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Abstract
Regularization schemes for regression have been widely studied in learning theory and

inverse problems. In this paper, we study regularized distribution regression (DR) which
involves two stages of sampling, and aims at regressing from probability measures to real-valued
responses by regularization over a reproducing kernel Hilbert space (RKHS). Many important
tasks in statistical learning and inverse problems can be treated in this framework. Examples
include multi-instance learning and point estimation for problems without analytical solutions.
Recently, theoretical analysis on DR has been carried out via kernel ridge regression and several
interesting learning behaviors have been observed. However, the topic has not been explored
and understood beyond the least squares based DR. By introducing a robust loss function
lσ for two-stage sampling problems, we present a novel robust distribution regression (RDR)
scheme. With a windowing function V and a scaling parameter σ which can be appropriately
chosen, lσ can include a wide range of commonly used loss functions that enrich the theme of
DR. Moreover, the loss lσ is not necessarily convex, which enlarges the regression class (least
squares) in the literature of DR. Learning rates in different regularity ranges of the regression
function are comprehensively studied and derived via integral operator techniques. The scaling
parameter σ is shown to be crucial in providing robustness and satisfactory learning rates of
RDR.

Keywords: learning theory, distribution regression, robust regression, integral operator, learn-
ing rate

1 Introduction
Data from many practical applications often appear in forms of functionals or matrices. Such types
of data impose difficulty in applying classical regression methods used for dealing with vector-valued
data. Hence, developing suitable regression schemes for solving the corresponding problems becomes
desirable. Recently, distribution regression (DR) was introduced to handle complicated data from
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some Banach spaces ([28, 30, 31, 32, 12]). Many important tasks in machine learning, statistics,
and inverse problems can be analysed in the framework of DR. One example is the multi-instance
learning problem ([8, 29]) in which each instance is generated from a probability distribution in
an independent identically distributed manner. In statistics, some tasks might be stated as point
estimation problems for probability distributions without analytical expressions ([31]).

In DR, the input data are (probability) distributions on a compact metric space X̄. In the first
stage, we have a data set D̄ = {(xi, yi)}|D̄|i=1 ⊂ X × Y , in which |D̄| is the cardinality of D̄ and each
pair (xi, yi) is i.i.d. sampled from a meta distribution over X×Y , X is the input space of probability
distributions on X̄, and Y = R is the output space equipped with the standard Euclidean metric.
Generally, the distributions {xi} cannot be observed directly. On the way of learning the regressor
from X to Y , we can observe a second-stage sample drawn from the probability measures. This is
done in the second stage of DR where the samples in the sample set D̂ =

{
({xi,s}dis=1, yi)

}|D̄|
i=1 are

obtained by drawing a sample {xi,s}dis=1 ⊂ X̄ according to the probability distribution xi on X̄.
We borrow an example on medical applications of DR from [31] to illustrate ideas of the above

two-stage sampling. Here, the set X is treated as a pool of patients identified with a set of probability
distributions on X̄ = [0, 1]. The ith patient xi in the sample set {xi}|D̄|i=1 can be periodically assessed
by blood tests {xi,s}dis=1 which are made at moments {j/di}dij=1. Then {xi,s}dis=1 is exactly the
second stage sample set associated with xi, and {yi}|D̄|i=1 are the values of some health indicator
of the patients. The goal of DR is to learn a mapping from the set of blood tests to the health
indicator values by observations on a group of patients. From the perspective of learning, we hope
that by observing a large number of patients and making enough tests (with large di), the learned
mapping can be precise enough.

The work in this paper is based on a kernel mean embedding ridge regression method for DR
([2]). Let (Hk, ‖ ·‖k) be a reproducing kernel Hilbert space (RKHS) with the associated reproducing
kernel k : X̄ × X̄ → R. Let (X̄,F) be a measurable space with F being a Borel σ-algebra on
X̄. Denote the set of Borel probability measures on (X̄,F) by M1(F). Then the kernel mean
embedding of a distribution x ∈M1(F) to an element µx of RKHS Hk is given by

µx =
∫
X̄

k(·, η)dx(η).

Via the kernel mean embedding, kernel methods for handling vector-valued data can be extended
to those with values of probability distributions. The kernel mean embedding transformation
x 7→ µx is injective when k is a characteristic kernel ([18, 12]). The injectivity is shown to
be useful in statistical applications (e.g. [13, 19]). Denote the set of the mean embeddings by
Xµ = {µx : x ∈M1(F)} ⊆ Hk. Then the mean embeddings of D̄ to Xµ can be represented by

D = {(µxi , yi)}
|D|
i=1.

Let ρ be a probability measure on the product space Z = Xµ × Y . The aim of DR is to predict the
conditional mean for given Xµ by learning the regression function fρ : Xµ → Y defined by

fρ(µx) =
∫
Y

ydρ(y|µx), µx ∈ Xµ,

where ρ(·|µx) is the conditional probability measure of ρ at µx ∈ Xµ. Note that fρ is just the
minimizer of the least squares generalization error

E(f) =
∫
Z

(f(µx)− y)2dρ.
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Generally, the measure ρ is unknown, and learning fρ is carried out in a non-parametric setting
by implementing some learning algorithms over the sample D obtained in a one-stage sampling
process. In DR, the first stage sample {xi}|D|i=1 of probability distributions is still unobservable.
Instead, each probability distribution xi is approximately available via a second stage random
sample {xi,s}dis=1 ⊂ X̄. So the goal of DR is to learn the regression function fρ from the sample

D̂ =
{

({xi,s}dis=1, yi)
}|D|
i=1

obtained in a two-stage sampling process. We study a kernel-based method for DR. Consider a
reproducing kernel Hilbert space (HK , ‖ · ‖K) associated with a Mercer kernel K : Xµ ×Xµ → R.
As an extension of the classical kernel ridge regression scheme [1, 3, 6, 20, 33, 34, 35, 37], the
regularized least squares DR scheme takes a Tikhonov regularization form [1, 12, 31] as

f ls
D̂,λ

= arg min
f∈HK

{
1
|D|

|D|∑
i=1

(
f(µx̂i)− yi

)2 + λ
∥∥f∥∥2

K

}
, (1.1)

in which x̂i = 1
di

∑di
s=1 δxi,s serves as the empirical distribution determined by the observable set

D̂ =
{

({xi,s}dis=1, yi)
}|D|
i=1,

µx̂i = 1
di

di∑
s=1

k(·, xi,s)

is the corresponding kernel mean embedding, and λ > 0 is a regularization parameter. The least
squares minimization problem (1.1) can be regarded ([1, 9]) as a Tikhonov regularization solution
to an ill-posed inverse problem with noisy data D̂ =

{
({xi,s}dis=1, yi)

}|D|
i=1.

