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Abstract
Deep learning has been very successful in dealing with big data from var-

ious fields of science and engineering. It has brought breakthroughs by using
various deep neural network architectures and structures according to differ-
ent learning tasks. An important family of deep neural networks are deep
convolutional neural networks. We give a survey for deep convolutional neural
networks induced by 1-D or 2-D convolutions. We demonstrate how these net-
works are derived from convolutional structures, and how they can be used to
approximate functions efficiently. In particular, we illustrate with explicit rates
of approximation that in general, deep convolutional neural networks perform
at least as well as fully connected shallow networks, and they can outperform
fully connected shallow networks in approximating radial functions when the
dimension of data is large.

Keywords: deep learning, convolutional neural networks, convolutional filters, ap-
proximation, radial functions, generalization ability, zero-padding, parallel channels

1 Classical Fully Connected Neural Networks

Deep learning has become a very powerful tool for processing big data from computer

vision, signal analysis, natural language processing, and many other fields of science

and technology [10]. Its great success is based on structured deep neural networks by

imposing special structures to the classical fully connected neural networks according

to various purposes and applications [20, 13, 19].

Classical neural networks aim at modelling human brains by neural network ar-

chitectures. A basic structure is motivated by observations from neural sciences, to

use linear maps followed by simple nonlinearities induced by nonlinear activation

functions. Commonly used nonlinear activation functions include the tanh function

tanh(u) =
eu − e−u

eu + e−u
, u ∈ R,
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the sigmoid function

s(u) =
1

1 + e−u
, u ∈ R,

and the rectified linear unit (ReLU)

σ(u) = max{0, u} =

{
u, if u ≥ 0,
0, if u < 0.

(1.1)

The classical shallow neural network to represent functions or process data on Rd

has an output function of the form

fN(x) =
N∑
k=1

ckσ([w]k · x− bk). (1.2)

Here x := (x1, x2, . . . , xd)
T ∈ Rd is the vector of input variables, σ : R→ R is an acti-

vation function, N is the number of hidden neurons, and {[w]k = (wk1, wk2, . . . , wkd)
T ∈

Rd, bk ∈ R, ck ∈ R} are parameters corresponding to connection weights, biases (or

thresholds), and coefficients, with [w]k · x being the dot product in Rd representing

the stimulation of the input data to the k-th hidden neuron. The shallow network

(1.2) can be expressed in a matrix form as

x =


x1

x2
...
xd

 {[w]k,bk}−→


σ ([w]1 · x− b1)
σ ([w]2 · x− b2)

...
σ ([w]N · x− bN)

 = σ (Fx− b)
{ck}Nk=1−→ c · σ (Fx− b) ,

where b = (bk)
N
k=1 ∈ RN , σ acts componentwise on vectors, and

F =


[w]T1
[w]T2

...

[w]TN

 =


w11 w12 · · · w1d

w21 w22 · · · w2d
...

. . . . . .
...

wN1 wN2 · · · wNd

 (1.3)

is an N × d matrix, called connection matrix, with rows given by the connection

vectors. Such a network is fully connected since the connection matrix F is full

with all the entries being free parameters to be trained. There are N(d + 2) free

parameters contained in {[w]k ∈ Rd, bk, ck ∈ R}. This number of parameters to be

trained is huge when the input data dimension d is large and N >> d. For example,

in image processing, one starts with a digital image X : {1, . . . ,m}×{1, . . . , `} → R
with the side widths m, ` in the order of hundreds. Applying vectorization to X

leads to the input data of size d = m`. Then the number of parameters to be trained

in (1.2) with N >> d would be at least in the order of tens of billions, which is too

huge to be implemented.
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Shallow neural networks have been well developed. They have been extended

to a form with more hidden layers {H(j) : Rd → Rnj}Jj=1 with widths {nj} defined

iteratively with the input layer H(0)(x) = x of width n0 = d as

H(j)(x) = σ
(
F (j)H(j−1)(x)− b̂(j)

)
, j = 1, 2, . . . , J (1.4)

with connection matrices F (j) ∈ Rnj×nj−1 and bias vectors b̂(j) ∈ Rnj . The output

function is c ·H(J)(x) with c ∈ RnJ . It can be displayed as

x
F (1),b̂(1)−→ H(1)(x)

F (2),b̂(2)−→ H(2)(x)→ · · · → H(J−1)(x)
F (J),b̂(J)−→ H(J)(x)

c→ c ·H(J)(x).

Again, an essential property of the above multi-layer neural network is the fully-

connected nature of (1.4) where F (j) ∈ Rnj×nj−1 is a full matrix consisting of njnj−1

free parameters. So the difficulty with large numbers of free parameters also exists.

