constructed deep ReLU net depends on the approx-
imation accuracy, making it be practically difficult to get
a deep net estimator, just as Figure 3 purports to show.
In this paper, we pursue a trade-off between depth and
number of free parameters in extracting structure features
by using an approach developed in a recent paper [38].
The following “product-gate” for deep ReLU nets is our
main tool, whose proof can be found in Appendix A in
Supplementary Materials.

Lemma 4. Let 0 > 0 and L € N with L > (20)~'. For
any £ € {2,3,...,} and € € (0,1), there exists a deep ReLU
net x¢: RY — R with 20T + 8¢ layers and at most cl%c" free
parameters bounded by (Y~ such that

lugug - ug — Xp(ug, ..., up)| <e, Vug,...,up € [-1,1],

where ¢ and ~ are constants depending only on 6 and L.
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Comparing Lemma 4 with Lemma 3, as a “product-
gate”, we reduce the depth of deep ReLU nets on the
price of adding the number of free parameters. The positive
number ¢ performs as a balance exponent in the sense
that small 6 implies large depth but few free parameters,
while large § means small depth but a great number of
free parameters. For a fixed and e-independent exponent
6, the depth of ReLU nets in Lemma 4 is independent of the
accuracy €, while the number of free parameters increases
from O[(1 + log?)log(¢/c)] to £°9=*. Therefore, Lemma
4 exhibits a trade-off between depth and parameters and
removes the feature-depth correspondence.

Denote by Pg the set of algebraic polynomials defined
on I¢ with degree at most 5. For B > 1, define further

Pip = {Ewsa Cal
in Pg whose coefficients are uniformly bounded by B,
where a = (aq,...,a4) € N, |a| = a1 +--- + a4 and
@ = (x> (g (d))o‘d Define Pﬁ B the set of all p-
sparse polynomials in P¢ - S0 P € 775 B, has at most
1 nonzero coefficients. The following theorem shows the
performance of deep ReLU nets in extracting the sparse
polynomial feature, whose proof will be given in Appendix
A in Supplementary Materials.

*ileal < B } the set of polynomials

Theorem 1. Let B, € N, B,6 > 0 and L € N with L >
(20)1. For any 0 < € < 1, there is a deep ReLU net structure
with 2B8L+88+1 layers and at most y+ c(uBB)?e~? nonzero
parameters bounded by max{B, (uSB)"e~"}, such that for each
P e Pg’ B,y there exists a hp with the aforementioned structure

satisfying
Yz €19

|P(z) — hp

where c and -y are the constants in Lemma 4.

()| <e,

A similar result has been established in [43] for deep
ReLU nets with depth O(log Slog(uBp/c)) and number
of free parameters u + O(log flog(uBpB/¢e)). Our result
is different from [43] by introducing an exponent 6 to
balance the depth and number of free parameters. For a
fixed 60, the depth of deep ReLU nets studied in Theorem
1 is independent of e. Thus, Theorem 1 shows a novel
relation between the depth and feature extraction for sparse
polynomial features as well as the group structure features,
by means of breaking through the exclusive feature-depth
correspondence in [43]. Furthermore, if 1 is not extremely
small, we can select a § in Theorem 1 such that the capacity
of deep nets in Theorem 1 is smaller than that in [43] accord-
ing to Lemma 1. That is, Theorem 1 provides a theoretical
guidance on using smaller capacity costs than [43] to get a
same accuracy in extracting the sparse feature.

3.3 Deep nets for extracting the smoothness feature

In [48], Yarotsky succeeded in establishing a tight error
estimate of approximating smooth functions by deep ReLU
nets by utilizing the “product-gate” property in Lemma 3.
[48, Theorem 1] showed that for any f € Lip(:¢0) with
r € N, there is a deep ReLU net h$ with fixed structure,
n free parameters and O(logn) layers such that

If = h$llzoe ey < ¢n™ "/ logn, ®)
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where ¢’ is a constant depending only on ¢y, d, r and
p € [l,00). Comparing with standard results for linear
approximants such as algebraic polynomials [39], there is
an additional logarithmic term in (8). This is due to the
accuracy-dependent depth in Lemma 3.

This phenomenon was firstly noticed in [38]. After de-
riving the “product-gate” property for deep ReLU nets with
accuracy-independent depth, [38, Theorem 3.1] proved that
there exists a deep ReLU net h’ with fixed structure, n free
parameters layered on (24 [log r])(11 +r/d) hidden layers
such that

1 f = hillzeaey < cn )

where ¢* is a constant depending only on ¢y, d, r and
p € [1,00). It is obvious that (9) improves (8) by removing
the logarithmic term. However, the analysis in [38] relies on
the localized approximation [7] of deep nets and thus, their
result holds only under the L?(I) norm with 1 < p < oc.
Noting that for f € L(I%), || fllrrqay < [|f]l 1o 14y, (9) does
not match the optimal rate of uniform approximation by
linear approximants. In the following theorem, we combine
the approaches in [38] and [48] to get a sharp error estimate
of approximating smooth functions by deep ReLU nets
under the L> (1) metric.