In this paper, we investigate a more general framework of two-stage distribution regression by
considering a novel regularized robust DR (RDR) scheme

fσ
D̂,λ

= arg min
f∈HK

{
σ2

|D|

|D|∑
i=1

V
( [f(µx̂i)− yi]2

σ2

)
+ λ
∥∥f∥∥2

K

}
, (1.2)

where V : R+ → R is a windowing function and σ > 0 is a scaling parameter. The algorithm can
also be written in the form

fσ
D̂,λ

= arg min
f∈HK

{ 1
|D|

|D|∑
i=1

lσ(f(µx̂i)− yi) + λ‖f‖2K
}

with a loss function lσ : R→ R given by lσ(u) = σ2V (u
2

σ2 ). It can be witnessed that, in regression
strategy (1.2), to enhance robustness of DR, we have replaced the least squares loss by a more
general robust alternative generated by the windowing function V and scaling parameter σ. By
selecting appropriate windowing function V and scaling parameter σ, the loss function yields a wide
range of important RDR classes, which is new in the literature of DR. For example, Welsch loss
lσ(u) = σ2[1−exp(− u2

2σ2 )
]
has been shown to be powerful in various settings with one-stage sampling

such as signal processing, data clustering, pattern recognition, and non-parameter regression. From
a perspective of information-theoretic learning, Welsch loss can be induced by the well-known
correntropy loss, which was first introduced in [26] based on entropies. The correntropy between
two scaler random variables U and V is defined as EKσ(U, V ) with Kσ a Gaussian kernel given
by Kσ(u, v) = exp{−(u− v)2/σ2} with the scaler σ > 0. Entropy-based losses mainly include the
loss induced by maximum correntropy criterion [14] and that by minimum error entropy criterion
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[24, 39]. In addition, the range of lσ also includes many commonly used loss functions such as
the Huber loss [17] and pinball loss [36]. Recall that the traditional least squares DR scheme
is the most popular DR method in the literature. It relies only on the mean squared error and
belongs to the second-order statistics. Also recall that the least squares regression is optimal for
Gaussian noise but suboptimal for non-Gaussian noise. In practice, samples are often contaminated
by non-Gaussian noise or outliers. Moreover, least squares estimators for regression models are
highly sensitive to outliers, and when the noise is not Gaussian, they often have poor performances.
Unfortunately, in the existing literature of two-stage DR, approaches and theoretical studies are still
limited to the least squares scheme, no other mainstream regression methods have been proposed in
non-Gaussian settings yet. These facts motivate us to consider the proposed RDR scheme in (1.2)
to fill the gap when tackling two-stage DR. Because of the robustness to non-Gaussian noise or
outliers, the proposed RDR is expected to be applicable in practice. Some numerical experiments
are conducted in Section ???.

The goal of this paper is to investigate RDR in a framework of learning theory. To derive learning
rates of the estimator fσ

D̂,λ
when approximating fρ and investigate the related robustness, we use a

kernel based integral operator technique as a main tool. Via kernel mean embedding, we learn the
regression function fρ with algorithm (1.2) from the given training sample D̂ =

{
({xi,j}dij=1, yi)

}|D|
i=1

with {xi,1, xi,2, . . . , xi,di} drawn independently from xi. Novel theoretical results on robust estimator
fσ
D̂,λ

are derived. Note that, in the proposed RDR, the loss function lσ may involve non-convex
functions (e.g. Welsch loss), hence the theoretical study on RDR is essentially different from those
on existing DR methods.

We summarize our main contributions of the work as follows.

• We propose a novel RDR method for two-stage sampling DR. Learning theory analysis is
carried out for the estimator fσ

D̂,λ
given by (1.2). Novel error bounds are derived with integral

operator techniques. With the introduction of the flexibly chosen windowing function V and
scaling parameter σ that leads to a wide range of commonly used robust losses, the existing
analysis and algorithms in the literature of DR (least squares) have been largely improved.

• The learning behaviors of RDR are comprehensively explored for regularity index r (introduced
below) in the whole range of (0,∞). Accordingly, satisfactory convergence rates in terms of
the sample size |D| are derived. We also show that the optimal mini-max learning rates can
be achieved by RDR under appropriate conditions.

• The significance of σ in providing robustness and fast learning rates of RDR are shown in our
analysis and main results.

2 Main Results
We assume throughout the paper that there exists a constant M > 0 such that |y| ≤ M almost
surely, and k and K are bounded Mercer (symmetric, continuous, positive semidefinite) kernels
with bounds Bk and BK :

Bk = sup
v∈X̄

k(v, v) <∞, BK = sup
µu∈Xµ

K(µu, µu) <∞. (2.1)

Denote the Banach space of bounded linear operators from space Y = R to HK by L(Y,HK).
Set Kµx = K(µx, ·) for µx ∈ Xµ. We treat Kµx as an element of L(Y,HK) by defining the linear
mapping

Kµx(y) = yKµx , y ∈ Y.
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The mapping K(·) : Xµ → L(Y,HK) is assumed to be (α,L)-Hölder continuous for some α ∈ (0, 1]
and L > 0 in the sense that∥∥Kµx −Kµy

∥∥
L(Y,HK) ≤ L

∥∥µx − µy∥∥αk , ∀(µx, µy) ∈ Xµ ×Xµ. (2.2)

According to [31], the set Xµ of mean embeddings is a separable compact set of continuous functions
on X̄. Denote the marginal distribution of ρ on Xµ by ρXµ . Let L2

ρXµ
be the Hilbert space of

square-integrable functions on Xµ with norm ‖ · ‖L2
ρXµ

given by

∥∥f∥∥
L2
ρXµ

=
〈
f, f

〉1/2
ρXµ

=
(∫

Xµ

∣∣f(µx)
∣∣2dρXµ)1/2

.

Define an integral operator LK on L2
ρXµ

associated with the Mercer kernel K : Xµ ×Xµ → R by

LK(f) =
∫
Xµ

Kµxf(µx)dρXµ , f ∈ L2
ρXµ

. (2.3)

Since the set Xµ is compact and K is a Mercer kernel, LK is a positive compact operator on L2
ρXµ

.
Then for any r > 0, its r-th power LrK is well defined according to the spectral theorem in functional
calculus.

Throughout the paper, we assume a regularity condition for the regression function fρ as

fρ = LrK(gρ) for some gρ ∈ L2
ρXµ

and r > 0. (2.4)

The assumption means that the regression function lies in the range of operator LrK . The special
case r = 1/2 corresponds to fρ ∈ HK . According to [11], the operator L1/2

K : HK → HK is
an isomorphism, in which HK denotes the closure of HK in L2

ρXµ
. Namely, for any f ∈ HK ,

L
1/2
K f ∈ HK and ‖f‖L2

ρXµ

= ‖L1/2
K f‖K .

We use the effective dimension N (λ) to measure the capacity of HK with respect to the measure
ρXµ which is defined to be the trace of the operator (λI + LK)−1LK , that is,

N (λ) = Tr((λI + LK)−1LK), λ > 0.