Representation and approximation of functions on subsets of Rd by the shallow

neural networks (1.2) or multi-layer neural networks (1.4) was studied well in a large

classical literature [7, 14, 1, 27, 3] in the late 1980s. See the survey [31] for details

and references. A particular research problem called universality of approximation

is to consider when a neural network of the form (1.2) or (1.4) can approximate any

continuous function on any compact subset of Rd to an arbitrary accuracy when N

or
∑J

j=1 nj is large enough, see [7, 14, 1] and references therein. A key point to

ensure the universality of the neural networks (1.2) or (1.4) is the complete freedom

in taking the weights {[w]k} in (1.2) or {F (j)} in (1.4), and these neural networks are

called fully connected because of this feature. As we have seen for the shallow neural

network (1.2), from the fully connectedness one can easily calculate the number of

free parameters of weights to be
∑J

j=1 njnj−1 for the multi-layer neural network

(1.4), very large when the input data dimension d is high, which makes these neural

networks hard to implement for dealing with big data in huge dimensions.

2 Deep CNNs Induced by 1-D Convolutions

A basic idea of deep learning is to reduce the computational complexity of the multi-

layer neural networks (1.4) involving too many free parameters to a lower level at

each single layer by imposing structures and network architectures while increasing

the learning abilities by allowing more layers and channels [20]. This has led to great

progress on artificial intelligence. The imposed structures and architectures are cru-

cial, which makes deep learning essentially different from classical learning schemes

based on fully connected neural networks. The earliest and most important family

of deep neural network structures are generated by convolutions. The produced deep

network architectures are called deep convolutional neural networks (CNNs).
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These structured networks were introduced in [38] as time-delay neural networks

and in [41] shift invariant neural networks, and have been proved to be very efficient

for speech recognition, image classification, language translation, and many other

practical tasks [13, 19, 10]. By applying error-correction tuning methods in graph-

ics processing units such as backpropagation and stochastic gradient descent, they

provide scalable deep learning algorithms and computationally feasible and satisfac-

tory solutions to many practical problems for capturing hierarchical data features

efficiently and modelling deep abstractions from big data. It has been believed that

the convolutional structures in CNNs enable the induced deep learning algorithms to

capture local shift-invariance properties of natural image and speech data, leading to

super efficiency in implementing many learning tasks. We provide some theoretical

hints in this review article.

2.1 1-D convolution and 1-D CNNs

Now we describe how the special structure imposed on 1-D CNNs is induced by

convolutions. The 1-D convolution is computed for sequences w = (wi)i∈Z and

x = (xi)i∈Z on the 1-D lattice Z and is defined as another sequence w∗x on Z by

(w∗x)i =
∞∑

j=−∞

wi−jxj, i ∈ Z.

In deep learning, short supported filters w are often used to attract local features.

We assume that w is a filter w = (wj)j∈Z supported in {0, 1, . . . , s} for some filter

length s ∈ N to control the locality and sparsity, meaning that wj = 0 for j 6∈ [0, s].

When x is a digital signal supported in {1, 2, . . . , D} for some D ∈ N, we have

(w∗x)i =
∑
k∈Z

wi−kxk =
D∑
k=1

wi−kxk, i ∈ Z. (2.1)

In processing 1-D digital signal x, we believe its energy to be finite and regard

its restriction to a finite set as a good approximation, leading to the assumption by

shifting that x is supported in {1, 2, . . . , D} for some D ∈ N. The identity (2.1)

becomes valid by setting entries outside {1, 2, . . . , D} to be zero. This approach

is called zero-padding. By this approach, the convoluted sequence w∗x defined

by (2.1) is supported in {1, 2, . . . , D + s}. By restricting the index i onto this set,

we know that the possibly nonzero entries of the convoluted sequence w∗x can be
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expressed in a vector form as

(w∗x)1

(w∗x)2
...

(w∗x)D
...

(w∗x)D+s


= Tw


x1

x2
...
xD



with

Tw :=



w0 0 0 0 . . . 0 0
w1 w0 0 0 . . . 0 0
...

...
. . . . . . . . .

...
...

ws ws−1 . . . w0 . . . 0 0

0 ws . . . w1
. . .

... 0
...

. . . . . . . . . . . . . . .
...

. . . . . . 0 ws . . . w1 w0

. . . . . . . . . 0 ws . . . w1
... . . . . . .

. . . . . . . . .
...

0 . . . . . . . . . . . . 0 ws



∈ R(D+s)×D. (2.2)

Here the Toeplitz type sparse matrix Tw, with ”T” standing for ”Toeplitz”, is induced

by the 1-D convolution and is called a convolutional matrix. The number of

parameters {wk}sk=0 contained in this structured connection matrix is s + 1, much

smaller than the number of entries D(D+ s) of a full connection matrix of the same

size. This great reduction of parameter numbers at one layer allows CNNs to have

large depths. A 1-D CNN of depth J with zero-padding is induced by a sequence of

convolutional filters w = {w(j)}j, each supported in {0, 1, . . . , s}.