Theorem 2. Let r = s + v with s € Ngand 0 < v < 1,
co,0 > 0and L € Nwith L > (20)~L. Forany € € (0,1), there
exists a deep ReLU net structure with

L(d,r,L) :=2(d+ s)L+8(d+s)+3 (10)

layers and at most c(d + )’ ="t DO/T 4 (8d + 5) () e~/
free  parameters  bounded by max{B,3s"V/" (d +
8)Ye=r+dV/mY such that for any f € Lip{™) there is a

h¢ with the aforementioned structure satisfying
Ilf = hsllLee@ay < cre, (1)

where c; is a constant depending only on co, d and r and
~ 1

0t ()
B e A e G L ghag @ |

The proof of Theorem 2 will be presented in Appendix
B in Supplementary Materials. Setting ¢ = n~"/%, we get
from Theorem 2 that there exists a deep net h s with at most
O(nfnax{l’(r“'d)e/d}) free parameters and £(d,r, L) layers
for L > (20)~! such that

If = hfll o ay < can™ "% (12)

The depth plays a crucial role in extracting the smooth
features in the sense that to derive a similar approximation
accuracy as linear approximants, 6 should be not larger than
d/(r 4+ d), implying L > (r + d)/(2d). However, when the
depth L(d,r, L) with L reaching this critical value, deep
nets with various depths are capable of extracting smooth
features. This removes the feature-depth correspondence in
extracting the smooth feature by making use of the structure
of deep nets, since our constructed deep nets in the proof
are sparse and share weights, which is different from the
deep nets in the prominent work [48]. Recalling Lemma 1,
for appropriately selected 6, the capacity of deep nets in
our construction is smaller than that of [48] by removing
the logarithmic term caused by the accuracy-dependent
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layers. Inequalities like (11) have been established for shal-
low nets with some sigmoid-type activation functions [35],
[28]. However, different from Theorem 2, the magnitudes
of weights in [35] are so large that the capacity restriction
(5) does not hold and the result in [28] suffers from the
well known saturation phenomenon in the sense that the
approximation rate cannot be improved any further when
the smoothness of the target function goes beyond a specific
level. It can be found in Theorem 2 that deepening the
networks succeeds in overcoming these problems. Although
[18, Theorem 2] declares that to extract the smoothness fea-
ture, deep nets perform not essentially better than shallow
nets or linear approximant, our result in Theorem 2 yields
that deep ReLU nets are at least not worse than shallow nets.

4 DEPTH SELECTION IN EXACTING COMPOSITE
FEATURES

The previous section demonstrated the role of depth in
extracting a single data feature. However, as shown in [3],
it is much more important to simultaneously extract mul-
tiple features to feed the target-driven learning. Extracting
composite features by deep nets, which is the purpose of
this section, brings novel challenges in designing deep nets,
including the junction of deep nets with different utilities,
the balance of accuracy and depth, and the depth-parameter
trade-off.

To build up a network to exact composite features, an
intuitive approach is to stack deep nets by the a-priori
information or human experiences in a tandem manner,
just as Figure 1 implies. The problem is, however, that
such a brutal stacking is practically inefficient, for both the
unavailability of the a-priori information and lacking of the
prescribed accuracy for extracting a specific feature. More
importantly, the stacking scheme requires much more free
parameters and depths of deep nets to extract composite fea-
tures, adding additional capacity costs according to Lemma
1

In this section, we provide some theoretical guidance on
selecting depth of deep nets to extract composite features by
taking the depth-parameter trade-off into account. Without
loss of generality, we are interested in extracting features
exhibited in the following assumption.

Assumption 1. Let r = s+ v with s € Ny and v € (0,1],
Dy,....Dg,d* € Nwithd = Dy + -+ Dy, and 3, €
N. Assume that there is a function g defined on 1% satisfying
g € Lip™) such that (7) holds with Py, € PPl  for k =
1,...,d"

There are totally three types of features in Assumption 1,
the smoothness feature of g as well as f*, the group struc-
ture feature of x, and the sparsity feature of the structure
polynomials Py ;,, £ = 1,...,d". An intuitive observation
is that the depth and number of free parameters of deep
nets to simultaneously extract these three features should
be larger than those to extract each single feature. However,
as shown in the following theorem, it is not necessarily
the case, provided the deep nets for different utilities are
appropriately combined.
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Theorem 3. Let r = s+v withs € Ngand v € (0,1],d*, j, u €
N, ¢o,0 > 0and L € Nwith L > (20) ™. Forany 0 < e < 1/2,
there exists a deep ReLU net structure with at most

smooth+group group
L£5(d*,r,L,7) = L(d*,r,L) +2)L+8)+1 (13)
layers and at most
smooth+group
W 2, 1,9,0) i= (8" +5) () e~/ (4
sparse+group depth-parameter trade-off
n ’l';d? be(d 4 5)leHEIT L ()00

free parameters bounded by
max{ By, 3", (d* 4 5)7e=CHNIT (ug)1e/ Ty (15)

such that, for any f* satisfying Assumption 1, there is an h -
possessing the aforementioned structure satisfying