For the effective dimension N (λ), we need a capacity condition which focuses on rates of increment
of N (λ) and is stated for some β ∈ (0, 1] and C0 > 0 as

N (λ) ≤ C0λ−β , ∀λ > 0. (2.5)

Throughout the paper, we assume that the sample D = {(µxi , yi)}
|D|
i=1 is drawn independently

according to the Borel probability measure ρ, and {xi,s}dis=1 is drawn independently according
to the probability distribution xi for i = 1, 2, . . . , |D|. The windowing function V : R+ → R is
assumed to be differentiable with V ′+(0) = 1 (w.l.o.g. by scaling) but not necessarily convex. It is
assumed that there exist some p > 0 and cp > 0 such that

|V ′(s)− V ′+(0)| ≤ cpsp, ∀s > 0, (2.6)

and
CV = sup

s∈(0,∞)
|V ′(s)| <∞ with V ′(s) > 0 for s > 0. (2.7)
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These assumptions are satisfied by the windowing functions for many classical loss functions lσ(s) =
σ2V ( s

2

σ2 ) including Welsch loss: lσ(s) = σ2[1− exp(− s2

2σ2 )], Cauchy loss: lσ(s) = σ2 log(1 + s2

2σ2 ),
and Fair loss: lσ(s) = σ2[ |s|

σ − log(1 + |s|
σ )
]
. Such loss functions are well studied in the literature of

robust regression dealing with vector-valued data. They are proposed here in the DR setting to
improve the robustness to non-Gaussian noise and outliers when dealing with distribution-valued
data. It can be witnessed that the Welsch loss and Cauchy loss are non-convex but satisfy the
so-called redescending property meaning that the derivative l′σ(s) increases near the origin but
decreases to 0 when s is far away from the origin.

Our first main result, to be proved in Section 4, describes explicit learning rates for the error∥∥∥fσ
D̂,λ
− fρ

∥∥∥
L2
ρXµ

of RDR in terms of the sample size |D| of the data sets D, D̂, and robust scaling

parameter σ. The expectations are taken with respect to D and D̂.

Theorem 1. Suppose that the regularity condition (2.4) holds for some r > 0 and |y| ≤M almost
surely. Assume the capacity condition (2.5) for some β ∈ (0, 1], smoothness conditions (2.6), (2.7)
with p > 0, and that the mapping K(·) : Xµ → L(Y,HK) is (α,L)-Hölder continuous for some α ∈
(0, 1] and L > 0. If the sample size in the second stage sampling satisfies d1 = d2 = · · · = d|D| = d,
then by choosing

λ =


|D|−

1
1+β , when r ∈ (0, 1/2),

|D|−
1

2r+β , when r ∈ [1/2, 1],
|D|−

1
2+β , when r ∈ (1,∞),

(2.8)

and

d =


|D|

2
α(1+β) , when r ∈ (0, 1/2),

|D|
1+2r

α(2r+β) , when r ∈ [1/2, 1],
|D|

1
α ( 3

2+β ), when r ∈ (1,∞),
(2.9)

we have

E
[∥∥fσ

D̂,λ
− fρ

∥∥
L2
ρXµ

]
=


O
(

max
{
|D|−

r
1+β , |D|

p+1
1+β

σ2p

})
, when r ∈ (0, 1/2),

O
(

max
{
|D|−

r
2r+β , |D|

p+1
2r+β

σ2p

})
, when r ∈ [1/2, 1],

O
(

max
{
|D|−

1
2+β , |D|

p+1
2+β

σ2p

})
, when r ∈ (1,∞).

(2.10)

Learning rates for DR provided in the existing literature are those for least squares DR schemes
in [31, 12, 27]. Reference [31] is the first work presenting learning rates for the least squares
regressor f ls

D̂,λ
defined in (1.1). It derived optimal learning rates under the regularity condition

(2.4) with r ∈ (1/2, 1] and suboptimal rate with r = 1/2. The suboptimal rate in the case r = 1/2
was improved to the optimal one in [12] via a novel integral operator method that is based on a
second order decomposition technique for inverses of operators in Banach spaces [20]. Reference [27]
proposes a kernel based stochastic gradient method in a DR setting where mini-batching is used for
selection of data points in each iteration. In Theorem 1, we provide learning rates for any value of
the regularity index r in the whole range (0,∞), in contrast to [31, 12] that carried out analysis
only for r ∈ [1/2, 1]. Hence, the analysis for DR has been enriched. Moreover, in the explicit bounds
of Theorem 1, the participation of the scaling parameter σ introduced for the windowing function
V indicates differences of our work from the aforementioned results. One difference is that RDR
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possesses a flexibility in selecting σ for robustness, in contrast to the current DR methods without
taking robustness into consideration.

There have been many studies on robust learning algorithms in different aspects. For example,
references [16] and [17] consider some robust empirical risk minimization schemes for regression.
Inspired by convex risk minimization over infinite-dimensional Hilbert spaces, robustness of support
vector machines is extensively investigated in [4, 5, 7, 37]. The maximum correntropy criterion
induced loss is considered in [14] for regression over compact hypothesis spaces. Modal regression
with robust kernels is studied in [15]. References [23, 10, 24, 39] investigate learning behaviors of
minimum error entropy algorithms. Based on gradient descent iterations, reference [21] presents an
efficient kernel based robust gradient descent algorithm for regression. Error analysis in these studies
is carried out with standard covering number arguments for data obtained from one-stage sampling.
In contrast to these works, under the capacity assumption on the effective dimension N (λ), we
derive error bounds and learning rates with integral operator techniques. For the purpose of dealing
with samples of probability distributions, we develop a robust regression method for DR with
data obtained from two-stage sampling and provide some analysis for selecting the regularization
parameter λ and the second stage sample size d.

The following corollary is a direct consequence of Theorem 1. It shows that the RDR has nice
learning performances when the scaling parameter σ is chosen to be large enough.

Corollary 1. Under the same assumption of Theorem 1, if the scaling parameter σ is chosen as

σ ≥


|D|

p+1+r
2p(1+β) , when r ∈ (0, 1/2),

|D|
p+1+r

2p(2r+β) , when r ∈ [1/2, 1],
|D|

p+1+r
2p(2+β) , when r ∈ (1,∞),

(2.11)

then we have

E
[∥∥fσ

D̂,λ
− fρ

∥∥
L2
ρXµ

]
=


O
(
|D|−

r
1+β

)
, when r ∈ (0, 1/2),

O
(
|D|−

r
2r+β

)
, when r ∈ [1/2, 1],

O
(
|D|−

1
2+β

)
, when r ∈ (1,∞).

(2.12)

When the regularity index r lies in the lower regularity range (0, 1/2), the regression function fρ
does not belong to HK in general. The learning rates of order O(|D|−

r
1+β ) provided in Corollary 1

for this range are sub-optimal. In the setting of regression with one-stage sampling, optimal rates
O(|D|−

r
2r+β ) have been achieved by some learning algorithms such as point kernel-based regression

[38] and semi-supervised distributed learning [3], but not by any robust regression methods. It
would be interesting to improve the learning rates for the proposed RDR scheme when r ∈ (0, 1/2).
When r ∈ [1/2, 1], the learning rates of order O(|D|−

r
2r+β ) in Corollary 1 become optimal. However,

when the regularity index r exceeds 1, the learning rates in Corollary 1 remain the same order and
the higher regularity does not help. This is the well-known saturation phenomenon in kernel based
learning (e.g. [20]). It would be interesting to overcome the saturation phenomenon by developing
some novel methods for the proposed regularized RDR.

The role of a large scaling parameter σ in learning performances of minimum error entropy
algorithms with one-stage sampling was analyzed in [23]. Corollary 1 shows the same role of large
σ but is demonstrated for RDR with two-stage sampling.