Definition 1. A 1-D CNN of depth J with convolutional filters w := {w(j)}Jj=1 and

linearly increasing widths {dj = d + js}Jj=1 is a sequence of J vectors h(j)(x) of

functions on Rd given iteratively by h(0)(x) = x ∈ Rd and

h(j)(x) = σ
(
T (j)h(j−1)(x)− b(j)

)
, j = 1, 2, . . . , J, (2.3)

where T (j) =
(
w

(j)
i−k

)
is a dj × dj−1 convolutional matrix and b(j) a bias vector.

Observe that the convolutional matrix T (w) has identical sums of the rows in the

middle. So to reduce the number of free parameters, except the last iteration, we

take b(j) of the form

[b1 . . . bs bs+1 bs+1 . . . bs+1 bdj−s+1 . . . bdj ]
T (2.4)
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with the dj − 2s repeated components in the middle. The iteration relation (2.3) for

the CNN is the same as (1.4) for fully connected networks, but the full connection

matrix F (j) is replaced by the sparse convolutional matrix T (j). The sparsity of

T (j) and the special form (2.4) of b(j) tell us that the j-th iteration of the 1-D

CNN involves 3s + 2 free parameters only. So in addition to the 2dJ + s + 1 free

parameters for b(J), c ∈ RdJ , w(J), the total number of free parameters in the CNN

is (5s + 2)J + 2d − 2s − 1, much smaller than that in the classical fully connected

multi-layer neural network (1.4) with full connection matrices T (j) involving djdj−1

free parameters. It demonstrates the computational efficiency of CNNs.

2.2 Approximation of functions by 1-D CNNs

To measure the modelling, representing, or approximating abilities of 1-D CNNs,

we take linear combinations of the components of the last layer h(J) to form the

hypothesis space for learning or approximation:

Hw,b
J =

{
c · h(J)(x) =

dJ∑
k=1

ckh
(J)
k (x) : c ∈ RdJ

}
. (2.5)

Observe that each function in the hypothesis space Hw,b
J is a continuous piecewise

linear function (linear spline) on any compact subset Ω of Rd. This hypothesis space

and its approximation ability depend completely on the sequence of convolutional

filters w = {w(j)}Jj=1 and the sequence of bias vectors b := {b(j)}Jj=1. As the depth J

becomes larger, the dimension d+Js ofHw,b
J increases linearly and the corresponding

1-D CNN can represent functions of richer structures. The following theorem [43] on

universality of 1-D CNNs asserts that any function f ∈ C(Ω), the space of continuous

functions on Ω with norm ‖f‖C(Ω) = supx∈Ω |f(x)|, can be approximated by Hw,b
J to

an arbitrary accuracy when the depth J is large enough.

Theorem 1. Let 2 ≤ s ≤ d. For any compact subset Ω of Rd and any f ∈ C(Ω),

there exist sequences w of filters, b of bias vectors and fw,b
J ∈ Hw,b

J such that

lim
J→∞

‖f − fw,b
J ‖C(Ω) = 0.

To understand the modelling ability of CNNs quantitatively, rates of approxima-

tion are desired. The following theorem [43] presents rates of approximating functions

in the Sobolev space W r
2 (Ω) with an integer index r > 2 + d/2. Such a function f is

the restriction to Ω of a function F from the Sobolev space W r
2 (Rd) on Rd meaning

that F and all its partial derivatives up to order r are square integrable on Rd.
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Theorem 2. Let 2 ≤ s ≤ d and Ω ⊆ [−1, 1]d. If J ≥ 2d/(s − 1) and f = F |Ω with

F ∈ W r
2 (Rd) and an integer index r > 2+d/2, then there exist w, b and fw,b

J ∈ Hw,b
J

such that

‖f − fw,b
J ‖C(Ω) ≤ c ‖F‖W r

2

√
log J (1/J)

1
2

+ 1
d , (2.6)

where c is an absolute constant and ‖F‖W r
2

denotes the Sobolev space norm of F ∈
W r

2 (Rd).

Take s = d1 + dτ/2e and J = d4d1−τeL with 0 ≤ τ ≤ 1 and L ∈ N in Theorem 2,

where due denotes the smallest integer not smaller than u. Then we have

‖f − fw,b
J ‖C(Ω) ≤ c ‖F‖W r

2

√
(1− τ) log d+ logL+ log 5

4d1−τL
,

while the widths of the CNN are bounded by 12Ld and the total number of free

parameters by

(5s+ 2)J + 2d− 2s− 1 ≤ (73L+ 2)d.