(1) < coe

1, r=>1,
v, r<l,
only on co,r,d* and g.

where T, = and co, By are constants depending

The proof of Theorem 3 will be given in Appendix C
in Supplementary Materials. Assumption 1 implies f*
Lip(™©), which requires L(d,r,L) layers to extract the
smoothness feature according to Theorem 2. However, with
the help of the group structure feature, (13) exhibits a reduc-
tion of layers from L(d*,r, L) to L(d,r, L) To extract the
group structure feature itself, additional 27L + 87+ 1 layers
are required. This shows that the classical tandem stacking
is not necessary. In particular, for some specific group struc-
ture features, taking d* = 1 and j = 1 for example, it is easy
to select some 6 > 0 such that £*(d*,r,L,3) < L(d,r, L),
implying a waste of source of the tandem stacking.

The number of free parameters, as exhibited in (14),
reflects the price to pay for extracting three composite
features. To yield an accuracy of order ¢, the group struc-
ture and smoothness feature require at least =@ /" free
parameters. It should be mentioned that this number cannot
be reduced further according to [18, Theorem 2] by noting
in Assumption 1 that f* corresponds a smooth function
defined on I . The second term in (14) reflects the diffi-
culty in extracting the group structure feature. Without the
sparseness assumption, it requires at least O (Zgzl JP ’“)
free parameters. If there is some k such that jP% > ¢=4°/7,
extracting the group structure feature becomes the main
difficulty in the learning process. This imposes a strict
restriction on 7 to maintain the optimality. The sparsity
assumption reduces this risk, allowing 7 to be very large.
The rest two term in (14) illustrates a depth-parameter trade-
off in extracting composite features. In particular, to guar-
antee the optimal capability of feature extraction, # must be

JL, e | This
implies a smallest depth in (13) by noting L > 1/(26). In a
word, less parameters requires smaller 6, which results in
larger L and consequently larger £*(d*,r, L, 7), while more

smaller than the critical value 6y := min {
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parameters require larger 6, and consequently smaller L and
depth.

As Theorem 3 shows, the depth of network is not u-
nique to extract composite features, provided it is larger
than a certain level. Furthermore, our results imply two
important advantages of deep nets in feature extraction. One
is that, different from the classical tandem tackling, deep
nets succeed in extracting composite features by embodying
their interactions, and thus reduce the capacity costs. Such a
reduction plays an important role in generalization, which
will be analyzed in the next section. The other is the versatil-
ity of deep nets in extracting both single features and com-
posite features in the sense that each feature corresponds to
numerous depths, and vice versa. To end this section, we
present two corollaries for deep nets to extract composite
features. The first one is the smoothness and radial features.
Let d* =1 and P, ,(x) ﬁ[(ac(l))2 + -+ ((D)2], then
[* is a radial function [9]. Setting ¢ = 7,./(2 + 2r) and
L = 2(r + 1)/7,, we have from Theorem 3 with y = 2 and
1 = 1 the following corollary directly.

Corollary 1. There exists a deep ReLU net structure with 4(d +
s+2)(r+1)/7 +8(d+ s) + 20 layers and at most czn nonzero
free parameters bounded by cqn™>\(r+0Y7/ ™} such that for
any radial function f* € Lip(™©) there is a deep net h s~ with
the aforementioned structure satisfying

T

f* = hypsllpoeay < esm™",
cs, C4, C5 are constants depending only on co, v, d and f*.

The derived approximation rate is almost optimal ac-
cording to [9] in the sense that the best approximation
error for all deep nets satisfying the capacity restriction
(4) with n parameters is of order (n/logn)~". Our sec-
ond corollary considers using deep nets to simultaneous-
ly extract the partially radial and smooth features. Let

radial

d < dand f*(z) = oz ) @D pd)y =

f(x (1)

(1, 2D Y with t = ()72 ))2) 44
, d—d' +1)7, d—d'+14r
(z(*))?) € [0, 1] Let 6 = =gty and L = S-gptn).

The following corollary is a direct consequence of Theorem
Bwithd*=d—d +1,7=2and p=1.

Corollary 2. There exists a deep ReLU net structure with
4d—d +1+r)(d—d +3+s) N
(d—d + )7,

layers and at most cgn free parameters bounded by
copmax{ b (rd=d'+0)yyr/me} (d=d'"+1) gy that for any partial-
ly radial function f* € Lip(™0) there is a deep net hy- with the
aforementioned structure satisfying

1f* =By

where cg, c7, cs are constants depending only on co,r,d and f*.