In a framework of regularized regression, our second main result provides a novel quantitative
description on robustness of RDR by considering the expected error between the RDR estimator
fσ
D̂,λ

(in which the robustness is induced by the scaling parameter σ) and the classical least squares
DR estimator f ls

D̂,λ
(without robustness).
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Theorem 2. Let the sample set D = {(µxi , yi)}
|D|
i=1 be drawn independently according to probability

measure ρ. Let f ls
D̂,λ

denote the classical least square DR estimator in (1.1). Suppose that the
sample size in the second stage sampling satisfies d1 = d2 = · · · = d. Then for any given sample
size |D|, d and regularization parameter λ > 0, there holds

E
[∥∥fσ

D̂,λ
− f ls

D̂,λ

∥∥
L2
ρXµ

]
≤ C̃

(λ−(p+ 1
2 ) + 1)(λ− 3

2 d−
α
2 Â2
|D|,λ + λ−

1
2 Â|D|,λ)

σ2p . (2.13)

C̃ is a constant independent of D, d, λ, σ and the explicit form will be given in the proof. Â|D|,λ is
defined by Â|D|,λ = A|D|,λ√

λ
+ 1 in which A|D|,λ = 2κ√

|D|
( κ√
|D|λ

+
√
N (λ)).

When the sample size |D| and d are large enough, our last main result is a quantitative
description on the robust L2

ρXµ
-gap between RDR estimator fσ

D̂,λ
and least square DR estimator

f ls
D̂,λ

.

Corollary 2. Under same conditions of Theorem 2, for any given regularization parameter λ > 0,
there holds

lim |D|→∞
d→∞

E
[∥∥fσ

D̂,λ
− f ls

D̂,λ

∥∥
L2
ρXµ

]
≤ C̃ (λ−(p+1) + λ−

1
2 )

σ2p , (2.14)

where C̃ is a constant to be given explicitly in the proof of Theorem 2.

Recall that fσ
D̂,λ

is generated by the introduction of the scaling parameter σ that delivers the
robustness to the DR scheme. Since the classical least square DR estimator f ls

D̂,λ
does not possess

robustness, we know that, when the L2
ρXµ

-distance between fσ
D̂,λ

and f ls
D̂,λ

gets smaller, there will
be less robustness of the RDR scheme induced by lσ. In nonparametric regression problems, to
enhance the robustness of RDR, one may choose appropriately small σ for use. Actually, in practice,
for different purposes, the scaling parameter σ may be chosen to be large or small. This idea also
matches the work in [14] which handles maximum correntropy criterion. Their work also reveals
that too small σ would influence the convergence of the regressor fσ

D̂,λ
to fρ. Also, the small σ case

has been interpreted as modal regression in [15]. From above analysis and recent works [14, 21, 25],
we know that, in practice, a moderate scaling parameter σ should be chosen appropriately to
balance robustness and convergence of RDR.

[10]

3 Key Analysis and Error Decompositions
In this section, we present the key analysis and error decompositions for RDR. We first introduce
the following robust regression scheme associated with the sample D = {(µxi , yi)}

|D|
i=1 obtained from

the one-stage sampling

fσD,λ = arg min
f∈HK

{
σ2

|D|

|D|∑
i=1

V
( [f(µxi)− yi]2

σ2

)
+ λ
∥∥f∥∥2

K

}
. (3.1)

It plays the role of a stepping stone in in our analysis for learning with the two-stage sampling.
Then we need a data-free minimizer fλ for the regularized least squares regression as

fλ = arg min
f∈HK

{
‖f − fρ‖2L2

ρXµ

+ λ‖f‖2K
}
. (3.2)
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Now we can make a decomposition for the error fσ
D̂,λ
− fρ as

fσ
D̂,λ
− fρ =

(
fσ
D̂,λ
− fσD,λ

)
+
(
fσD,λ − fλ

)
+ (fλ − fρ) . (3.3)

The above error decomposition will be used to estimate the error norm
∥∥fσ
D̂,λ
− fρ

∥∥
L2
ρXµ

in our

sampling operator approach. The last term can be easily estimated from the regularity condition
(2.4) as

‖fλ − fρ‖L2
ρXµ

≤ ‖gρ‖L2
ρXµ

λmin{r,1} (3.4)

by results [33] on the well-studied regularization scheme (3.2). The second term fσD,λ − fλ reflects
the error caused by the robust regression scheme and will be bounded in terms of the scaling
parameter σ. The first term fσ

D̂,λ
−fσD,λ reflects the error incurred by the second-stage sampling and

will be bounded in terms of the size d of the second-stage sample. This section includes statements
of the error bounds which will be proved in the appendix.

Let us introduce two sampling operators in our sampling operator approach for the two-stage
sampling process. The sampling operator SD : HK → R|D| corresponding to the first-stage sampling
is defined as

SDf = (f(µxi))
|D|
i=1 , f ∈ HK ,

and a scaled adjoint operator STD : R|D| → HK is given by

STDc = 1
|D|

|D|∑
i=1

ciKµxi
, c = (ci)|D|i=1 ∈ R|D|.

The first stage empirical integral operator LK,D is then defined by

LK,D(f) = STDSD(f) = 1
|D|

|D|∑
i=1

f(µxi)Kµxi
= 1
|D|

|D|∑
i=1
〈Kµxi

, f〉KKµxi
, f ∈ HK .

The sampling operator ŜD : HK → R|D| corresponding to the second-stage sampling is given by

SDf = (f(µx̂i))
|D|
i=1 , f ∈ HK ,

with its scaled adjoint operator ŜTD : R|D| → HK by STDc = 1
|D|
∑|D|
i=1 ciKµx̂i

. The corresponding
empirical integral operator LK,D̂ is then defined by

LK,D̂(f) = ŜTDŜD(f) = 1
|D|

|D|∑
i=1

f(µx̂i)Kµx̂i
= 1
|D|

|D|∑
i=1
〈Kµx̂i

, f〉KKµx̂i
, f ∈ HK . (3.5)

The empirical integral operators LK,D and LK,D̂ can be used to represent fσ
D̂,λ

and fσD,λ as

follows. In the following, we denote the output vector by y = (yi)|D|i=1.

Lemma 1. Let fσ
D̂,λ

and fσD,λ be defined by (1.2) and (3.1). Then

fσ
D̂,λ

= (λI + LK,D̂)−1ŜTDy − (λI + LK,D̂)−1ED̂,λ,σ (3.6)

and
fσD,λ = (λI + LK,D)−1STDy − (λI + LK,D)−1ED,λ,σ, (3.7)

9



where ED̂,λ,σ and ED,λ,σ are quantities depending on the scaling parameter σ given by

ED̂,λ,σ = 1
|D|

|D|∑
i=1

[
V ′
( [fσ

D̂,λ
(µx̂i)− yi]2

σ2

)
− V ′(0)

]
(fσ
D̂,λ

(µx̂i)− yi)Kµx̂i
, (3.8)

ED,λ,σ = 1
|D|

|D|∑
i=1

[
V ′
( [fσD,λ(µxi)− yi]2

σ2

)
− V ′(0)

]
(fσD,λ(µxi)− yi)Kµxi

. (3.9)

For the second term of the error decomposition (3.3), we recall a representation of fλ found in
[33] as

fλ = (λI + LK)−1LKfρ (3.10)
which implies fλ = (λI + LK)−1LKfρ. Combining this with the representation (3.7) of fσD,λ in
Lemma 1, we have the following decomposition

fσD,λ − fλ = (λI + LK,D)−1STDy − (λI + LK)−1LKfρ − (λI + LK,D)−1ED,λ,σ

= (λI + LK,D)−1(STDy − LKfρ) + [(λI + LK,D)−1 − (λI + LK)−1]LKfρ − (λI + LK,D)−1ED,λ,σ.

