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Abstract

Information theoretic learning is a learning paradigm that uses con-
cepts of entropies and divergences from information theory. A variety
of signal processing and machine learning methods fall into this frame-
work. Minimum error entropy principle is a typical one amongst them.
In this paper, we study a kernel version of minimum error entropy
methods that can be used to find nonlinear structures in the data. We
show that the kernel minimum error entropy can be implemented by
kernel based gradient descent algorithms with or without regulariza-
tion. Convergence rates for both algorithms are deduced.

1 Introduction

Information theoretical learning (ITL) refers to a framework of learning
methods that use concepts of entropies and divergences from information
theory to substitute the conventional statistical descriptors of variances and
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covariances. It becomes an important research topic in signal processing
and machine learning as many algorithms have been developed within this
framework and many applications domains have been discovered. In the
literature, the study of ITL has mostly focused on linear models. Kernel
based ITL was introduced to the minimum error entropy principle in [19,24]
to deal with nonlinear models. The purpose of this paper is to study a
kernel based gradient descent algorithm for ITL with a focus on the kernel
minimum error entropy for regression.

Minimum error entropy (MEE) might be the most important principle
in the ITL framework. In the context of regression analysis, it serves as an
important alternative to the classical least square method and has attracted
continuous attention for more than a decade since it was introduced. The
least squares method relies only on the variance of the error, so it falls into
the second-order statistics and its optimality depends heavily on the assump-
tion of Gaussianity. In contrast, entropy is a function defined on the error
probability density function and all moments of the error are constrained
when entropy is minimized. Thus, MEE belongs to a type of high order
methods and has the robustness to deal with non-Gaussian models or heavy
outliers. Because of its robustness and ability to deal with non-Gaussian
impulse noises, MEE methods have been successfully applied in a variety
of applications including signal processing, regression analysis, feature se-
lection, and data clustering. There are a vast of literatures exploring their
application domains and devoting on their computational and mathematical
properties; see [5–7,12–16,18,19,26–28,33] and the references therein.

In regression analysis, MEE is motivated by minimizing the information
of the prediction error and thus maintaining the useful information by the
predictor as much as possible. Assume X ∈ Rn is a vector of explanatory
variables, Y ∈ R is the response variable, and they are linked by

Y = f∗(X) + ε, E(ε|X) = 0,

where f∗ is a target function and ε is the noise. When a function f is used as
a predictor, the error variable is E = Y −f(X). Let pE denote its probability
density function. Then Shannon’s entropy is defined by

HS(f) = −E[log(pE)]

and Rényi’s entropy of order α > 1 is

Hα(f) = − 1

1− α
log
(
E[pα−1E ]

)
.
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Recall the traditional least squares method minimizes the mean squared
error, which is the second moment of error variable E. It is optimal for
Gaussian noise but suboptimal for general non-Gaussian noise. Error en-
tropy is a functional defined on the probability density of the error variable
and takes information of all moments into account. It is an efficient mea-
sure to estimate the learning ability of the predictor when non-Gaussian or
impulse noise is involved. Thus MEE may work well in these situations.

In the literature, most MEE methods have been designed for linear mod-
els. They are usually implemented by gradient descent algorithms. The
convergence has been studied in [7, 20]. But these methods may not be ap-
plied to analysis of data with nonlinear structures. There is a necessity to
develop MEE methods for nonlinear models so that the algorithms can deal
with nonlinearity in the data and simultaneously preserve the advantages
of robustness and ability to deal with non-Gaussian noises. As reproducing
kernel Hilbert spaces are effective tools to represent nonlinear features via
feature mappings, we can use the so-called “kernel trick” to extend MEE to
nonlinear settings. MEE methods in reproducing kernel Hilbert spaces were
introduced in [19, 24] and the consistency of a regularization scheme was
investigated in [19]. Its implementation, however, has not been addressed.
Recall that there are usually two classes of implementation algorithms for
kernel methods. One is to write the kernel method as a finite dimensional
optimization problem by using a representer theorem. Solving the optimiza-
tion problem could be very challenging for large scale data. The other is
to use the gradient descent or stochastic gradient descent in Hilbert spaces.
They have the advantages of being implementable in the big data setting.

The purpose of this paper is to study the convergence of gradient descent
algorithms when they are used to implement kernel MEE methods. Note
that the convergence of gradient descent algorithms for linear MEE [7, 20]
highly depends on the fact that the covariance matrix of the explanatory
variables is either invertible or has a smallest positive eigenvalue. In kernel
MEE, the reproducing kernel Hilbert space may be infinite dimensional. The
eigenvalues of the kernel covariance operator decay to zero. So the kernel
covariance operator is neither invertible nor has its positive eigenvalues lower
bounded away from zero. Compared to traditional kernel learning methods
such as regularization kernel networks and support vector machines where
the loss functions are convex, the loss function of MEE is non-convex, which
makes the analysis of MEE methods essentially difficult. Therefore, the
convergence analysis of gradient descent algorithms for kernel MEE is not
an easy extension of that for linear MEE or traditional kernel methods,
though those studies may provide useful insights and techniques.
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The rest of the paper is organized as follows. In Section 2 we describe
two gradient descent algorithms for kernel MEE and state our convergence
results. In the first algorithm, regularization is adopted to control the com-
putational complexity. The second algorithm does not involve regularization
explicitly but adopts an early stopping to play the role of regularization. The
proofs of the convergence results are given in Section 3 and in Section 4 for
the two algorithms respectively.

2 Algorithms and main results

In this section we first describe the MEE kernel gradient descent algorithms
and state their convergence rates. Then we compare our results with those
in the literature.

2.1 kernel gradient descent algorithms and their convergence

Throughout this paper, we assume the sample space of X is a compact
subset X ⊂ Rn and the sample space of Y is a bounded subset Y ⊂ R. They
are also called the input space and output space, respectively. Let ρ denote
a joint probability measure on Z = X ×Y, ρX be the marginal distribution
of ρ on X and ρ(·|x) the conditional distribution of ρ for given x ∈ X . In
the supervised learning setting, ρ is assumed to be unknown and the goal of
regression analysis is to estimate the regression function

f∗(x) = E[Y |X = x] =

∫
Y
ydρ(y|x)

from a sample z = {(xi, yi)}mi=1 of m observations which are drawn indepen-
dently according to ρ.

Most MEE methods in the literature have focused on the use of Renyi’s
quadratic entropy (i.e. α = 2) for its simplicity. Given the sample z, Renyi’s
quadratic entropy can be estimated empirically as follows. For a hypotheti-
cal predictor f , let ei = yi−f(xi). Since {ei}mi=1 is a sample of E = Y −f(X),
a kernel density estimator can be used to estimate the probability density
function of E as

p̂E(e) =
1

mh

m∑
j=1

G

(
(e− ej)2

2h2

)
,

where the function G defined on [0,∞] is a windowing function and h > 0
is a scaling parameter. A usual choice of the windowing function is G(u) =
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1√
2π

exp(−u) which leads to the Gaussian kernel density estimator. The

empirical Renyi’s quadratic entropy can then be estimated by

Ĥ2(f) = − log

(
1

m

m∑
i=1

p̂E(ei)

)

= − log

{
1

m2h

m∑
i=1

m∑
j=1

G

(
[(yi − f(xi))− (yj − f(xj))]

2

2h2

)}
.