8(d—d +1+s)+20

—r/(d—d'+1)

Loo (1) S csn

5 GENERALIZATION CAPABILITY OF DEEP NETS

This section aims at the generalization capability of deep Re-
LU nets. Our analysis is carried out in the standard learning
theory framework [10], where a sample D,,, = {(x;, y:)} 74
with z; € X = 19 and 3, € Y C [~M, M] for some
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(a) Bias-variance trade-off

(b) Depth-width trade-off

Fig. 4: Bias-variance trade-off for ERM on deep nets

M > 0 is assumed to be drawn independently according
to an unknown Borel probability measure pon Z = X x ).
The generalization capability of an estimator f is measured
by the generalization error, £(f) = [,(f(z) — y)3dp,
which quantifies the relation between the sample size m
and prediction accuracy. The primary objective is to find
an estimator fp based on D,, of the regression function
fo(x) = [y, ydp(y|r) that minimizes the generalization er-
ror, where p(y|z) denotes the conditional distribution at z
induced by p. Therefore, the generalization capability of fp
is measured by £(fp) — £(f,)-

Let H,,, 1,z be defined by (3). We consider generalization
error estimates for the following empirical risk minimiza-
tion (ERM):

m

min l Z[f(fz) - yi]z'

fEHn LR M “—
=1

fDm,L = arg (16)

Since |y;| < M, it is natural to project the final output
fD o, to the interval [—M, M] by the truncation operator
Tx D, (2) = sign(fpn,L(2)) minf|fpn ()], M}.

From Theorems 1-3, the accuracy of feature extraction
decreases as the capacity of deep nets increases, resulting in
small bias for the ERM. However, too large capacity makes
ERM be sensitive to noise and leads to large variance. This
is the well known bias-variance dilemma [10, Chap.1]. The
optimal generalization performance for ERM is obtained
by balancing the bias and variance, just as Figure 4 (a)
purports to show. For ERM on deep nets, the problem
is that the capacity depends on both depth and number
of free parameters. As shown in Figure 4 (b), all (L, n)
pairs in the curve “A” share the same covering number
bounds in Lemma 1 with ¢ = 0.01. In summary, there are
two dilemmas to get a good generalization for ERM on
deep nets: bias-variance dilemma in selecting the capacity
and depth-parameter dilemma in controlling the bias. The
purpose of our study is not only to pursue the optimal
generalization error for ERM on deep nets, but also to derive
feasible candidates of (L,n) pairs to realize the optimality.
The main result is the following theorem.

Theorem 4. Let 0 < § < 1, p,3,d,d* € N, r = s + v with
s € Ngand 0 < v < 1. For any

d*  d'r
< := mi
0<6<6y mm{d*Jrr’ " },

17)

if L = £*(d*,r,L,g) with L > (20)"", n = [clmzf%ﬁ], I

satisfies Assumption 1,

Trd* 46

/.1:] S n d*tro

and < n, (18)

then
E(mmfponr) —E(f,) < CoL?m™ T logmlogg (19)

holds with confidence at least 1 — 6, where Cy,Cy are constants
independent of §, m, L or nand L*(d*,r, L, ) is defined in (13).

The proof of Theorem 4 will be given in Appendix D
in Supplementary Materials. It should be noted that the
established learning rate cannot be essentially improved in
the sense that for some special Pj ,, the learning rate is
optimal [9, Theorem 3]. Condition (18) presents a restriction
on the group structure and sparsity features in the sense that
either 1 or j should be relatively small with respect to the
size of data. Since our result holds for any 6 satisfying (17)
while the depth L and number of free parameters depend
on 0, there are numerous (L, n) pairs to achieve the optimal
generalization error bound exhibited in (19), provided the
constant factor is neglected. However, there is an additional
L? on the right-hand sides of (19), implying that extremely
small § may affect the learning rate and deep ReLU nets
with relatively small depth is preferable. As § < 6y and
L > (26)~!, Theorem 4 also implies that there is a critical
depth, larger than which deep nets with suitable structures
can achieve the established optimal generalization error
bounds.

We then compare our established generalization er-
ror bounds with some related work. Without the group-
structure assumption, optimal learning rates for learning
(7, co)-smooth functions on I? have been established for
shallow nets in [19], [31] to achieve an order O(m_%).
Since we impose additional assumption on the input space,
our derived bounds in (19) are much sharper. This is highly
nontrivial since most of our work is to demonstrate the
power of depth in reflecting the group-structure of the
input space. In particular, even restricting to learning the
most commonly used group-structure, i.e., radial functions,
shallow nets require at least [m%] neurons to guarantee
the generalization error of order m”E [9].