Applying the formula A−1 − B−1 = A−1(B − A)B−1 for operator inverses to the operators
A = λI + LK,D, B = λI + LK on HK and using (3.10) yield the following representation

fσD,λ − fλ = (λI + LK,D)−1 {(STDy − LKfρ) + (LK − LK,D)fλ
}
− (λI + LK,D)−1ED,λ,σ. (3.11)

This expression allows us to estimate the error term ‖fσD,λ − fλ‖L2
ρXµ

by bounding STDy −
LKfρ, LK − LK,D and the quantity ED,λ,σ.

Proposition 1. Assume |y| ≤M almost surely. Under the smoothness condition (2.6) for V , we
have

E
[
‖fσD,λ − fλ‖L2

ρXµ

]
≤ Cp,κ,CV ,M

(A|D|,λ√
λ

+ 1
)2 (
A′|D|,λ +A|D|,λ‖fλ‖K

)
+Cp,κ,CV ,M

(A|D|,λ√
λ

+ 1
) 1√

λ
σ−2p(λ−(p+ 1

2 ) + 1),

where

A′|D|,λ = 1
|D|
√
λ

+
√
N (λ)√
|D|

and Cp,κ,CV ,M is a constant independent of |D|, σ or λ.

For the first term of the error decomposition (3.3), we can combine the representations (3.6),
(3.7) for fσ

D̂,λ
, fσD,λ with some estimates involving integral operators and the robust quantities

ED̂,λ,σ, ED,λ,σ, and get the following bound.

Proposition 2. Suppose that the regularity condition (2.4) holds with r > 0, |y| ≤ M almost
surely, and that the mapping K(·) : Xµ → L(Y,HK) is (α,L)-Hölder continuous with α ∈ (0, 1] and
L > 0. Then we have

E
[∥∥fσ

D̂,λ
− fσD,λ

∥∥
L2
ρXµ

]
≤ C̄ 1

λ
1
2 d

α
2

(
1

λd
α
2

+ 1
)

(Â2
|D|,λ + Â|D|,λ)

[
Â2
|D|,λ ·

A′|D|,λ√
λ

+Â2
|D|,λ(Â|D|,λ − 1)‖fλ‖K + Â|D|,λσ−2p(λ−(p+ 3

2 ) + λ−1) + ‖fλ‖K
]

+ C̄Â|D|,λσ−2p(λ−(p+1) + λ−
1
2 ),

where C̄ is a constant independent of |D|, d, and σ.
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Combining Propositions 1 and 2 with (3.4) and applying the triangle inequality to the error
decomposition (3.3), we obtain immediately the following theorem with a general error bound
without decaying restrictions on the effective dimension N (λ). The result is crucial in deriving our
learning rates.
Theorem 3. Suppose that the regularity condition (2.4) holds with r > 0 and |y| ≤ M almost
surely. If the mapping K(·) : Xµ → L(Y,HK) is (α,L)-Hölder continuous with α ∈ (0, 1] and L > 0,
then we have

E
[∥∥fσ

D̂,λ
− fρ

∥∥
L2
ρXµ

]
≤ C̄ 1

λ
1
2 d

α
2

(
1

λd
α
2

+ 1
)

(Â2
|D|,λ + Â|D|,λ)[

Â2
|D|,λ ·

A′|D|,λ√
λ

+ Â2
|D|,λ(Â|D|,λ − 1)‖fλ‖K + Â|D|,λσ−2p(λ−(p+ 3

2 ) + λ−1) + ‖fλ‖K
]

+C̄Â|D|,λσ−2p(λ−(p+1) + λ−
1
2 ) + Cp,κ,CV ,M

(A|D|,λ√
λ

+ 1
)2 (
A′|D|,λ +A|D|,λ‖fλ‖K

)
+Cp,κ,CV ,M

(A|D|,λ√
λ

+ 1
) 1√

λ
σ−2p(λ−(p+ 1

2 ) + 1) + ‖gρ‖L2
ρXµ

λmin{r,1}.

4 Proofs of Main Results
We estimate the learning rates of RDR in this section. In the following, for convenience of analysis
on learning rates, we use the convention that A|D| . B|D| (A|D| = O(B|D|)) denotes that there exist
some constant C > 0 independent of the cardinality |D|, d and σ such that A|D| . C ·B|D| for any
|D| for some functions A|D|, B|D| which may depend on |D|. Also, we use A|D| . 1 to denote that
there is a constant C > 0 independent of |D|, d and σ such that A|D| ≤ C. We need to estimate
the right hand side of (??) in Theorem 3 in different regularity range of r when the regularization
parameter λ and second stage sample size d take different orders of |D|, the cardinality of data set
D. According to Smale and Zhou [33]

‖fλ‖K ≤

{
‖gρ‖L2

ρXµ

λr−
1
2 , r ∈ (0, 1/2);

κ2r−1‖gρ‖L2
ρXµ

, r ∈ [1/2,∞); (4.1)

this estimate will be used in the following in different regularity range of r. For convenience, we
denote the main terms of right hand side of (??) of Theorem 3 by

T1,|D|,λ =
( 1
λd

α
2
Â2
|D|,λ + Â|D|,λ

) 1
λ

1
2 d

α
2
,

T2,|D|,λ = 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)

[
Â2
|D|,λ

A′|D|,λ√
λ

+ Â|D|,λ(Â|D|,λ − 1)‖fλ‖K

+Â|D|,λσ−2p(λ−(p+ 3
2 ) + λ−1) + ‖fλ‖K

]
,

T3,|D|,λ = 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)σ−2p(λ−(p+ 3
2 ) + λ−1)(Â2

|D|,λ + Â|D|,λ),

T4,|D|,λ = Â|D|,λσ−2p(λ−(p+1) + λ−1/2),

T5,|D|,λ = Â2
|D|,λA

′
|D|,λ + Â2

|D|,λA|D|,λ‖fλ‖K + Â|D|,λ ·
1√
λ
σ−2p(λ−(p+ 1

2 ) + 1),

T6,|D|,λ = ‖gρ‖L2
ρXµ

λmin{r,1}.

In the following, the goal is to estimate the main terms T1,|D|,λ ∼ T6,|D|,λ for different regularity
range of r when λ and d take different orders of |D|.
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4.1 Learning rates for r ∈ (0, 1/2)
When r ∈ (0, 1/2), (4.1) implies ‖fλ‖K ≤ ‖gρ‖L2

ρXµ

λr−
1
2 , r ∈ (0, 1/2). After taking λ = |D|−

1
1+β ,

d = |D|
2

α(1+β) , the following basic estimates hold for r ∈ (0, 1/2):

1
λ

1
2 d

α
2

= |D|
1

2(1+β) |D|−
1

1+β = |D|−
1

2(1+β) ,

1
λd

α
2

= |D|
1

1+β |D|−
1

1+β = 1.