The MEE method learns a function by minimizing the empirical Renyi’s
quadratic entropy. Notice that the log function is monotone and does not
affect the minimizer, the MEE method can be implemented by minimizing
the empirical risk

Rz(f) = − h
2

m2

m∑
i=1

m∑
j=1

G

(
[(yi − f(xi))− (yj − f(xj))]

2

2h2

)
.

The kernel MEE method minimizesRz(f) in a reproducing kernel Hilbert
space. Recall that K : X × X → R is a Mercer kernel if it is continuous,
symmetric and positive semidefinite. The reproducing kernel Hilbert space
HK is the completion of the linear span of the function set {Kx = K(x, ·) :
x ∈ X} with the inner product induced by 〈Kx,Ky〉K = K(x, y). The
reproducing property is given by f(x) = 〈f,Kx〉K and implies ‖f‖∞ ≤
supx∈X

√
K(x, x)‖f‖K . The regularized MEE method in the RKHS HK is

defined by

fz,λ = arg min
f∈HK

{
Rz(f) +

λ

2
‖f‖2K

}
, (1)

where λ > 0 is a regularization parameter. In [19] it is proved that the
regularized kernel MEE algorithm is consistent when the scaling parameter
h is chosen large enough. For small h, the consistency of MEE algorithms is a
more complicated issue and has been discussed in [15]. In this paper we will
study the convergence of gradient descent implementation of the regularized
kernel MEE method (1), which is defined with the initial function f1 = 0,
and an updating rule

ft+1 = ft − ηt (∇Rz(ft) + λft) , t = 1, 2, · · · , (2)

where 0 < λ < 1, {ηt} is the sequence of step sizes,

∇Rz(ft) =
1

m2

m∑
i=1

m∑
j=1

G′
(ξ2t (i, j)

2h2

)
ξt(i, j)(Kxi −Kxj )
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is the functional gradient ofRz at ft and ξt(i, j) = (yi − ft(xi))−(yj − ft(xj)) .
It is observed in the literature that early stopping plays a role of regu-

larization and thus explicit regularization is not necessary to guarantee the
convergence of gradient descent [34]. Regularization is also shown to be
unnecessary in stochastic gradient descent algorithms by certain sacrifice of
learning rates [35, 37]. In this paper, we also investigate the unregularized
gradient descent algorithm for kernel MEE, which starts with f̃1 = 0 and
adopts the updating rule

f̃t+1 = f̃t − ηt∇Rz(f̃t), t = 1, 2, · · · . (3)

The unregularized algorithm has the advantage of no need to validate the
regularization parameter.

In regression, we usually measure the learning performance via the L2
ρX

distance or equivalently, the excess mean squared error of the learned func-
tion. In MEE algorithms, however, since the empirical risk Rz(f) is invari-
ant to constant shift, the best we can expect is to have the learned function
plus an appropriate constant shift to approximate the regression function f∗

well. A good measure, in this case, is var[ft(X) − f∗(X)], the variance of
the random variance ft(X)− f∗(X) with respect to X, because small vari-
ance guarantees the existence of good approximation to f∗ by a constant
adjustment. How to choose the constant has been studied empirically in [13]
and theoretically in [15,18] and is omitted in this paper.

Next we state our main results. We need the following assumptions.
Without loss of generality, we assume that supx∈X

√
K(x, x) = 1 and the

response variable Y is uniformly bounded by 1. Also, the windowing function
G is assumed to be differentiable and satisfy G′+(0) = −1, G′(u) < 0 for
u > 0, CG := supu∈[0,∞) |G′(u)| < ∞, and there exist constants p > 0 and
cp > 0 such that

|G′(u)−G′+(0)| ≤ cpup, for u > 0. (4)

These conditions can be satisfied by a variety of kernel density estima-
tors. For instance, when Gaussian kernel density estimator is used, up
to a constant multiplication which does affect the minimizer, we can use
G(u) = exp(−u) so that the above assumptions hold with CG = 1, p = 1
and cp = 1.

Following [18,19] we use the pairwise squared loss to measure the approx-
imation error of MEE in this paper. Define for each f ∈ L2

ρX the pairwise
squared risk as

E(f) = E

[(
(Y − f(X))−

(
Y ′ − f(X ′)

) )2]
6



where (X,Y ) and (X ′, Y ′) are independent and identically distributed ran-
dom pairs. The approximation error D(λ) is defined by

D(λ) = arg min
f∈HK

{
E(f)− E(f∗) + λ‖f‖2K

}
= E(fλ)− E(f∗) + λ‖fλ‖2K ,

where the regularization function fλ is an minimizer of the regularized pair-
wise squared risk E(f)+λ‖f‖2K over the RKHSHK . Recall that the pairwise
square loss has been used in least square ranking problems; see e.g. [9, 40]
and references therein. The pairwise feature of MEE algorithm makes it
appropriate to use D(λ) to characterize the approximation error of MEE.

Throughout this paper, we shall assume that for some constant D0 ≥ 1
and 0 < β ≤ 1,

D(λ) ≤ D0λ
β, ∀ λ > 0. (5)

Note that

E(f)− E(f∗) = 2var[f(X)− f∗(X)] ≤ 2‖f − f∗‖2L2
ρX

(6)

and as a result

D(λ) ≤ min
f∈HK

{
2‖f − f∗‖2L2

ρX
+ λ‖f‖2K

}
. (7)

The K-functional on right hand side was widely used in the learning the-
ory literature as a measure of approximation ability of reproducing kernel
Hilbert spaces and has been well studied. By (7), we see that that the the
assumption (5) always holds with β = 0 since the right hand side of (7) is
obviously bounded by the constant 2‖f∗‖L2

ρX
. If the target function f∗ lies in

HK then (5) holds with β = 1. If HK is dense in C(X ), the space of bounded
continuous functions on X , then the right hand side of (7) converges to 0 as
λ → 0. Thus, the assumption of a decay rate in (5) is natural and can be
related to the definition of interpolation spaces. See e.g. [29, 30, 32, 34] and
the references therein for more details.

Theorem 1. Let {ft}t≥1 be defined by (2). Assume (5) holds for some
0 < β ≤ 1. Let ηt = ηt−θ with η ≤ 1

λ+2 and 0 ≤ θ < 1. If λ ≤ 1 and

h ≥ 12(6cp)1/2p√
2λ1+1/2p , then for any 0 < δ < 1, with confidence at least 1 − δ, we
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have

var[fT+1(X)− f∗(X)] ≤ C

(
exp

(−2η1λT
1−θ

1− θ

)
λβ−1

+
log 8

δ

mλ3−β
+

1

λ4p+4h4p
+ λβ

)

where C is a constant independent of m,T, h, λ or δ. As a result, if λ ∼ m−
1
3 ,

T ≥ ( logm
6ηm1/3 )

1
1−θ , and h ≥ m

1
3
(p+1+β/4), then

var[fT+1(X)− f∗(X)] = O(m−
β
3 ).