Theoretically, Theorem 4 shows that there are numerous
depths to achieve a similar optimal generalization error
bound, which contradicts our numerical results in the fol-
lowing section at the first glance, since numerical results
show that there is always an optimal depth L to optimize
the generalization capability of deep nets. We explain such
an contradiction in the following remark.

Remark 1. In our theoretical analysis, we focus on the power
of depth from the model selection viewpoint, that is, we aim
at deriving the generalization error of implementing ERM on
deep ReLU nets without taking the availability of optimization
algorithms into account. As solving ERM (16) involves highly
non-convex optimization problems, it is difficult to design an opti-
mization algorithm with perfect convergence guarantee. Therefore,
there is a gap between our theoretical analysis and numerical
results. To be detailed, in numerical experiments, we devote to the
generalization capability of the estimator fp ., 1, s derived from
the SGD algorithm, which can be written as

{€(fpm.r) =€)t +{€UDmLs) —E(fDn.L)},
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while our analysis is only carried out for the error E(fpn,r) —
E(f,). To the best of our knowledge, it still remains open how
to quantify the error term {E(fp.n,1.s) — E(fDn,0)} under the
setting of our paper. We will leave it as a future study.

6 EXPERIMENTAL RESULTS

In this section, we present both toy simulations and re-
al data experiments to show the role of depth for Re-
LU nets in feature selection and prediction. All the nu-
merical experiments are carried out in the Python-3.5.4
environment running on a workstation with a Pascal Ti-
tan X 12-GB GPU and 24-GB memory. Our implemen-
tation is derived from the publicly available Tensorflow-
1.4.0 framework by using AdamOptimizer. Our codes
are available at http://vision.sia.cn/our%20team/Hanzhi-
homepage/vision-ZhiHan%28English%29.html.

6.1 Experimental setting

The settings of simulations are described as follows.

Implementation and Evaluation: The are five purposes
in our experimental study. The first one is to verify the
adaptivity of depths to the feature. The second one is to
declare the adaptivity of features to the depth. The third
one aims at demonstrating the necessity of depth in feature
extraction. The fourth one focuses on the necessity of depths
in generalization. In our last experiment, we show the pow-
er of deep nets in some real applications. In each simulation,
we randomly generate m sample points {z;}7; on X € R?
according to the uniform distribution. Each z; corresponds
to an output y; with either y; = f(x;) (Sections 6.2, 6.3,
6.4) or y; = f(z;) + &; (Section 6.5) with ¢; some Gaussian
noise. We repeat 10 times and record the average values of
the following five quantities:

e Mean squared error (MSE): given an estimator fp,
MSE, defined by L 3" (fp(z;) — y;)?, measures the av-
erage squared difference between the estimated values and
what is estimated. It is a standard measurement to quantify
the prediction performance of an estimator.

e Mean absolute error (MAE): MAE, defined by
LS |fo(zi) — yil, quantifies the fitting performance
of fp. It is another popular measurement, which is less
sensitive to outliers than MSE, to quantify the prediction
performance.

e Median absolute error (MdAE): MdAE, defined by
mo.5(|fp(x:) — mos(y:)]), is a robust measure of the vari-
ability of an estimator, where m 5 means a median. Thus,
MJAE, together with MAE, shows the robustness of the
estimator.

* R squared score (R?S): R%S, defined by R2S(y, f) =
1- % with = LS v, is a statistical
measurement that represents the proportion of the variance
of an estimate by that of real outputs in a regression model.
It measures the fitness of the model.

e Explained variance score (EVS): EVS, defined by

| - I fp(e)?

o , measures the proportion to which a
mathematical model accounts for the variation (dispersion)
of a given data set.

All these measurements quantify the prediction perfor-
mance of an estimator in terms of the prediction accuracy,

sensitivity to outliers, robustness and fitness.
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Fig. 5: Network architectures of various depths and widths.
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Structures of deep nets: Generally speaking, there are
four components in describing the structure of deep nets:
depth, width in each layer, sparsity in conjunction, and
sharing weights. In our experiments, network width is
equivalent to the number of neurons. If the sparsity in
conjunction and sharing weights are considered, there are
too many structures even for a three-layer feed-forward
network. Thus, we are only concerned with fully connected
deep nets with different width and depth. In fact, we train
over 200 networks of different depths and widths in our
simulations. We use N¥ (W) to represent a network of L
layers and width W in the ¢-th layer (marked as red as in
Figure 5). For example, N2(100) and N3(200) are both 3-
layer networks. The widths in layer-1 and layer-3 are fixed.
The only difference is the widths in layer-2 are 100 and
200, respectively. In Figure 5, we present some examples
for the structures adopted in our simulations. The details
of structures will be explained in each simulation, if it is
needed.