We can even take L = 1 and τ = 1/2 to get a bound for the relative error

‖f − fw,b
J ‖C(Ω)

‖F‖W r
2

≤ c

2
d−

1
4

√
log(5

√
d)

achieved by a 1-D CNN of depth d4
√
de and at most 75d free parameters, which

decreases as the dimension d increases. This interesting observation is new for CNNs,

and does not exist in the literature of fully connected neural networks. It may explain

the strong modelling ability of CNNs.

The regularity index r > 2+d/2 required in Theorem 2 is large when d increases.

It is needed in the analysis due to the function regularity on the whole Euclidean

space Rd. The issue of approximating non-smooth functions by fully connected neural

networks was considered in [35, 15]. Moreover, the Sobolev space W r
2 (Rd) requires

derivatives of various orders to belong to the L2 space, while the error is measured

in the L∞ norm in Theorem 2. The difficulty in the large regularity index and the

inconsistency of L2 and L∞ norms was overcome in [9] for the setting with data

from the unit sphere Sd−1 of Rd. The approximation of functions in the Sobolv space

W r
∞(Ω) with r > 0 is measured in the C(Ω) norm and the analysis there is conducted

with spherical harmonic expansions.

3 Superiority of 1-D CNNs

CNNs have demonstrate their super performances in many learning tasks in prac-

tice and are better than fully connected neural networks in some applications. It
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is believed and desired to prove theoretically that CNNs can attract some special

features faster than fully connected neural networks. We describe some evidence on

the superiority of 1-D CNNs in this section.

3.1 Realizing fully connected networks by 1-D CNNs

CCNs stated in Definition 1 have linearly increasing widths {dj = d + js}, which

restricts the depth and computational complexity of the network. In deep learning,

there are various techniques to control network widths such as dropout and pooling

[10]. One operation motivated by the literature of wavelets [8, 24] is downsampling

which enables rigorous analysis of 1-D CNNs. Denote the integer part of u ∈ R+

as [u]. Define an activated affine mapping AF,b : Rdj−1 → Rdj−1+s associated with a

(dj−1 + s)× dj−1 matrix F and a bias vector b ∈ Rdj−1+s as

AF,b(u) = σ (Fu− b) , u ∈ Rdj−1 .

Definition 2. The downsampling operator Dm : RD → R[D/m] with a scaling param-

eter m ≤ D is defined by

Dm(v) = (vim)
[D/m]
i=1 , v ∈ RD. (3.1)

A downsampled 1-D CNN with ` downsamplings at layers J := {Jk}`k=1 with

1 < J1 ≤ J2 ≤ . . . ≤ J` = J has widths {dj}Jj=0 defined iteratively by d0 = d and for

k = 1, . . . , `,

dj =

{
dj−1 + s, if Jk−1 < j < Jk,[
(dj−1 + s)/dJk−1

]
, if j = Jk,

(3.2)

and is a sequence of function vectors
{
h(j)(x) : Rd → Rdj

}J
j=1

defined iteratively by

h(0)(x) = x and for k = 1, . . . , `,

h(j)(x) =

{
AT (j),b(j)

(
h(j−1)(x)

)
, if Jk−1 < j < Jk,

DdJk−1
◦ AT (j),b(j)

(
h(j−1)(x)

)
, if j = Jk.

(3.3)

The following theorem [44] proves rigorously that output functions produced by

any deep fully connected neural network (1.4) associated with ReLU can be realized

by a downsampled 1-D CNN. It confirms as done for periodized CNNs in [30] that

the representation and approximation ability of CNNs is at least as good as that of

fully connected networks.

Theorem 3. Let Ω be a compact subset of Rd and {H(k) : Rd → Rnk}`k=1 be an

`-layer fully connected neural network satisfying (1.4) with connection matrices F (k),

bias vector b̂(k) such that nknk−1 > 1 for each k ∈ {1, . . . , `}. If 2 ≤ s ≤ nknk−1

for each k, then there is a downsampled 1-D CNN
{
h(j)(x) : Rd → Rdj

}J
j=1

with `
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downsamplings at layers {Jk =
∑k

j=1 ∆j} with ∆j ≤ dnjnj−1−1

s−1
e for each j together

with bias vectors b(j) ∈ Rdj−1+s satisfying (2.4) for j 6∈ J such that

h(Jk)(x) = H(k)(x), ∀k ∈ {1, . . . , `}, x ∈ Ω. (3.4)

The total number of free parameters in the above net is at most 8
∑`

k=1 (nknk−1) and

is at most 8 times of that of the fully connected network.

The conclusion of Theorem 3 is drawn by means of a fundamental result [42, 43]

on convolutional factorization that an arbitrary pre-assigned sequence W = (Wk)
∞
−∞

supported in {0, . . . ,M} can be factorized into convolutions of a filter sequence

{w(j)}Jj=1 supported in {0, . . . , s} with J < M
s−1

+ 1. It demonstrates the role of

convolutions in 1-D CNNs.