The error bound in Theorem 1 decays exponentially fast in terms of the
number T of iteration steps when λ and h are fixed. This indicates that,
with regularization, increasing the number of iterations will never hurt the

learning performance, though T = O(( logm
6η1m1/3 )

1
1−θ ) is sufficient. Note the

learning rate O(m−
β
3 ) is capacity independent. It matches the learning rate

obtained in [19] under the worst capacity assumptions.
Next we turn to the unregularized method. To state our result, we need

to measure the capacity of the hypothesis space HK . In learning theory,
many capacity measures have been used, for instance, the VC-dimension,
covering numbers, Rademacher complexity, and eigenvalues decay. In this
paper, we will use the uniform covering number.

Definition 2. For a subset S of C(X ) and ε > 0, the covering number
N (S, ε) is the minimal integer ` ∈ N such that there exist ` balls with radius
ε covering S.

For any R > 0, denote BR = {f ∈ HK : ‖f‖K ≤ R} be the ball of
radius R in HK . It can be embedded into C(X ) and let N (BR, ε) denote its
covering number in C(X ). We assume that for some q > 0 and cq > 0, the
covering number of B1 satisfies

logN (B1, ε) ≤ cqε−q, ∀ε > 0. (8)

Note the uniform covering numbers of reproducing kernel Hilbert space has
been studied in [41, 42]. The smaller q, the more stringent the capacity
assumption is. In particular, when X is a compact subset of Rn and has
a piecewise smooth boundary, if K ∈ Cα(X × X ) then the condition (8)
holds true with q = 2n

α . If the kernel K ∈ C∞(X × X ), then (8) is satisfied

8



for an arbitrarily small q > 0. Note further that (8) holds with q ≤ 2
for all Mercer kernels and therefore an assumption of (8) with q = 2 is
equivalent to no capacity assumption and the convergence results become
capacity independent.

Theorem 3. Assume (8) and (5). Let {f̃t}t≥1 be defined by the algorithm
(3). If ηt = ηt−θ with 1

2 ≤ θ < 1 and

η ≤ min

{
1

2
,

(1− θ)2−θ

64C2
G + 2CG

}
, (9)

then for any 0 < δ < 1, with confidence at least 1− δ,

E(f̃T )− E(f∗) ≤ C̃ max

{
1

T β(1−θ)
,

T 1−θ

(m− 1)
1

1+q

,
T (p+2)(1−θ)

h2p

}
log

4

δ

where C̃ is a constant independent of m, T , h, or δ. Choosing T ∼ (m −
1)

1
(1+q)(1+β)(1−θ) and h ≥ (m− 1)

p+2+β
2(1+q)(1+β) , we have

var[f̃T (X)− f∗(X)] = O

(
(m− 1)

− β
(1+β)(1+q)

)
.

Let us compare Theorem 3 and Theorem 1. We first notice that the
error bound in Theorem 3 is not a deceasing function of the number of iter-
ation steps. To achieve convergence for the unregularized gradient descent
algorithm, early stopping is required and iterating too many steps may hurt
the learning performance. This is a price paid for computational instability
without regularization. Secondly, if we let q → 2, we obtain the capacity in-

dependent result for the the unregularized algorithm as O(m
− β

3(1+β) ) which
is worse than the rate in Theorem 1 for the regularized algorithm. Recall
that the unregularized algorithm does not need to validate the regularization
parameter. Theorem 3 indicates that this computational advantage requires
a sacrifice of convergence rates.

2.2 Comparisons with the literature and discussions

We compare our results with those in the literature and provide some re-
marks before moving to the proofs of our main theorems.

The regularized least squares method in reproducing kernel Hilbert spaces
has been extensively studied in the literature. Under the assumption (5) on
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the approximation error decay (or an analogous source condition), the capac-
ity condition (8) (or the near-equivalent assumption on the effective dimen-
sion of HK), and some other mild conditions, the regularized least square

method has been proved to reach the minimax optimal rate O(m
− 2β

2β+q )

[3, 23, 31] and the optimal capacity independent rate is O(m
− β
β+1 ) [2, 39].

When the gradient descent or stochastic gradient algorithms are used to
implement the method, efforts have been made to purse fast convergence
rates; see e.g., [22, 25, 34, 35]. While the optimal capacity independent rate
can be proved, the minimax optimal rates have not been verified. To our

best knowledge the best result so far is the rate O(m
− 2β

(2+q)(1+β) ) obtained
in [22]. The gap is usually attributed to lack of analysis tools but not an
inherent feature of the gradient descent algorithms.

For pairwise learning, interactions between observations make the analy-

sis more complicated. The capacity independent rate O(m
− β
β+2 log2m) has

been proved for unregularized stochastic gradient descent algorithm with
the pairwise square loss and O(m−

1
3 ) for a general convex Lipschitz pair-

wise classification loss if the target function lies in HK [37, 38]. Both are
worse than their counterparts for pointwise learning.

When moving to MEE, the nonconvexity of the loss function added more
complication to the analysis. Consequently, both the capacity independent

rate O(m−
β
3 ) in Theorem 1 for regularized gradient descent algorithm and

the capacity dependent rate O(m
− β

(1+β)(1+q) ) in Theorem 3 for the unregu-
larized one are suboptimal. As no empirical evidence shows MEE has worse
performance than least squares method, we argue that the gap is not due
to the inherent feature of these algorithms. A more plausible interpretation
is that the pairwise non-convex loss caused essential difficulty for the anal-
ysis of kernel MEE. Developing new techniques to overcome or circumvent
this difficulty would be an interesting problem. It is worth mentioning that,
when this paper is revised, we proved in [21] that minimax optimal rates can
be achieved by kernel gradient MEE if the function f∗(x)−f∗(x̃) defined on
the product space X 2 lies in H

K̃
and the pairwise kernel defined on X 2×X 2

by
K̃((x, x̃), (u, ũ)) = K(x, u) +K(x̃, ũ)−K(x, ũ)−K(x̃, u)

satisfies some appropriate conditions. But how to derive sharper error
bounds and faster convergence rates when f∗ is not in HK and the as-
sumptions are made directly on the kernel K is still an open problem.

We also remark that the theoretical choices of the number T of iteration
steps and the bandwidth parameter h in Theorem 3 are able to help us
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understand convergence properties of the algorithms. But they cannot be
used in practice because of their dependence on the unknown parameters
q, β, and θ. Deriving data-driven choice for T and h for practical use is
important. In the literature of gradient descent algorithms for least squares
kernel regression, several data-driven approaches have been proposed for
the early stopping rule, see, for instance, the hold-out rule [2, 4, 34], the
Rademacher complexity based rule in [25], and the balancing principle in
[11]. It is interesting to investigate whether these rules can be adapted to
the kernel gradient descent algorithm for MEE.