6.2 Adaptivity of the Depth to features

In this subsection, we study the performance of deep nets in
extracting the 10-dimensional “square-feature”:

10
flz) = (W),
=1
where z = (z1),...,2(19) is i.i.d. generated according to

the uniform distribution on [—100, 100]'°. The sizes of train-
ing dataset and testing dataset are 3000 and 200, respective-
ly. Our purpose is to show the adaptivity of structures to the
square feature, i.e., there are various structures to extract the
square feature.

6.2.1

For comparison, we train 135 networks of different depth-
s and widths. The network architectures are illustrated
in Figure 5. In particular, we choose 3 different depths
L = {1,3,5} and select 15 different widths, which are
shown in different colors in Figure 6 and marked in different
curves.

As shown in Figure 6, all the curves show similar pat-
terns, i.e., along with the increasement of width, the MSE
decreases at the beginning and increases later. The differ-
ence is, for the deeper networks, it generally needs smaller
width to reach the best performance. The average widths
in the varied layers corresponding to the best performance
networks of 1-layer, 3-layer and 5-layer are 4000, 60 and 52,
respectively.

The outperformance of 3-layer over shallow nets in
Figure 6 verifies the necessity of depth and show that
deep nets can extract the square feature better than shallow
nets with much fewer neurons. The superiority of 3-layer
over 5-layer deep nets demonstrates that there exists an
optimal depth in extracting some specific feature. Here the
optimality means not only the optimal accuracy, but also the
solvability or convergence of the adopted AdamOptimizer
algorithm, since its convergence issue is questionable when
the depth increases [16]. Thus, although Theorem 1 proved
that there are numerous depth-parameter pairs achieving

The necessity of depth

11

MSE (Ig)

10 10°

10°
Varied width (Ig)

Fig. 6: MSE curves of networks with various structures

the same accuracy, the convergence issue suggests to set the
depth as small as possible.

6.2.2 Role of the width for 3-layer deep nets

Theorem 1 presents a relation between the depth and the
number of free parameters in extracting the square feature.
However, it does not give any guidance on the distribution
of the width in each hidden layer. In this experiment, we
fix the total number of parameters of a 3-layer network
at 8000 (slightly variation is allowed, and the range is
[8000, 8100]). We manually change width of each layer, the
numbers of parameters connecting Input and Layer-1 (C1),
connecting Layer-1 and Layer-2 (C5), connecting Layer-2
and Layer-3 (Cs), and connecting Layer-3 and Output (Cl).
Hence we generate a group of networks (20 in total) with
different representative parameter distributions. The details
of the networks are listed in Appendix E in Supplementary
Materials.

We record the testing errors in Figure 7, where
each spot represents one network and the coordinates
(p(C1),p(C3),p(C3)) are the percentage of the parameters
occupied. As p(C1) + p(C2) + p(C3) + p(Cy) = 1, the 3-
layer networks of various distributions can be uniquely
positioned by this 3-dimensional coordinate system. The
size of the spot represents the MSE of the corresponding
network, i.e., smaller spot indicates smaller MSE. To be
noted, the biggest MSE that can be reflected by the size of
the spot is 10000. The networks with MSE larger than 10000
are represented by yellow spots, while the red spots mean
the corresponding networks do not converge at all.

Figure 7 exhibits two phenomena for deep nets in feature
extraction. The first one is the huge impact of the width dis-
tribution. The pattern shown in this experiment is that more
connections between Layer-1 and Layer-2 (p(C2)) generally
bring better results, while a large number of connections
with Input or Output layers (p(C1) or p(Cy)) lead to bad
performances. This phenomenon indicates why a network
is usually designed in a spindle shape. The other one is the
adaptivity of the structure to the “square-feature”. It can be
found in Figure 7 that all green points perform similarly,
which means that if the depth is suitable selected, then
there is a large range of the width distributions such that
deep nets with such distributions succeed in extracting the
“square-feature”.
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Fig. 7: Networks with various width distributions.

6.3 Adaptivity of features to the depth

In Theorems 1-3, it was proved that deep nets with fixed
depth can extract different data features including the spar-
sity, group structure, and smoothness. In this simulation, we
aim to verify this adaptivity of the feature to structures. We
are interested in partially radial features defined by

k 10
i) =) (@) + 3 2V,
j=1 j=k+1

x[/vhere T ]ig generated by uniformly sampling from
—100,100]°.

—— 1-layer|
1 —+— 3-layer|
0.08 al

Error rate

0.04r

0.031

0.02

5 6
The k of ik(x)

Fig. 8: Adaptivity of the feature to structures.

In the experiment, besides verifying the adaptivity of
deep nets, we also compare the performances between deep
nets and shallow nets to show the necessity of depth in
extracting different data features. As k varies from 2 to 9, the
structure of deep nets (3-layer net) is fixed as 50 — 60 — 60,
while the widths in shallow nets are selected according to
the test data directly to optimize their performance.