Theorem 4. Let s ≥ 2 and W = (Wk)
∞
−∞ be a sequence supported in {0, . . . ,M}

with M ≥ 0. Then there exists a finite sequence of filters {w(j)}Jj=1 supported in

{0, . . . , s} with J < M
s−1

+ 1 such that the convolutional factorization

W = w(J)∗ . . . ∗w(2)∗w(1) (3.5)

holds true.

Let us illustrate how the convolutional factorization (3.5) in Theorem 4 leads to

the construction of 1-D CNNs in Theorem 3 by showing the case ` = 1. For each

j ∈ {1, . . . , J}, denote T (j) to be the (d+ js)× (d+ (j − 1)s) convolutional matrix.

Then for the sequence W satisfying (3.5), we have T (J) . . . T (1) = TWd , where TWd is

the (d+ Js)× d Toeplitz type matrix given by

TWd = (Wi−k)i=1,...,d+Js,k=1,...,d =



W0 0 · · · 0
...

. . . . . .
...

Wd−1 · · · W0
...

. . . . . .
...

W2d−1 · · · Wd
...

. . . . . .
...

WNd−1 · · · W(N−1)d
...

. . . . . .
...

0 · · · 0 WJs


.

For the full connection matrix F (1) defining the layer H(1)(x) in (1.4) given by (1.3),

we set a sequence W supported in {0, . . . ,M} with M = Nd− 1 by

[WNd−1 WNd−2 . . .W0] = [wN1 wN2 . . . wNd . . . w21 . . . w2d w11 w12 . . . w1d] .
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By Theorem 4, there exists a finite sequence of filters {w(j)}Jj=1 supported in {0, . . . , s}
with J =

⌈
Nd−1
s−1

⌉
such that the convolutional factorization (3.5) holds. Define a 1-

D CNN of depth J with convolutional filters w := {w(j)}Jj=1 and linearly increasing

widths {dj = d+js}Jj=1 by (2.3). By choosing the biases to be small enough satisfying

(2.4), we can make the iterations (2.3) linear and obtain for j = 1, . . . , J − 1,

h(j)(x) = T (j) · · ·T (1)x+B
(
Πj
p=1‖w(p)‖1

)
1dj , (3.6)

where B is a constant depending on Ω and 1dj is the constant 1 vector in Rdj . At

the end, we choose the bias vector b(J) according to b̂(1) in the expression of H(1) and

get

h(J)(x) = σ
(
Dd
(
T (J) · · ·T (1)x

)
− b̂(1)

)
. (3.7)

But d + Js = d +
⌈
Nd−1
s−1

⌉
s ≥ d + Nd−1

s−1
s > d + Nd − 1, So d + Js ≥ (N + 1)d, and

for i = 1, . . . , N , the id-th row of the matrix T (J) · · ·T (1) = TWd equals[
Wid−1 Wid−2 . . .W(i−1)d

]
= [wi1 wi2 . . . wid] ,

which together with (3.7) implies the realization of H(1) by the 1-D CNN as

h(J)(x) = σ
(
F (1)x− b̂(1)

)
= H(1).

3.2 Superiority in approximating radial functions

Theorem 3 shows that in general, the representation and approximation ability of

CNNs is at least as good as that of fully connected networks. A natural question

is whether CNNs actually preform better in approximating some important classes

of functions with special features. This question is answered for the class of radial

functions in [25].

A function on Ω ⊆ Rd is called radial if it takes the form f(|x|2) with |x| =√
x2

1 + . . .+ x2
d being the norm of the input vector x = (x1, . . . , xd) ∈ Ω ⊆ Rd. Such

functions arise naturally in statistical physics, early warning of earthquakes, 3-D

point-cloud segmentation, and image rendering, and their learning by fully connected

neural networks was studied in [26, 5].

The class of radial functions considered here are defined on the unit ball Ω =

B := {x ∈ Rd : |x| ≤ 1} of Rd, and consists of radial functions in the unit ball of the

space C0,1(B) of Lipschitz functions on B defined by

B
(
C0,1
|·|

)
:=
{
f(| · |2) : ‖f(| · |2)‖C0,1(B) ≤ 1

}
, (3.8)

where ‖f(| · |2)‖C0,1(B) is the Lipschitz-1 norm of the function f(| · |2) defined for

functions g on B by

‖g‖C0,1(B) = sup
x 6=y∈B

|g(x)− g(y)|
|x− y|

+ sup
x∈B
|g(x)| . (3.9)
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The set of functions we compare outputs of CNNs with is the span of N ridge

functions given as in [18] by

SN =

{
N∑
k=1

ckσk(ak · x− bk) : σk ∈ C(R), ak ∈ Rd, ck, bk ∈ R

}
. (3.10)

Recall the hypothesis space generated by a shallow neural network is a subset of SN
consisting of functions with σ1 = . . . = σN being an activation function.