As for the data-driven choice of bandwidth parameter h, to our best
knowledge, the study is very sparse. Our theory indicates it should depend
on the sample size and be chosen large enough to guarantee the convergence.
However, empirical simulations showed that the learning performance is not
very sensitive to h and successful applications of MEE with h varying from
0.01 to 10 had been reported in te literature. It seems a moderate choice can
lead sufficiently good results in most scenarios, though tuning it via cross
validation or other strategies may be necessary for the best performance. It
is still an open problem for future research.

3 Convergence of gradient descent with regular-
ization

In this section we prove Theorem 1. To this end, we first prove several useful
lemmas.

For g, h ∈ HK , let g ⊗ h denote the rank-one tensor product operator
defined by (g ⊗ h)f = 〈f, h〉Kg. It has Hilbert-Schmidt norm ‖g ⊗ h‖HS =
‖g‖K‖h‖K . If h = g, it is easy to check that g ⊗ g is a symmetric positive
operator. Define the operator TXX on HK by

TXX = E [(KX −KX′)⊗ (KX −KX′)]

and its empirical version by

T̂XX =
1

m2

m∑
i=1

m∑
j=1

(Kxi −Kxj )⊗ (Kxi −Kxj ).

By the reproducing property, for any f ∈ HK , we have

TXXf = E
[
(f(X)− f(X ′))(KX −KX′)

]
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and

T̂XXf =
1

m2

m∑
i=1

m∑
j=1

(f(xi)− f(xj))(Kxi −Kxj ).

Lemma 4. Both TXX and T̂XX are symmetric and positive operators with
their operator norms bounded by 2.

Proof. It is easy to check that

TXX = 2
(
E[KX ⊗KX ]− (E[KX ])⊗ (E[KX ])

)
. (10)

Thus, TXX is twice of the covariance operator of the Hilbert space valued
random variable KX . As a result, it is symmetric and positive. Moreover,

‖TXX‖ ≤ 2 ‖E[KX ⊗KX ]‖HS ≤ 2 sup
x∈X
‖Kx ⊗Kx‖HS

= 2 sup
x∈X

K(x, x) = 2.

For T̂XX , we see

T̂XX = 2

[
1

m

m∑
i=1

Kxi ⊗Kxi −
( 1

m

m∑
i=1

Kxi

)
⊗
( 1

m

m∑
i=1

Kxi

)]
(11)

is twice of the sample covariance operator ofKX . So it is symmetric, positive,
and

‖T̂XX‖ ≤
2

m

m∑
i=1

‖Kxi ⊗Kxi‖HS ≤
2

m

m∑
i=1

K(xi, xi) ≤ 2.

This finishes the proof.

Next we define

TXY = E
[
(Y − Y ′)(KX −KX′)

]
and its empirical version

T̂XY =
1

m2

m∑
i=1

m∑
j=1

(yi − yj)(Kxi −Kxj ).

Lemma 5. We have ‖TXY ‖K ≤ 4 and ‖T̂XY ‖K ≤ 4.
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Proof. We can verify that

TXY = 2
(
E[Y KX ]−E[Y ]E[KX ]

)
(12)

and

T̂XY = 2

[
1

m

m∑
i=1

yiKxi −

(
1

m

m∑
i=1

yi

)(
1

m

m∑
i=1

Kxi

)]
. (13)

By |Y | ≤ 1 and ‖Kx‖K =
√
K(x, x) ≤ 1, we easily conclude the desired

bounds.

The following lemma was proved in [20].

Lemma 6. Let H be a Hilbert space and ξ be a random variable with values
in H. Assume that ‖ξ‖ ≤M almost surely. Let {ξ1, ξ2, . . . , ξm} be a sample
of m independent observations for ξ. Then, any 0 < δ < 1, we have with
confidence 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

ξi −E(ξ)

∥∥∥∥∥ ≤ M

2

(
τ +

√
8τ + τ2

)
where τ = log(2/δ)

m .

By the above lemma, we have the following estimates.

Lemma 7. For any 0 < δ < 1, with probability at least 1− δ, we have

‖TXX − T̂XX‖ ≤ 12
√
τ (14)

and

‖TXY − T̂XY ‖ ≤ 12
√
τ (15)

simultaneously, with τ =
log 8

δ
m .

Proof. Applying Lemma 6 to the HK valued random variable ξ = KX , we
obtain with probability at least 1− δ

4 ,∥∥∥∥∥ 1

m

m∑
i=1

Kxi −E[KX ]

∥∥∥∥∥ ≤ 1

2

(
τ +

√
8τ + τ2

)
. (16)
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Applying Lemma 6 to the Hilbert-Schmidt operator valued random variable
ξ = KX ⊗KX , we obtain with probability at least 1− δ

4 ,∥∥∥∥∥ 1

m

m∑
i=1

Kxi ⊗Kxi −E[KX ⊗KX ]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

m

m∑
i=1

Kxi ⊗Kxi −E[KX ⊗KX ]

∥∥∥∥∥
HS

≤1

2

(
τ +

√
8τ + τ2

)
. (17)

Applying Lemma 6 to the real valued random variable ξ = Y , we obtain
with probability at least 1− δ

4 ,∣∣∣∣∣ 1

m

m∑
i=1

yi −E[Y ]

∣∣∣∣∣ ≤ 1

2

(
τ +

√
8τ + τ2

)
. (18)

Applying Lemma 6 to the HK valued random variable ξ = Y KX , we obtain
with probability at least 1− δ

4 ,∥∥∥∥∥ 1

m

m∑
i=1

yiKxi −E[Y KX ]

∥∥∥∥∥
K

≤ 1

2

(
τ +

√
8τ + τ2

)
. (19)

So, with probability at least 1− δ, estimates (16)-(19) hold simultaneously.
By the facts (10), (11) and using (16), (17), we obtain

‖TXX − T̂XX‖

≤2

∥∥∥∥∥ 1

m

m∑
i=1

Kxi ⊗Kxi −E[KX ⊗KX ]

∥∥∥∥∥
+ 2

∥∥∥∥∥(E[KX ])⊗ (E[KX ])−
( 1

m

m∑
i=1

Kxi

)
⊗
( 1

m

m∑
i=1

Kxi

)∥∥∥∥∥
≤
(
τ +

√
8τ + τ2

)
+ 2

∥∥∥∥∥E[KX ] +
( 1

m

m∑
i=1

Kxi

)∥∥∥∥∥
K

∥∥∥∥∥E[KX ]− 1

m

m∑
i=1

Kxi

∥∥∥∥∥
K

≤ 3
(
τ +

√
8τ + τ2

)
≤ 12

√
τ .

Similarly, we can verify (15) by the facts (12), (13) and using (19), (16),
(18).
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The following lemma characterizes fλ.

Lemma 8. We have (λI + TXX)fλ = TXY .

Proof. The functional derivative of E(f)+λ‖f‖2K with respect to f ∈ HK is
−2TXY + 2TXXf + 2λf. Since fλ is the minimizer of E(f) + λ‖f‖2K , we see
−2TXY + 2TXXfλ + 2λfλ = 0. This implies that (λI + TXX)fλ = TXY .