Figure 8 shows the result curves (the detailed numerical
results can be found in Appendix E in Supplementary Ma-
terials). It can be seen that a deep net with fixed structures
performs robustly for dealing with different data features,
and always outperforms shallow nets. This demonstrates
adaptivity of features to structures. Additionally, we are
also aware during the experiment that training shallow nets
requires more iterations.

6.4 The role of depth in network

In this subsection, we study the role of depth in extracting
the 10-dimensional “square-feature”. The simulation setting
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Fig. 9: Best results from networks of different depths.

is the same as that in Subsection 6.2. The only difference is
that we select more deep nets with different structures to
perceive the impact of depth. There are six candidates for
the depth, 1, 3, 5, 7, 9 and 11 and the width is chosen ac-
cording to the test data directly from much more candidates
than those in Subsection 6.2. In particular, the number of
neurons in the widest layers of are 4000, 60, 30, 30, 9 and 6,
respectively. The MES curve of simulation results is shown
in Figure 9 (the detailed numerical results can be found in
Appendix E).

It is shown that the depth plays a crucial role in im-
proving the performance of neural networks in feature
extraction. We can see that a deep net performs better than
a shallow net, but a larger depth does not necessarily lead
to better performance. For this simple case (single feature),
deep nets with 3 layers are enough. Besides the MSE curve
in Figure 9, Appendix E in Supplementary Materials also
present similar trends of MAE, MdAE, R?S and EVS. All
these exhibit similar patterns to that of MSE in Figure 9 and
verify both the necessity of depth in feature extraction and
limitations of deep nets with too many hidden layers.

6.5 Generalization capability verification

In this experiment, in order to test the generalization ability
of networks, we train networks with noisy data in a more
complex relationship. The underlying relationship between
the input signal = = (x1, z2) and output is:

y = sin||z[|3/]]I3 + e,

where ¢ ~ N(0, 0?) is the Gaussian noise with the variance
of o2. The training and test points are generated by i.i.d.
sampling 2000 and 200 points on [—1,1] according to the
uniform distribution, respectively, and the noise level is set
0% =0.1.

TABLE 3: Network width candidates.

Depth  Range of width  Step length
1 [16,192] 16
2 (32, 64]
3 (32, 56]
4 (32, 56]
5
6

[16,40]
[8,20]

>~ 00 00 0o 00

We compare the optimal MSE of deep nets of different
depths. The optimal results are obtained by tuning two
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important parameters, the descent step (learning rate during
network training) and the width of each layer. During the
training process, the descent step changes dynamically as
follow,

Ry = Rg * DL(Sg/Sd)J7

where |-] is the floor function, Ry is the initial descent step
and R, is the decayed descent step, D is the decay rate, S,
and Sy are global step and decay step, respectively. Global
step represents the current iteration number. Decay step
controls the change frequency of descent step. For example,
in this experiment, the decay step is 1000, and D is 0.9.
The descent step decays to 9% every 1000 iterations. For
choosing adequate R, we tried values of 0.0001, 0.0005 and
0.001 on various networks of different depths. Empirically,
we notice that a deeper network needs a smaller descent
step. Therefore, in the experiment, the descent step is 0.001
for 1, and 0.0005 for 2, 3, 4, 5 and 6-layer networks.

The optimal widths of networks are chosen from a group
of candidates, which are set empirically. Table 3 shows the
details. For example, for a 3-layer network, the width candi-
dates of each layer are {32,40,48,56}. As a result, there are
43 networks for testing. To alleviate the test burden, in the
experiment, we first fix widths of non-middle layers at the
medians of the corresponding ranges and test the middle
layer width with all the candidates to elect the optimal
one, then we tune other layers one by one by testing the
candidates around the optimal width of the middle layer.

In Figure 10, we recorded the optimal MSE and the
rate of successful convergence of deep nets with different
depths. Noting that the function sin ||z||3/||z||3 is smooth
and radial, which are difficult for shallow nets to extract
them simultaneously, according to the theoretical results
in [9]. In our simulation, we show that combining the
feature extraction with target-driven learning in deep net is
feasible. In fact, a deep net with four layers can significantly
improve the performance of shallow nets. Table 4 presents
the regression result in terms of MSE, MAE, MdAE, R2S,
and EVS, respectively and exhibits the same pattern as that
of MSE in Figure 10.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(a) Accuracy and depth (b) Convergence and depth

Fig. 10: The generalization error result of deep nets.

6.6 Applications for the earthquake seismic intensity
prediction

For verifying our theoretical assertions on real applications,
in this subsection, we do experiments on earthquake seis-
mic intensity estimations. Earthquake early warning (EEW)
systems serve as the tools for coseismic risk reduction. One
of the challenges in the development of EEW systems is
the accuracy of seismic intensity estimation at the largest
possible warning time. Seismic intensity is the intensity or
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severity of ground shaking at a given location. The level of
seismic intensity depends heavily on the distance between
the observation site and the epicenter. It can be realized that
the level of seismic intensity is a radial function by taking
the epicenter as the origin. In the experiments, we test on
synthetic data and then deal with a real world dataset.