The efficiency of a neural network generating a hypothesis space V in approxi-

mating a set U of functions on Ω = B uniformly is measured by the quantity

dist(U, V ) := sup
f∈U

inf
g∈V
‖f − g‖L∞(B) (3.11)

which is the deviation of U from V in L∞(B).

Theorem 5. Let 2 ≤ s ≤ d. We have

dist
(
B
(
C0,1
|·|

)
,SN

)
≥ cdN

− 1
d−1 , ∀N ∈ N (3.12)

with a constant cd independent of N . For the 1-D CNN {h(j) : Rd → Rd+js}Jj=1 of

depth J :=
⌈

(2N+3)d
s−1

⌉
defined in Definition 1 with convolutional filters w := {w(j)}Jj=1

and bias vectors b := {b(j)}Jj=1 satisfying (2.4), followed by a fully connected layer

of widths 2N + 3 with a connection matrix F [J+1] of identical rows and a bias vector

b(J+1), the hypothesis space

HN =
{
c · h(J+1)(x) : c ∈ R2N+3, w, b, F [J+1], b(J+1)

}
with the last layer given by

h(J+1)(x) = AF [J+1],b(J+1) ◦ AT (J),b(J) ◦ . . . ◦ AT (1),b(1)(x)

satisfies

dist
(
B
(
C0,1
|·|

)
,HN

)
≤ 3
√

1 + 4dN−
1
2 , ∀N ∈ N. (3.13)

The total number N of free parameters in this network can be bounded as N ≤
(14d+ 2)N + 22d+ s+ 1.

3.3 Survey on computational complexity

In this subsection we give a short survey on computational complexity of various

families of neural networks in the literature. Comparisons on approximation abilities

are made by means of the total number of free parameters N and the total number
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of computation units W (widths, or hidden units) required for achieving the same

approximation accuracy ε > 0.

A classical literature on approximation by shallow or multi-layer fully connected

nets was developed around 1990. Besides those results [7, 14, 22] on universal-

ity of approximation with non-polynomial locally bounded and piecewise continu-

ous activation functions, rates of approximation were obtained in [14, 1, 27, 3, 23]

and references therein. When a C∞ activation function σ satisfies limu→−∞ σ(u) =

0, limu→∞ σ(u) = 1 (sigmoid function) and f = F |[−1,1]d for some F ∈ L2(Rd) with

the Fourier transform F̂ satisfying |w|F̂ (w) ∈ L1(Rd), it was shown in [1] that for the

fully connected shallow network (1.2) and an arbitrary probability measure µ, there

holds ‖fN − f‖L2
µ([−1,1]d) = O(1/

√
N). This result was extended to the ReLU acti-

vation function recently in [16]. Most results in the classical literature about rates

of approximation by fully connected networks were stated for continuous activation

functions σ with two special assumptions: one is that for some b ∈ R,

σ(i)(b) 6= 0, ∀i ∈ Z+ (3.14)

and the other is that for some integer q 6= 1, there holds

lim
u→−∞

σ(u)/|u|q = 0 and lim
u→∞

σ(u)/uq = 1. (3.15)

Such a result was presented in [27] for shallow networks (1.2) as

‖fN − f‖C([−1,1]d) ≤ cf,d,rN
−r/d, ∀N ∈ N (3.16)

with a constant cf,d,r, under the regularity assumption that the approximated func-

tion f lies in the Sobolev space W r
∞([−1, 1]d) with r ∈ N. For the approximation

accuracy ‖fN − f‖C([−1,1]d) ≤ ε, one needs

W = N ≥
(cf,d,r

ε

)d/r
, N ≥ (d+ 2)

(cf,d,r
ε

)d/r
. (3.17)

The ReLU activation function σ used in the recent deep learning literature does

not satisfy the two special assumptions (3.14), (3.15). Explicit rates of approximation

by fully connected ReLU networks were obtained recently in [16] for shallow networks,

in [33] for networks with 3 hidden layers, and in [37, 40, 2, 29] for networks with

more layers, based on an interesting observation that iterates of the hat function on

the interval [0, 1] can be used to produce linear interpolating approximations of the

quadratic function u2. In particular, Theorem 1 of [40] asserts that f ∈ W r
∞([0, 1]d)

can be approximated within an accuracy ε ∈ (0, 1) by a ReLU deep networks with at

most c(log(1/ε) + 1) layers and W ≤ cε−d/r(log(1/ε) + 1) with a constant c = c(d, r).