We will also need the following two useful lemmas which have been
proved in [36].

Lemma 9. For v ∈ (0, 1] and θ ∈ [0, 1],

t∑
i=1

1

iθ

t∏
j=i+1

(
1− v

jθ
)
≤ 3

v
.

Lemma 10. For any 0 < t < T and 0 ≤ θ < 1, there holds

T∑
j=t+1

j−θ ≥ 1

1− θ
[(T + 1)1−θ − (t+ 1)1−θ].

To prove Theorem 1, we first establish a uniform bound for the solution
path {ft}t≥1.

Lemma 11. Assume λ ≤ 1, ηt ≤ 1
λ+2 and

h ≥ 12(6cp)
1/2p

√
2λ1+1/2p

. (20)

We have

‖ft‖K ≤
5

λ
, ∀ t ∈ N. (21)

Proof. We prove the bound (21) by induction on t ∈ N. The case t = 1 is
trivial since f1 = 0 by definition. Suppose that ‖ft‖K ≤ 5

λ . Consider the

case ft+1. By G′+(0) = −1 and the definitions of T̂XX and T̂XY , we can
write

ft+1 = ft − ηt(T̂XXft + λft − T̂XY + Et)

=
[
(1− ηtλ)I − ηtT̂XX

]
ft + ηtT̂XY − ηtEt, (22)

15



where I is the identity operator and

Et =
1

m2

m∑
i=1

m∑
j=1

[
G′
(
ξ2t (i, j)

2h2

)
−G′+(0)

]
ξt(i, j)(Kxi −Kxj ).

By Lemma 4, T̂XX is positive and has operator norm bounded by 2.
Thus (1− ηtλ)I − ηtT̂XX is positive for ηt ≤ 1

2+λ . Moreover,

1− ηtλ− 2ηt ≤ ‖(1− ηtλ)I − ηtT̂XX‖ ≤ 1− ηtλ. (23)

By Lemma 5, we have ‖T̂XY ‖K ≤ 4.
By |yi| ≤ 1, the induction hypothesis ‖ft‖ ≤ 5

λ , and the restriction λ ≤ 1
on the regularization parameter, we have |ξt(i, j)| ≤ 2+2‖ft‖K ≤ 2+ 10

λ ≤
12
λ

for all (i, j) pairs. By the assumption (4),

‖Et‖K ≤
1

m2

m∑
i=1

m∑
j=1

∣∣∣∣G′(ξ2t (i, j)

2h2

)
−G′+(0)

∣∣∣∣ |ξt(i, j)|‖Kxi −Kxj‖K .

≤ 2cp
m2

m∑
i=1

m∑
j=1

|ξt(i, j)|2p+1

2ph2p
≤ 122p+1cp

2p−1λ2p+1h2p
. (24)

Combining the above estimates, we obtain

‖ft+1‖K ≤
∥∥∥(1− ληt)I − ηtT̂XX

∥∥∥ ‖ft‖K + ηt‖T̂XY ‖K + ηt‖Et‖K

≤ (1− ληt)‖ft‖K + 4ηt + ηt‖Et‖K

≤ (1− ληt)
5

λ
+ 4ηt + ηt

122p+1cp
2p−1λ2p+1h2p

=
5

λ
− ηt

(
1− 122p+1cp

2p−1λ2p+1h2p

)
.

The condition (20) on h ensures that

1− 122p+1cp
2p−1λ2p+1h2p

≥ 0.

Therefore, we have ‖ft+1‖K ≤ 5
λ . By induction, the proof is complete.

The following lemma measures how the error changes by each step of
updating.

16



Lemma 12. Let 0 < λ ≤ 1, ηt ≤ 1
2+λ and h satisfy (20). If (14) and (15)

hold simultaneously, we have

‖ft+1 − fλ‖K ≤ (1− ληt)‖ft − fλ‖K

+ ηt

(
12(‖fλ‖K + 1)

√
τ +

122p+1cp
2p−1λ2p+1h2p

)
where τ =

log 8
δ

m .

Proof. By (22) and the fact (TXX + λI)fλ = TXY from Lemma 8, we have

ft+1 − fλ =[(1− ηtλ)I − ηtT̂XX ](ft − fλ)

+ ηt(TXX − T̂XX)fλ + ηt(T̂XY − TXY )− ηtEt.

By (23) we have

‖ft+1 − fλ‖K ≤ (1− ηtλ)‖ft − fλ‖K
+ ηt‖TXX − T̂XX‖‖fλ‖K
+ ηt‖TXY − T̂XY ‖K + ηt‖Et‖K .

This together with (24) and the assumptions (14), (15) gives the desired
conclusion.

With the above lemma, we can prove the following bound of the estima-
tion error.

Lemma 13. Under the same conditions as Lemma 12, if the step sizes are
chosen as ηt = ηt−θ for some 0 < η < 1

λ+2 and 0 ≤ θ < 1, we have

‖fT+1 − fλ‖K ≤ C1

(
exp

(−η1λT 1−θ

1− θ

)
λ
β−1
2

+ λ
β−3
2

√
log 8

δ

m
+

1

λ2p+2h2p

)
(25)

where C1 is a constant independent of m,T, h, λ, or δ.

Proof. Applying Lemma 12 iteratively for t = 1, · · · , T , we obtain

‖fT+1 − fλ‖K ≤
T∏
t=1

(1− ληt)‖fλ‖K

+

(
12(‖fλ‖K + 1)

√
τ +

122p+1cp
2p−1λ2p+1h2p

) T∑
t=1

T∏
j=t+1

(1− ληj)ηt.

17



Since ηt = ηt−θ and λ ≤ 1, by Lemma 10, we have

T∏
t=1

(1− ληt) ≤ exp

(
−λ

T∑
t=1

ηt

)
≤ exp

(ηλ(1− T 1−θ)

1− θ

)
≤ exp

( η

1− θ

)
exp

(
− ηλT 1−θ

1− θ

)
.

Lemma 9 yields

T∑
t=1

T∏
j=t+1

(1− ληj)ηt ≤ η
T∑
t=1

T∑
j=t+1

(
1− ηλ

jθ

)
≤ 3

λ
.

Noting the bound ‖fλ‖K ≤
√
D(λ)/λ ≤

√
D0λ

β−1
2 , we have

‖fT+1 − fλ‖K ≤ exp
( η

1− θ

)
exp

(
− ηλT 1−θ

1− θ

)√
D0λ

β−1
2

+
3

λ

(
12(
√
D0λ

β−1
2 + 1)

√
τ +

122p+1cp
2p−1λ2p+1h2p

)
.

Taking the constant C1 = max{
√
D0 exp( η

1−θ ), 36(
√
D0 + 1),

3(12)2p+1cp
2p−1 }, we

get the desired conclusion (25).

Now we can prove our first main theorem.