According to the condition N (λ) ≤ C0λ−β , β ∈ (0, 1], we have

A|D|,λ = 2κ√
|D|

( κ√
|D|λ

+
√
N (λ)

)
≤ 2κ(κ+

√
C0)|D|−

r
1+β . |D|−

r
1+β .

and
A|D|,λ√

λ
≤ 2κ(κ+

√
C0), Â|D|,λ =

A|D|,λ√
λ

+ 1 ≤ 2κ(κ+
√
C0) + 1.

Same procedure with above inequalities implies

A′|D|,λ . |D|−
r

1+β and
A′|D|,λ√

λ
≤ 1 +

√
C0.

Then, since Â|D|,λ . 1 and Â|D|,λ − 1 . 1, it follows that

T1,|D|,λ =
( 1
λd

α
2
Â2
|D|,λ + Â|D|,λ

) 1
λ

1
2 d

α
2
. |D|−

1
2(1+β) . |D|−

r
1+β (since r ∈ (0, 1/2)).

Now turn to T2,|D|,λ. We spit T2,|D|,λ into four parts and estimate them each other.

(i) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)Â2

|D|,λ
A′|D|,λ√

λ
. |D|−

1
2(1+β) . |D|−

r
1+β .

When λ = |D|−
1

1+β , d = |D|
2

α(1+β) ,

(ii) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)Â2

|D|,λ(Â|D|,λ − 1)‖fλ‖K .
1

λ
1
2 d

α
2
· λr− 1

2

. |D|−
1

2(1+β) |D|−
r− 1

2
1+β . |D|−

r
1+β .

Same way with (ii) implies

(iii) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)‖fλ‖K . |D|−

r
1+β .

For the forth term,

(iv) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)Â|D|,λσ−2p(λ−(p+ 3

2 ) + λ−1)

. |D|−
1

2(1+β) · 1 · σ−2p
(
|D|

p+ 3
2

1+β + |D|
1

1+β

)
. σ−2p

(
|D|

p+1
1+β + |D|

1
2(1+β)

)
. max

{ |D| p+1
1+β

σ2p ,
|D|

1
2(1+β)

σ2p

}
.
|D|

p+1
1+β

σ2p .
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Combining (i) ∼ (iv), we obtain that

T2,|D|,λ . max
{
|D|−

r
1+β ,

|D|
p+1
1+β

σ2p

}
.

Then the same way with above (iv) implies

T3,|D|,λ = 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)σ−2p(λ−(p+ 3
2 ) + λ−1)(Â2

|D|,λ + Â|D|,λ) . |D|
p+1
1+β

σ2p .

For T4,|D|,λ, it follows that

T4,|D|,λ = Â|D|,λσ−2p(λ−(p+1) + λ−1/2) ≤ σ−2p
(
|D|

p+1
1+β + |D|

1
2(1+β)

)
.
|D|

p+1
1+β

σ2p (since p+ 1 > 1
2).

For T5,|D|,λ, since
Â2
|D|,λA

′
|D|,λ . |D|−

1
2(1+β) . |D|−

r
1+β ,

Â2
|D|,λA|D|,λ‖fλ‖K ≤ Â

2
|D|,λA|D|,λ‖gρ‖L2

ρXµ

λr−
1
2 . |D|−

1
2(1+β) |D|

r− 1
2

1+β . |D|−
r

1+β ,

Â|D|,λ ·
1√
λ
σ−2p(λ−(p+ 1

2 ) + 1) . σ−2p
(
|D|

1+p
1+β + |D|

1
2(1+β)

)
.
|D|

1+p
1+β

σ2p ,

it follows that

T5,|D|,λ . max
{
|D|−

r
1+β ,

|D|
p+1
1+β

σ2p

}
.

Then, for T6,|D|,λ,

T6,|D|,λ = ‖gρ‖L2
ρXµ

λmin{r,1} = ‖gρ‖L2
ρXµ

|D|−
r

1+β . |D|−
r

1+β .

Finally, combining above estimates for T1,|D|,λ ∼ T6,|D|,λ yields

E
[∥∥fσ

D̂,λ
− fρ

∥∥
L2
ρXµ

]
= O

(
max

{
|D|−

r
1+β ,

|D|
p+1
1+β

σ2p

})
, r ∈ (0, 1/2).

4.2 Learning rates for r ∈ [1/2, 1]
When r ∈ [1/2, 1], (4.1) implies ‖fλ‖K ≤ κ2r−1‖gρ‖L2

ρXµ

, r ∈ [1/2, 1]. Before estimating the terms

in (??), when λ = |D|−
1

2r+β , d = |D|
1+2r

α(2r+β) , we derive the following basic estimates at first. After
substituting λ and d, we have

1
λ

1
2 d

α
2

= |D|−
r

2r+β ,
1

λd
α
2

= |D|
1

2r+β |D|−
1+2r

2(2r+β) = |D|
1−2r

2(2r+β) ≤ 1.

Use the condition N (λ) ≤ C0λ−β , β ∈ (0, 1], it follows that

A|D|,λ = 2κ√
|D|

( κ√
|D|λ

+
√
N (λ)

)
≤ 2κ(κ+

√
C0)|D|−

r
2r+β . |D|−

r
2r+β .

and
Â|D|,λ =

A|D|,λ√
λ

+ 1 = 2κ√
|D|λ

( κ√
|D|λ

+
√
N (λ)

)
+ 1 ≤ 2κ(κ+

√
C0) + 1.
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In a same way with estimate of above A|D|,λ, Â|D|,λ, we have

A′|D|,λ . |D|−
r

2r+β and
A′|D|,λ√

λ
≤ 1
|D|λ

+
√
N (λ)√
|D|λ

≤ 1 +
√
C0.

With above basic estimates, we can estimate main terms in (??) in Theorem 3 to derive the learning
rates of RDR when r ∈ [1/2, 1]. Since Â|D|,λ . 1, Â|D|,λ − 1 . 1 and A

′
|D|,λ√
λ

. 1, it follows that

T1,|D|,λ =
( 1
λd

α
2
Â2
|D|,λ + Â|D|,λ

) 1
λ

1
2 d

α
2
. |D|−

r
2r+β .

Also,

T2,|D|,λ = 1
λ

1
2 d

α
2

1
λd

α
2

(Â2
|D|,λ + Â|D|,λ)

[
Â2
|D|,λ

A′|D|,λ√
λ

+ Â|D|,λ(Â|D|,λ − 1)‖fλ‖K

+Â|D|,λσ−2p(λ−(p+ 3
2 ) + λ−1) + ‖fλ‖K

]
. |D|−

r
2r+β + |D|

( 3
2 +p)−r
2r+β

σ2p + |D|
1−r

2r+β

σ2p

. max
{
|D|−

r
2r+β ,

|D|( 3
2−r)+p

σ2p

}
,

in which the last inequality follows from the fact 3
2 + p > 1. For T3,|D|,λ, we have

T3,|D|,λ = 1
λ

1
2 d

α
2

( 1
λd

α
2

+1)σ−2p(λ−(p+ 3
2 )+λ−1)(Â2

|D|,λ+Â|D|,λ) . max
{ |D| 3

2 +p−r
2r+β

σ2p ,
|D|

1−r
2r+β

σ2p

}
.
|D|

3
2 +p−r
2r+β

σ2p .

Also, for T4,|D|,λ, we have

T4,|D|,λ = Â|D|,λσ−2p(λ−(p+1)+λ−1/2) . σ−2p
(
|D|

p+1
2r+β +|D|

1
2 ( 1

2r+β )
)
.
|D|

p+1
2r+β

σ2p (since p+1 > 1
2).