But this constant may increase very fast as d becomes large, as shown in [43]. To
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be more specific, the approach in [40] is to first approximate f by a localized Taylor

polynomial

f1(x) =
∑

m∈{0,1,...,N}d

∑
‖α‖1<r

Dαf(m/N)

α!
φm(x)(x−m/N)α, (3.18)

where the localization at scale 1/N with N ∈ N is made by means of trapezoid

functions φm(x) = Πd
i=1ϕ(3Nxi − mi) supported on m/N + [−2/N, 2/N ]d defined

with a univariate trapezoid function ϕ(u) = σ(u+2)−σ(u+1)−σ(u−1)+σ(u−2).

Then for each basis function φm(x)(x−m/N)α in (3.18), a ReLU network of depth

at least c1(d + ‖α‖1) log(1/δ) was constructed in [40] to achieve an approximation

accuracy (d + r)δ for δ ∈ (0, 1) where c1 = c1(d, r) is a constant. Thus, to have

an accuracy ε ∈ (0, 1) for approximating f by a ReLU deep network, one takes

N =

⌈(
2d+1dr

εr!

)1/r
⌉

and δ = ε
2d+1dr(d+r)

as in [40] and the depth of the network is at

least C0d(log(1/ε) + d + r log d) with an absolute constant C0 > 0 while the total

number of free parameters N for the approximation and the number of computation

units are more than the number of coefficients Dαf(m/N)
α!

:

(N + 1)d
(
d+ r − 1

d

)
>

(
2d+1dr

εr!

)d/r
dr−1

(r − 1)!
> ε−d/r

(
2
d+1
r d

r

)d
dr−1

(r − 1)!
. (3.19)

This shows that for a fixed r, the constant c(d, r) in Theorem 1 of [40] increases very

fast as d becomes large. It was shown in [2, 29, 28] that rates of approximation of

some function classes by multi-layer fully connected neural networks (1.4) may be

achieved by networks with sparse connection matrices F (j), but the locations of the

sparse connections are unknown. This sparsity of unknown pattern is different from

that of CNNs, the latter enables computing methods like stochastic gradient descent

to learn values of the free parameters efficiently.

For the CNN network constructed in Theorem 5 of [25], the total number of

free parameters N for achieving an accuracy ε > 0 in approximating functions from

the class B
(
C0,1
|·|

)
is N = O(ε−2) while that of a fully connected shallow network

is O(ε−(d−1)). This shows that deep neural networks are much more efficient than

shallow networks in approximating radial functions when the dimension d > 3 is

large. Further analysis on approximating functions of the form f ◦ Q induced by a

polynomial Q on Rd and a univariate function f can be found in [25].

Based on the rates of approximation, we may get generalization error bounds

for CNN-based learning algorithms, as done for kernel-based learning algorithms [6]

and fully connected neural networks in [17, 32, 5]. The main technical difficulty for

CNNs arises from the hypothesis space (2.5) which depends on the filters w and bias
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vectors b, and is different from a reproducing kernel Hilbert space used in kernel

methods. Detailed generalization error bounds are presented in [25]. In particular,

it shows that the generalization error bound decreases with the network depth to a

minimum and then increases, verifying theoretically a trade-off phenomenon observed

for network depths in many practical applications [4, 11].

Benchmarked applications of CNN models include face recognition, pose estima-

tion, and activity recognition in computer vision, search query retrieval and sentence

modeling in natural language processing, and various learning tasks in speech recog-

nition.

Training deep learning models is key to practical applications, which can be done

with modern libraries such as Caffe, TensorFlow, Theano, and Torch. Implement-

ing CNN models with guaranteed approximation properties can be carried out by

the algorithm of stochastic configuration networks [39] and some other randomized

methods surveyed in [21] and references therein.

4 Deep CNNs Induced by 2-D Convolutions

CNNs used in most practical applications of deep learning for image processing and

other related applications are induced by 2-D convolutions without zero-padding.

For simplicity, we consider a digital image which can be represented as a (d + 1) ×
(d + 1) matrix X : {0, 1, . . . , d}2 → R of size width d ∈ N with the entry Xα,

α ∈ {0, 1, . . . , d}2, representing the grey level of the image at pixel α. A possible

essential difference between images and 1-D signals is that the image is only part of

a broader view, meaning that setting Xα to be zero for α 6∈ {0, 1, . . . , d}2 might be

unreasonable. This leads to the 2-D CNNs without zero-padding.

Let W = (Wα)α∈Z2 be a 2-D filter supported on {0, 1, . . . , s}2. The 2-D convolu-

tion of a filter W and X = (Xα)α∈Z2 is another sequence on Z2 given by

(W∗X)α =
∑
β∈Z2

Wα−βXβ, α ∈ Z2.