Proof of Theorem 1. Note that

var[fT+1 − f∗] ≤ 2var[fT+1 − fλ] + 2var[fλ − f∗]
≤ 2‖fT+1 − fλ‖2K +D0λ

β.

By Lemma 7 and Lemma 13, Theorem 1 holds with constant C = max{6C2
1 ,D0}.

4 Convergence of unregularized gradient descent
algorithm

In this section, we prove the convergence of the unregularized gradient
descent algorithm for kernel MEE. To this end, we need to deal with U-
statistics. Let g be a symmetric function defined on Z ×Z and {zi}mi=1 be a

18



sample of m independent observations drawn from a probability distribution
ρ on Z. The U-statistic induced by g is defined to be

U(g) =
1

m(m− 1)

m∑
i=1

m∑
j=1
j 6=i

g(zi, zj).

We define a variant formula of U(g) by

Ū(g) =
1

m2

m∑
i=1

m∑
j=1

g(zi, zj).

Recall the following Hoeffding inequality for U-statistics [17].

Lemma 14. If g is symmetric, ‖g‖∞ ≤ B, and var[g] = σ2, then for any
ε > 0,

Pr
{∣∣∣E[g]− U(g)

∣∣∣ > ε
}
≤ 2 exp

{
− (m− 1)ε2

4(σ2 + 2
3Bε)

}
.

Immediately, we have ratio probability inequalities for a single random
variable in Lemma 15 and for a set of functions in Lemma 16 below, respec-
tively. The proofs can be easily given by using the techniques and following
the processes in [1, 8]. We omit the details.

Lemma 15. Suppose that a symmetric function g on Z×Z satisfies E[g] > 0
and ‖g‖∞ ≤ B. If E[g2] ≤ cE[g], then for any ε > 0 and 0 < α ≤ 1, there
holds

Pr

{
|E[g]− U(g)|√

E[g] + ε
> α
√
ε

}
≤ 2 exp

{
−(m− 1)α2ε

4(c+ 2
3B)

}
.

Lemma 16. Let G be a set of symmetric functions on Z ×Z such that for
all g ∈ G, E[g] ≥ 0, ‖g‖∞ ≤ B, and E[g2] ≤ cE[g], then for every ε > 0 and
0 < α ≤ 1, we have

Pr

{
sup
g∈G

|E[g]− U(g)|√
E[g] + ε

> 4α
√
ε

}
≤ 2N (G, αε) exp

{
−(m− 1)α2ε

4(c+ 2
3B)

}
.

The following two lemmas are easy corollaries of Lemma 15 and Lemma
16, respectively.
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Lemma 17. Suppose that a symmetric function g on Z×Z satisfies E[g] ≥ 0
and ‖g‖∞ ≤ B. If E[g2] ≤ cE[g], then for any 0 < δ < 1,

∣∣E[g]− Ū(g)
∣∣ ≤ 1

2
E[g] +

4(c+ 2
3B) log(2δ ) + 2B

m− 1

with probability at least 1− δ.

Proof. Applying Lemma 15 with α = 1, we obtain that, for any 0 < δ < 1,∣∣∣E[g]− U(g)
∣∣∣ ≤ 1

2
E[g] +

4(c+ 2
3B) log(2δ )

m− 1

with probability at least 1− δ. Noting that

∣∣U(g)− Ū(g)
∣∣ ≤

∣∣∣∣∣∣ 1

m2(m− 1)

m∑
i=1

m∑
j=1

g(zi, zj)

∣∣∣∣∣∣+

∣∣∣∣∣ 1

m2

m∑
i=1

g(zi, zi)

∣∣∣∣∣ ≤ 2B

m− 1
,

we obtain the desired estimate.

Lemma 18. Let G be set of symmetric functions on Z × Z such that for
each g ∈ G, E[g] > 0, ‖g‖∞ ≤ B, and E[g2] ≤ cE[g]. If log (N (G, ε)) ≤ aε−q
for some a > 0 and q > 0, then for any 0 < δ < 1,

∣∣E[g]− Ū(g)
∣∣ ≤ 1

2
E[g] + 72 max

(c+ 2
3B) log(2δ )

m− 1
,

(
(c+ 2

3B)a

m− 1

) 1
1+q

 .

for all g ∈ G with probability at least 1− δ.

Proof. Applying Lemma 16 with α = 1 and using the assumption on the
covering number of G, we obtain that, for any 0 < δ < 1,

|E[g]− U(g)| ≤ 4
√

E[g] + ε∗
√
ε∗ ≤ 1

2
E[g] +

17

2
ε∗, ∀ g ∈ G, (26)

holds with probability at least 1 − δ, where ε∗ is a positive solution to the
equation

aε−q − (m− 1)ε

4(c+ 2
3B)

= log( δ2).

Note the equation is equivalent to

ε1+q −
4(c+ 2

3B) log(2δ )

m− 1
εq −

4(c+ 2
3B)a

m− 1
= 0.
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By [10, Lemma 7], the equation has a unique positive solution and

ε∗ ≤ max

8(c+ 2
3B) log(2δ )

m− 1
,

(
8(c+ 2

3B)a

m− 1

) 1
1+q

 .

By (26) and the fact that |U(g)− Ū(g)| ≤ 2B
m−1 for all g ∈ G, we obtain the

desired estimate.

In the sequel let the empirical pairwise squared error on a sample z be
defined by

Ez(f) =
1

m2

m∑
i=1

m∑
j=1

(
(yi − f(xi))− (yj − f(xj))

)2
.

By the relation (6), it suffices to bound the the excess error E(f̃T )− E(f∗).
To this end we use the following error decomposition.

Lemma 19. For any λ > 0, we have

E(f̃T )− E(f∗) ≤ Q1 +Q2 +Q3 +D(λ),

where

Q1 = Ez(f̃T )− Ez(fλ),

Q3 =
(
E(f̃T )− E(f∗)

)
−
(
Ez(f̃T )− Ez(f∗)

)
,

Q2 =
(
Ez(fλ)− Ez(f∗)

)
−
(
E(fλ)− E(f∗)

)
.

We first estimate Q3.

Proposition 20. For any λ > 0, with confidence at least 1− δ
2 ,

Q3 ≤
29D(λ) log(4δ )

(m− 1)λ
+

1

2
D(λ).

Proof. Consider the function

g(z, z′) =
(

(y − fλ(x))−
(
y′ − fλ(x′)

) )2
−
(

(y − f∗(x))−
(
y′ − f∗(x′)

) )2
defined on Z × Z. Note that E[g] = E(fλ)− E(f∗) ≥ 0 and

‖g‖∞ ≤ (6 + 2‖fλ‖∞)|fλ(x′)− fλ(x)− f∗(x′) + f∗(x)|
≤ (6 + 2‖fλ‖K)2 ≤ 64D(λ)/λ.
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It follows that

E[g2] ≤ E[‖g‖2∞]

≤(6 + 2‖fλ‖∞)2E
[
(fλ(x′)− fλ(x)− f∗(x′) + f∗(x))2

]
=(6 + 2‖fλ‖K)22var[fλ(X)− f∗(X)]

=(6 + 2‖fλ‖K)2(E(fλ)− E(f∗))

≤64(D(λ)/λ)E[g].