On the other hand, since
Â2
|D|,λA

′
|D|,λ . |D|−

r
2r+β ,

Â|D|,λA|D|,λ‖fλ‖K ≤ Â|D|,λA|D|,λκ2r−1‖gρ‖L2
ρXµ

. |D|−
r

2r+β ,

Â|D|,λ
1√
λ
σ−2p(λ−(p+ 1

2 ) + 1) . |D|
p+1

2r+β

σ2p + |D|
1
2 ( 1

2r+β )

σ2p .
|D|

p+1
2r+β

σ2p ,

Therefore, we have

T5,|D|,λ . |D|−
r

2r+β + |D|
p+1

2r+β

σ2p . max{|D|−
r

2r+β ,
|D|

p+1
2r+β

σ2p }.

Also, T6,|D|,λ is estimated as follow

T6,|D|,λ = ‖gρ‖L2
ρXµ

λmin{r,1} = ‖gρ‖L2
ρXµ

λr . |D|−
r

2r+β .

Now combining above estimates for the main terms T1,|D|,λ ∼ T6,|D|,λ, noting the fact that when
r ∈ [1/2, 1], 3

2 − r ≤ 1 and

|D|
3
2 +p−r
2r+β /σ2p ≤ |D|

1+p
2r+β /σ2p,

we finally have

E
[∥∥fσ

D̂,λ
− fρ

∥∥
L2
ρXµ

]
= O

(
max

{
|D|−

r
2r+β ,

|D|
1+p

2r+β

σ2p

})
, r ∈ [1/2, 1].
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4.3 Learning rates for r ∈ (1,∞)
When r ∈ (0,∞), (4.1) implies ‖fλ‖K ≤ κ2r−1‖gρ‖L2

ρXµ

, r > 1. After taking λ = |D|−
1

2+β ,

d = |D|
1
α ( 3

2+β ), we start with following basic estimates:

1
λ

1
2 d

α
2
≤ |D|

1
2(2+β) |D|−

3
2(2+β) = |D|−

1
2+β ,

1
λd

α
2
≤ |D|

1
2+β |D|−

3
2(2+β) = |D|

2
2(2+β)−

3
2(2+β) = |D|−

1
2(2+β) < 1.

Since N (λ) ≤ C0λ−β , β ∈ (0, 1], it follows that

A′|D|,λ = 1
|D|
√
λ

+
√
N (λ)√
|D|

≤ (1 +
√
C0) λ

− β2√
|D|

( 1√
|D|

λ
β−1

2 + 1
)
.

When λ = |D|−
1

2+β , 1√
|D|
λ
β−1

2 = |D|− 1
2 |D|

1−β
2

1
2+β = |D|−

2β+1
2(2+β) < 1 and λ−

β
2√
|D|

= |D|
β

2(2+β)−
1
2 =

|D|
β−2−β
2(2+β) = |D|−

1
2+β , hence we have

A′|D|,λ . |D|−
1

2+β , same way implies A|D|,λ . |D|−
1

2+β .

Also,
A′|D|,λ√

λ
≤ (1 +

√
C0) |D|

− 1
2+β

|D|−
1

2(2+β)
≤ (1 +

√
C0)|D|−

1
2(2+β) ≤ 1 +

√
C0.

Same way implies
A|D|,λ√

λ
≤ 1 +

√
C0.

Now based on above estimates, note that Â|D|,λ . 1, Â|D|,λ−1 . 1 and A
′
|D|,λ√
λ

. 1, we can estimate
T1,|D|,λ ∼ T6,|D|,λ as follows,

T1,|D|,λ =
( 1
λd

α
2
Â2
|D|,λ + Â2

|D|,λ

) 1
λ

1
2 d

α
2
. |D|−

1
2+β .

For T2,|D|,λ, since

(i) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)Â2

|D|,λ
A′|D|,λ√

λ
. |D|−

1
2+β ,

(ii) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)

[
Â|D|,λ(Â|D|,λ − 1)‖fλ‖K + ‖fλ‖K

]
. |D|−

1
2+β .

(iii) 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)(Â2
|D|,λ + Â|D|,λ)Â|D|,λσ−2p(λ−(p+ 3

2 ) + λ−1)

. σ−2p
(
|D|

p+ 3
2−1

2+β + 1
)
.
|D|

p+ 1
2

2+β

σ2p ,

it follows that

T2,|D|,λ . max
{
|D|−

1
2+β ,

|D|
p+ 1

2
2+β

σ2p

}
.
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Same reason with (iii) implies

T3,|D|,λ = 1
λ

1
2 d

α
2

( 1
λd

α
2

+ 1)σ−2p(λ−(p+ 3
2 ) + λ−1)(Â2

|D|,λ + Â|D|,λ) . |D|
p+ 1

2
2+β

σ2p .

For T4,|D|,λ, we have

T4,|D|,λ = Â|D|,λσ−2p(λ−(p+1) + λ−1/2) . σ−2p
(
|D|

p+1
2+β + |D|

1
2(2+β)

)
.
|D|

p+1
2+β

σ2p .

Also, since
Â2
|D|,λA

′
|D|,λ . |D|−

1
2+β ,

Â2
|D|,λA|D|,λ‖fλ‖K ≤ Â

2
|D|,λA|D|,λκ

2r−1‖gρ‖L2
ρXµ

. A|D|,λ . |D|−
1

2+β ,

Â|D|,λ
1√
λ
σ−2p(λ−(p+ 1

2 )+1) . 1√
λ
σ−2p(λ−(p+ 1

2 )+1) . σ−2p(|D|
p+1
2+β +|D|

1
2(2+β) ) . |D|

p+1
2+β

σ2p , (4.2)

it follows that

T5,|D|,λ . max
{
|D|−

1
2+β ,

|D|
p+1
2+β

σ2p

}
.

Finally, since r > 1, we have

T6,|D|,λ = ‖gρ‖L2
ρXµ

λmin{r,1} = ‖gρ‖L2
ρXµ

λ1 = ‖gρ‖L2
ρXµ

· |D|−
1

2+β . |D|−
1

2+β .

Combining above estimates for T1,|D|,λ ∼ T6,|D|,λ, we obtain

E
[∥∥fσ

D̂,λ
− fρ

∥∥
L2
ρXµ

]
= O

(
max

{
|D|−

1
2+β ,

|D|
p+1
2+β

σ2p

})
. (4.3)

Now it is ready to provide proof for Corollary 1.

4.4 Proof of Corollary 1
Proof. The proof is obvious after using Theorem 1 and noting the fact that, if

σ ≥


|D|

p+1+r
2p(1+β) , r ∈ (0, 1/2);

|D|
p+1+r

2p(2r+β) , r ∈ [1/2, 1];
|D|

p+1+r
2p(2+β) , r ∈ (1,∞),

(4.4)

then

|D|−
r

1+β ≥ |D|
p+1
1+β

σ2p , r ∈ (0, 1/2);

|D|−
r

2r+β ≥ |D|
p+1

2r+β

σ2p , r ∈ [1/2, 1];

|D|−
r

2+β ≥ |D|
p+1
2+β

σ2p , r ∈ (1,∞).
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4.5 Proof of Theorem 2
Proof. It follows from Fang et al. [12] that the least square distribution regressor has the form

f ls
D̂,λ

= (λI + LK,D̂)−1ŜTDy.