When no zero-padding is applied, meaning that X is not extended to the lattice

Z2 by assigning zero values outside the available domain {0, 1, . . . , d}2, we only

take those entries (W∗X)α whose computations do not involve entries of X outside

{0, 1, . . . , d}2, that is, α ∈ {s, s+ 1, . . . , d}2. This defines a linear map T W mapping

a digital image X : {0, 1, . . . , d}2 → R to another T WX : {s, s + 1, . . . , d}2 → R
given by (

T WX
)
α

=
∑

β∈[0,d]2

Wα−βXβ = (W∗X)α , α ∈ {s, . . . , d}2. (4.1)
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In general, for n ∈ {0, . . . , d}, we can define a linear map T W mapping X : {n, n +

1, . . . , d}2 → R to T WX : {n + s, n + s + 1, . . . , d}2 → R in a similar way as (4.1)

by replacing the index range [0, d]2 in the summation with [n, d]2 and the domain

{s, . . . , d}2 with {n+ s, . . . , d}2. Then a 2-D CNN can be stated as follows.

Definition 3. Given the input side width d ∈ N and filter size s ∈ [2, d], a 2-D

CNN of depth J ≤ d/s is a neural network {h(j) : R{0,...,d}2 → R{js,...,d}2}Jj=1 defined

iteratively by h(0)(X) = X ∈ R{0,...,d}2 and

h(j)(X) = σ
(
T (j)h(j−1)(X) +B(j)

)
, j = 1, . . . , J, (4.2)

where T (j) is the linear operator T (j) := T W (j)
defined by (4.1) with n = (j − 1)s,

a 2-D filter W (j) : Z2 → R supported on {0, . . . , s}2, and B(j) ∈ R{js,...,d}2 is a bias

matrix.

The linear operator T W defined by (4.1) is a tensor of type (2, 2) called convo-

lutional tensor. It may have a matrix representation if we vectorize the matrices X

and T WX in (4.1). But the vectorization leads to large-size vectors, as commented

before, and the matrix representation of T W is a Toeplitz block matrix with Toeplitz

blocks which is not as nice as a simple Toeplitz matrix in (2.2) for the 1-D CNNs.

CNNs in 2-D defined in Definition 3 have decreasing sizes {(d − js + 1) × (d −
js + 1)}, so their representing and modelling ability is limited, especially when j

increases. A core idea in the deep learning practice is to use many parallel channels

with different filters for improving the power of CNNs in processing images. As a

filter has its special function in extracting information from data, applying more

channels with various filters can extract richer information and help processing the

data efficiently. This parallel mechanism is commonly used, which is demonstrated

by winners in the ImageNet Large Scale Visual Recognition Challenge listed in the

following examples. All the deep neural networks consist of quite a few CNNs with

many channels and possibly a couple of fully connected networks.

Example 1. AlexNet (2012 winner)[19]: a 2-D CNN of 5 layers with s = 10, 4, 2, 2, 2

uses 96, 256, 384, 384, 256 filter channels respectively.

Example 2. ZFNet (2013 winner)[47] : a 2-D CNN of 3 layers uses 512, 1024, 512

filter channels respectively.

Example 3. VGG16 net (2014 winner in localization and second in classification

performance) [34]: a 2-D CNN of 12 layers, all with s = 2, uses 64, 128, 256 (all

twice), 512 (6 times) filter channels respectively.

Example 4. GoogLeNet (2014 winner)[36]: a 2-D CNN of 22 layers is used, some

involving 256 channels of inception modules with 128, 192, 96, 64 filters respectively.
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Example 5. ResNet (2015 winner)[12]: a deep neural network of 152 layers uses

residual connections based on 2-D CNNs with s = 2.

The trend observed from the above architectures is to use more channels and

filters of smaller sizes, followed by a few fully connected networks. As the number

of channels increases, the computational complexity becomes larger but the learning

ability of the deep network tends stronger.

CNNs in 2-D are difficult to analyze due to the lack of a convolutional factorization

for 2-D sequences as done for 1-D sequences in Theorem 4. When the 2-D filters

W = (Wα)α∈Z2 take a rank-1 tensor product form W = u ⊗ v with 1-D filters

u = (uk)k∈Z and v = (vk)k∈Z, some mathematical analysis has been conducted in [46]

to show that such 2-D CNNs can realize approximately data relationships induced by

target functions depending on linear features UTXV with U, V ∈ Rd+1. The analysis

as done for 1-D CNNs in [45] is based on Toeplitz type convolutional matrices induced

by 1-D convolution without zero-padding

[wi−k]s≤i≤d, 0≤k≤d =

 ws · · · · · ·w0 0 · · · 0

0
. . . . . . . . . . . . . . .

...
... 0 · · · ws · · · w0
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