By Lemma 17 with c = B = 64D(λ)/λ, we obtain

Q3 ≤
1

2
(E(fλ)− E(f∗)) +

29D(λ) log(4δ )

(m− 1)λ

≤ 1

2
D(λ) +

29D(λ) log(4δ )

(m− 1)λ
.

with probability at least 1− δ
2 .

In order to bound Q1 and Q2 we need the following bound on the se-
quence {f̃t}. In the sequel we will denote ξ̃t(i, j) = (yi−f̃t(xi))−(yj)−f̃t(xj))
and ξf (i, j) = (yi − f(xi))− (yj − f(xj)).

Lemma 21. Define {f̃t}t≥1 by (3). Let ηt = ηt−θ with 1
2 ≤ θ < 1 and η

satisfying (9). Then for t = 1, · · · , T,

‖f̃t‖K ≤ t
1−θ
2 . (27)

Proof. We prove (27) by induction. Suppose that ‖f̃t‖K ≤ t
1−θ
2 . Denote

H̃t =
1

m2

m∑
i=1

m∑
j=1

G′

(
ξ̃2t (i, j)

2h2

)
ξ̃t(i, j)(Kxi −Kxj ).

Then f̃t+1 = f̃t − ηtHt and we can write

‖f̃t+1‖2K = ‖f̃t‖2K − 2ηt〈f̃t, H̃t〉K + η2t ‖H̃t‖2K

= ‖f̃t‖2K + η2t ‖H̃t‖2K +
2ηt
m2

m∑
i=1

m∑
j=1

G′

(
ξ̃2t (i, j)

2h2

)
ξ̃t(i, j)(f̃t(xj)− f̃t(xi)).

(28)
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It is easy to check that

‖H̃t‖K ≤
2

m2

m∑
i=1

m∑
j=1

∣∣∣∣∣G′
(
ξ̃2t (i, j)

2h2

)∣∣∣∣∣ |ξ̃t(i, j)|
≤ 2CG(2 + 2‖f̃t‖K) ≤ 8CGt

1−θ
2 . (29)

Recall that G′(u) < 0 for u > 0. For each pair (i, j), we have

G′

(
ξ̃2t (i, j)

2h2

)
ξ̃t(i, j)(f̃t(xj)− f̃t(xi))

=G′

(
ξ̃2t (i, j)

2h2

)
ξ̃t(i, j)[ξ̃t(i, j) + yj − yi]

=G′

(
ξ̃2t (i, j)

2h2

)[(
ξ̃t(i, j) +

yj − yi
2

)2

− (yi − yj)2

4

]

≤−G′
(
ξ̃2t (i, j)

2h2

)
(yi − yj)2

4
≤ CG.

Plugging this estimate and (29) into (28) we obtain

‖f̃t+1‖2K ≤ ‖f̃t‖2K + 64η2tC
2
Gt

1−θ + 2ηtCG

≤ t1−θ + 64η2C2
Gt

1−3θ + 2ηCGt
−θ.

By the Taylor expansion, we see that (t + 1)1−θ − t1−θ = (1 − θ)(t + w)−θ

for some w ∈ (0, 1). This implies (t + 1)1−θ − t1−θ ≥ (1 − θ)2−θt−θ. Thus,
by the condition (9) on η and θ ≥ 1

2 ,

‖f̃t+1‖2K ≤ (t+ 1)1−θ + 64η2C2
Gt

1−3θ + 2ηCGt
−θ − (1− θ)2−θt−θ

= (t+ 1)1−θ + t−θ[64η2C2
Gt

1−2θ + 2ηCG − (1− θ)2−θ]
≤ (t+ 1)1−θ + 64η2C2

G + 2ηCG − (1− θ)2−θ

≤ (t+ 1)1−θ + (64C2
G + 2CG)η − (1− θ)2−θ

≤ (t+ 1)1−θ.

This proves our statement (27).

The estimation of Q2 will need the following result.
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Proposition 22. For any R ≥ 1 and f ∈ BR, with confidence at least 1− δ
2 ,

E(f)− E(f∗))− (Ez(f)− Ez(f∗)) ≤1

2
(E(f)− E(f∗))

+ 213R2 max

{
log(4δ )

m− 1
,

(
cq

m− 1

) 1
q+1

}
.

Proof. For each f ∈ HK , denote

gf (z, z′) =
(

(y − f(x))− (y′ − f(x′))
)2

−
(

(y − f∗(x))− (y′ − f∗(x′))
)2
.

Consider the function set G = {gf (z, z′) : f ∈ BR} . For each g ∈ G, by the
same techniques used in the proof of Proposition 20, we can verify that
E[g] ≥ 0, ‖g‖∞ ≤ 64R2 and E[g2] ≤ 64R2E[g]. Also, it is easy to check
that N (G, ε) ≤ N (B1,

ε
16R2 ). Thus log (N (G, ε)) ≤ cq(16R2)qε−q. Applying

Lemma 18 with a = cq(16R2)q, c = B = 64R2 we obtain the desired
estimate.

The estimation for Q1 needs the following result.

Proposition 23. Let ηt = ηt−θ with θ > 1
2 and η satisfying the restriction

(9). For any fixed f ∈ BR, we have

Ez(f̃T )− Ez(f) ≤ 2R2

η
T θ−1 +

2c′p,θ
η

(
T (p+2)(1−θ) +RT (p+ 1

2
)(1−θ)

)
h−2p,

(30)

where c′p,θ is a constant independent of R, h, T and will be explicitly given in
the proof.

Proof. By the elementary equality u2 = (u′)2 + 2u′(u − u′) + (u − u′)2 for
u, u′ ∈ R, we have

ξ̃2t+1(i, j) = ξ̃2t (i, j) + 2ξ̃t(i, j)
[
(f̃t+1(xj)− f̃t(xj))− (f̃t+1(xi)− f̃t(xi))

]
+
[
(f̃t+1(xj)− f̃t(xj))− (f̃t+1(xi)− f̃t(xi))

]2
= ξ̃2t (i, j) + 2ξ̃t(i, j)

〈
f̃t+1 − f̃t,Kxj −Kxi

〉
K

+
〈
f̃t+1 − f̃t,Kxj −Kxi

〉2
K
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for each (i, j) pair. Summing up with i, j = 1, · · · ,m, we have

Ez(f̃t+1) ≤ Ez(f̃t) + 2
〈
f̃t+1 − f̃t, W̃t

〉
K

+ 2‖f̃t+1 − f̃t‖2K ,

where we used the notation

W̃t =
1

m2

m∑
i=1

m∑
j=1

ξ̃t(i, j)(Kxj −K(xi))

and the estimate

1

m2

m∑
i=1

m∑
j=1

〈
f̃t+1 − f̃t,Kxj −Kxi

〉2
K

=
〈
f̃t+1 − f̃t, T̂XX(f̃t+1 − f̃t)

〉
K

≤ 2‖f̃t+1 − f̃t‖2K .