6.6.1 Synthetic data experiment

The Modified Mercalli intensity scale (MM or MMI), de-
scended from Giuseppe Mercalli’s Mercalli intensity scale of
1902, is the most used seismic intensity scale for measuring
the intensity of shaking at a given location. It has been a
common sense that seismic intensity is an expression of
the amplitude, duration and frequency of ground motion.
Thus, many attempts have been made to estimate MMI
with the ground motion parameters [45]. Fourier amplitude
spectrum (FAS) is one of the best features meeting the
requirement based on which [46] gives an estimation of

MMI as
MMI = exp{1.2655 + 0.2089.M 20)
—0.0011d — 0.2451 log(d + 2.1502M)},

where d is the estimated Joyner-Boore distance (in kilome-
ters), and M is the moment magnitude. Figure 11 shows a
dense synthetic MMI map generated by (20).

Seismic Intensity

Fig. 11: Dense synthetic MMI map generated by (20).

For network testing, we generate 900 samples according
to (20) for training networks of 6 different depths. The
testing results are reported in Figure 12. Similar to the
experiment in Subsection 6.5, networks perform well and
the best result is also given by a 4-layer network.

6.6.2 Real data experiment

For the real data experiment, data are from the U.S.
Earthquake Intensity Database*, which collects damage and
felt reports for over 23,000 U.S. earthquakes. The digital
database contains information regarding epicentral coordi-
nates, magnitudes, focal depths, names and coordinates of
reporting cities (or localities), reported intensities, and the
distance from the city (or locality) to the epicenter. Some
samples of the data are shown in Figure 13. The input of
networks in this experiment are the latitude and longitude
coordinates of the site where the earthquake occurred (green
box), and the output is seismic intensity (red box). As

4. https:/ /www.ngdc.noaa.gov/seg/hazard /earthqk.shtml
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TABLE 4: Noisy data training by networks of various depths.

Depth 1-layer 2-layer 3-layer 4-layer 5-layer 6-layer
MAE 0.0168 0.0191 0.0182 0.0141 0.0184 0.0198
MSE 6578 x 10% 4.613 x 10*  4.063 x 10*  3.503 x 10~%  4.483 x 10~*  7.917 x 1074
MdJAE 0.0083 0.0065 0.0063 0.0047 0.0087 0.0105
R?S 0.9752 0.9805 0.9884 0.9991 0.9767 0.09687
EVS 0.9807 0.9824 0.9833 0.9967 0.9834 0.9742
& TABLE 5: Comparisons with traditional methods.
Method Recognition rate
SVM 62.96%
} Random forest 58.33%
o 1-layer 57.41%
5 3-layer 60.1%
It Deep networks 5-layer 66.67%
= 7-layer 62.03%
10°F
proved that deep ReLU nets are one of the optimal tools
10” ‘ ‘ ‘ ‘ ‘ ‘ in extracting the smoothness feature. Thirdly, we rigorously
1 2 3 4 5 6

The number of fully connected layers

Fig. 12: MSE curve of network during training on synthesis
synthetic intensity dataset.

the seismic intensity values in the database are integers in
{2,...,6} , we consider this task as a classification problem
rather than a regression problem.

In order to have enough data for network training, we
collect the most data impacted by the same epicenter from
the dataset as the experiment data. There are total 608
samples, in which, 500 are used for training and the rest 108
for testing. The parameter tuning strategy is similar to that
of Section 6.5. Table 5 shows the comparison results between
deep nets of different depths and traditional classification
methods, i.e., support vector machine (SVM) and random
forest (RF). It is shown that a 5-layer deep net gives the
best performance, while networks with other depths cannot
compete with SVM.

7

Fig. 13: U.S. Earthquake Intensity Data

7 CONCLUSION

In this paper, we studied theoretical advantages of deep
nets via considering the role of depth in feature extraction
and generalization. The main contributions are four folds.
Firstly, under the same capacity costs (via covering num-
bers), we proved that deep nets are better than shallow
nets in extracting the group structure features. Secondly, we

proved the adaptivity of features to depths and vice verse,
which was adopted to derive the optimal learning rate
for implementing empirical risk minimization on deep net-
s. Finally, we conducted extensive numerical experiments
including toy simulations and real data verifications to
show the outperformance of deep nets in feature extraction
and generalization. All these results presented reasonable
explanations for the success of deep learning and provided
solid guidance on using deep nets. In this paper, we
only consider the depth selection in regression problems.
It would be interesting and important to develop similar
conclusions for classification. We will consider this topic and
report progress in our future study later.
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