Note that f̃t+1 − f̃t = −ηtH̃t and let Ẽt = H̃t − W̃t. Then

Ez(f̃t+1) ≤ Ez(f̃t)− 2(1− ηt)ηt‖H̃t‖2K + 2ηt

〈
H̃t, Ẽt

〉
K

≤ Ez(f̃t)− ηt‖H̃t‖2K + 2ηt‖H̃t‖K‖Ẽt‖K ,

where we used the fact that η ≤ 1
2 implies that 1− ηt = 1− ηt−θ ≥ 1

2 for all
t ≥ 1. Similar to the estimation (24), but using (27) this time, we obtain

|ξ̃t(i, j)| ≤ 2 + 2t
1−θ
2 ≤ 4t

1−θ
2 and

‖Ẽt‖K ≤ 23p+3cpt
(1−θ)(2p+1)

2 h−2p.

This together with (29) implies

Ez(f̃t+1) ≤ Ez(f̃t)− ηt‖H̃t‖2K + 26+3pcpCGt
(p+1)−(p+2)θh−2p. (31)

By the elementary inequality u2 ≤ (u′)2 + 2u(u − u′) for u, u′ ∈ R, we
obtain

ξ̃2t (i, j) = ξ̃2f (i, j) + 2ξ̃t(i, j)
〈
f̃t − f,Kxj −Kxi

〉
K
,

which implies Ez(f̃t) ≤ Ez(f) + 2〈f̃t− f, W̃t〉K . Then it is easy to check that

Ez(f̃t) ≤ Ez(f) + 2
〈
f̃t − f, H̃t

〉
K
− 2

〈
f̃t − f, Ẽt

〉
K

≤ Ez(f) + 2
〈
f̃t − f, H̃t

〉
K

+ 2(‖f̃t‖K + ‖f‖K)‖Ẽt‖K

≤ Ez(f) + 2
〈
f̃t − f, H̃t

〉
K

+ 23p+5cp(t
(p+1)(1−θ)

+Rt(p+
1
2
)(1−θ))h−2p.
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Plugging it into (31), we get

Ez(f̃t+1) ≤ Ez(f) +
1

ηt

(
2ηt

〈
f̃t − f,Ht

〉
K
− η2t ‖Ht‖2K

)
+ Λt(h,R)

= Ez(f) +
1

ηt

(
‖f̃t − f‖2K − ‖f̃t+1 − f‖2K

)
+ Λt(h,R)

where
Λt(h,R) = 27+3pcpCG(t(p+1)(1−θ) +Rt(p+

1
2
)(1−θ))h−2p.

Thus,

ηt

(
Ez(f̃t+1)− Ez(f)

)
≤ ‖f̃t − f‖2K − ‖f̃t+1 − f‖2K + ηtΛt(h,R).

Summing over t = 1, · · · , T − 1 with f̃1 = 0

T−1∑
t=1

ηt

(
Ez(f̃t+1)− Ez(f)

)
≤‖f̃1 − f‖2K − ‖f̃T − f‖2K +

T−1∑
t=1

ηtΛt(h,R) ≤ ‖f‖2K +

T−1∑
t=1

ηtΛt(h,R)

≤R2 +

T−1∑
t=1

ηtΛt(h,R).

By (31), it is obvious that Ez(f̃t+1) ≤ Ez(f̃t)+26+3pcpCGt
(p+1)−(p+2)θh−2p.

Thus, for all t ≤ T ,

Ez(f̃T ) ≤ Ez(f̃t) + 26+3pcpCGh
−2p

T−1∑
k=t

k(p+1)−(p+2)θ

≤ Ez(f̃t) +
26+3pcpCG

(p+ 2)(1− θ)
h−2pT (p+2)(1−θ),

where we have used the fact (p + 2)θ − (p + 1) < 1 and the elementary
inequality

T−1∑
k=1

k−s ≤ T 1−s

1− s
, ∀ s < 1. (32)
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It follows that(
Ez(f̃T )− Ez(f)

) T−1∑
t=1

ηt

≤
T−1∑
t=1

ηt

(
Ez(f̃t)− Ez(f) +

26+3pcpCGh
−2p

(p+ 2)(1− θ)
T (p+2)(1−θ)

)

≤R2 +
T−1∑
t=1

ηtΛt(h,R) +
26+3pcpCGh

−2p

(p+ 2)(1− θ)
T (p+2)(1−θ)

T−1∑
t=1

ηt. (33)

By (32) again we have

T−1∑
t=1

ηtΛt(h,R) ≤ cp,θη
(
T (p+2)(1−θ) +RT (p+ 3

2
)(1−θ))h−2p

where cp,θ = 26+3pcpCG( 1
(p+2)(1−θ) + 1

(p+ 3
2
)(1−θ)). Note that

T−1∑
t=1

ηt = η
T−1∑
t=1

t−θ ≥ η

2
T 1−θ.

Plugging these two estimate into (33), we obtain the desired conclusion (30)

with c′p,θ = cp,θ +
26+3pcpCG
(p+2)(1−θ) .

Now we can prove the main theorems for the unregularized gradient
descent algorithm.

Proof of Theorem 3. Fix λ > 0 which will be chosen later. Note that

‖fλ‖K ≤ D(λ)λ ≤
√
D0λ

β−1
2 . Applying Proposition 23 with f = fλ, we obtain

Q1 ≤
2D0λ

β−1

η
T θ−1 +

2c′p,θ
η

(
T (p+2)(1−θ) +

√
D0λ

β−1
2 T (p+ 1

2
)(1−θ)

)
h−2p.

Applying Proposition 22 with f = f̃T and R = T
1−θ
2 , we know that with

confidence at least 1− δ
2 ,

Q2 ≤
1

2
E(f̃T )− E(f∗) + 213T 1−θ max

{
log(4δ )

m− 1
,

(
cq

m− 1

) 1
q+1

}
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These two estimates together with the estimate of Q3 in Proposition 20
imply that, with confidence at least 1− δ,

E(f̃T )− E(f∗) ≤ 4D0λ
β−1

η
T θ−1

+
4c′p,θ
η

(
T (p+2)(1−θ) +

√
D0λ

β−1
2 T (p+ 1

2
)(1−θ)

)
h−2p

+ 214T 1−θ max

{
log(4δ )

m− 1
,

(
cq

m− 1

) 1
q+1

}

+
210D0λ

β−1 log(4δ )

(m− 1)
+ 3D0λ

β.

Choosing λ = T−(1−θ), with confidence at least 1− δ, we have

E(f̃T )− E(f∗) ≤ C̃ max

{
1

T β(1−θ)
,

T 1−θ

(m− 1)
1

1+q

,
T (p+2)(1−θ)

h2p

}
log

4

δ

where C̃ = max
{
4D0
η1

+
4c′p,θ(1+

√
D0)

η1
+ (210 + 3)D0 + 214 max{1, (cq)

1
q+1 }

}
.

This proves the theorem.
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