With the representation of fσ
D̂,λ

in Lemma 1, we have

‖fσ
D̂,λ
− f ls

D̂,λ
‖L2

ρXµ

= ‖(λI + LK,D̂)−1ED̂,λ,σ‖L2
ρXµ

= ‖L1/2
K (λI + LK,D̂)−1ED̂,λ,σ‖K

≤ ‖L1/2
K (λI + LK,D̂)−1‖‖ED̂,λ,σ‖K .

Use Lemma 4 and take expectation on both sides of above inequality, it follows that

E
[∥∥fσ

D̂,λ
− f ls

D̂,λ

∥∥
L2
ρXµ

]
≤ 22pcpκσ

−2p
[
κ2p+1(

√
CVM)2p+1λ−(p+ 1

2 ) +M2p+1
]
Ez|D|

[{
Exd,|D||z|D| [‖L

1/2
K (λI + LK,D̂)−1‖2]

}1/2
]

≤ 22pcpκσ
−2p
[
κ2p+1(

√
CVM)2p+1λ−(p+ 1

2 ) +M2p+1
]

·

[(√
2λ− 3

2κ(2 +
√
π) 1

2L
2α+2

2 B
α
2
k

d
α
2

)
Ez|D| [C|D|,λ] +

√
2λ−1/2Ez|D| [C

1/2
|D|,λ]

]
,

in which the first inequality follows from the basic fact that Exd,|D||z|D| [‖L
1/2
K (λI + LK,D̂)−1‖]

}
≤{

Exd,|D||z|D| [‖L
1/2
K (λI + LK,D̂)−1‖2]

}1/2
, the second inequality follows from Lemma 7. After using

Lemma 6 to C|D|,λ and taking out corresponding coefficients by setting

C̃ = 22pcpκ[κ2p+1(
√
CVM)2p+1+M2p+1]

{√
2(2+

√
π) 1

2L2
α+2

2 B
α
2
k (2Γ(3)+log2 2)+

√
2(2Γ(2)+log 2)

}
,

(4.5)
we arrive at

E
[∥∥fσ

D̂,λ
− f ls

D̂,λ

∥∥
L2
ρXµ

]
≤ C̃

(λ−(p+ 1
2 ) + 1)(λ− 3

2 d−
α
2 Â2
|D|,λ + λ−

1
2 Â|D|,λ)

σ2p ,

which completes the proof.

4.6 Proof of Corollary 2
Proof. For any given λ > 0, note that

lim
|D|→∞

A|D|,λ = 2κ√
|D|

(
κ√
|D|λ

+
√
N (λ)

)
= 0,

then it follows that
lim
|D|→∞

Â|D|,λ = lim
|D|→∞

(A|D|,λ√
λ

+ 1
)

= 1, (4.6)

and
lim |D|→∞

d→∞
d−

α
2 Â2
|D|,λ = 0. (4.7)
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From Theorem 2, we have known that

E
[∥∥fσ

D̂,λ
− f ls

D̂,λ

∥∥
L2
ρXµ

]
≤ C̃

(λ−(p+ 1
2 ) + 1)(λ− 3

2 d−
α
2 Â2
|D|,λ + λ−

1
2 Â|D|,λ)

σ2p .

By taking upper limit with respect to |D|→∞d→∞ on above inequality and using (4.6) and (4.7), we
obtain

lim |D|→∞
d→∞

E
[∥∥fσ

D̂,λ
− f ls

D̂,λ

∥∥
L2
ρXµ

]
≤ C̃ (λ−(p+1) + λ−

1
2 )

σ2p ,

which completes the proof.

5 Numerical Experiments
In this section, we implement numerical experiments for our proposed regularized RDR scheme
with some robust loss functions realized by appropriately chosen window functions V , such as
Cauchy loss, Huber loss and Fair loss, and compare them with the regularized least square DR
scheme to demonstrate the robustness of RDR scheme to outliers. In this experiment, we utilize the
iteratively re-weighted least squares algorithm to solve the optimization problem and concatenated
cross validation method to select best hayperparameters for a certain loss function.

5.1 Experiment Setup
We compare our regularized RDR algorithm (1.2) with the regularized least square DR algorithm
(1.1) on a benchmark problem from [30], which aims at learning the entropy of Gaussian distributions.
We first choose a random matrix M ∈ R2×2, where each entry Mi,j is uniformly distributed on
[0, 1] (Mi,j ∼ U [0, 1]). For the first stage, we generate 200 sample sets from {N(0,Σs)}200

s=1, where
the covariance matrix Σs = R(αs)MMTR(αs)T , and R(αs) is the 2d rotation matrix with angle
αs ∼ U [0, π]. For the second stage, we sample 100 2d points i.i.d. from each N(0,Σs). The target
function is the entropy of the first marginal distribution: Y = 1

2 ln(2πe(Σs)1,1). Then we use 100
sample sets for training and another 100 sample sets for the test.

5.2 Algorithms
According to the representor theorem, the solution of (1.2) can be represented by

fσ
D̂,λ

(x) =
|D|∑
i=1

αD̂,iK(µx, µx̂i) + bD̂, x ∈M1(F),

where αD̂ = (αD̂,1, αD̂,2, . . . , αD̂,|D|)T ∈ R|D| and bD̂ ∈ R are learned parameters from data D̂. In
this experiment, we choose K to be the Gaussian kernel with the bandwidth parameter h > 0.

Since the regularized RDR scheme (1.2) is essentially a regularized M-estimation problem, we
use the iteratively re-weighted least square (IRLS) algorithm to solve it, the pseudo code of which
is shown in Algorithm 1.

Then we utilize the Concatenated Cross Validation (CCV) algorithm for the model selection
problem of our proposed regularized RDR estimator of a specific robust loss function, which means
how to select the hyperparameters in our model, i.e., the scaling parameter σ of the loss, the
regularization parameter λ and the Gaussian kernel bandwidth h.

In the process of implementing cross-validation method, we need to specify a proper error
criterion for the certain loss function lσ. Since we focus on learning robust estimators, the least
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Algorithm 1 IRLS Algorithm for Solving (1.2)

Input: data D̂ = {({xi,s}dis=1, yi)}
|D|
i=1, regularization parameter λ > 0, Gaussian kernel bandwidth

h > 0, scale parameter σ > 0, and the initial guess α0 = 0 ∈ R|D|, b0 = 0 ∈ R.
Output: the learned coefficients α and b.

Calculate the gram matrix K = [K(µx̂i , µx̂j )] ∈ R|D|×|D|, and set initial weight wi = 1,
(α1, b1) = arg minα∈R|D|,b∈R

∑|D|
i=1 wi(yi −KT

i α− b)2 + λαTα,
while |(α1, b1)− (α0, b0)| > err do

α0 = α1, b0 = b1,
Set weight wi = |∇lσ(yi−KT

i α0−b0)|
σ2|yi−KT

i
α0−b0|

,

(α1, b1) = arg minα∈R|D|,b∈R
∑|D|
i=1 wi(yi −KT

i α− b)2 + λαTα,
return α1, b1

square loss is not suitable for our algorithm. Notice that the Empirical Risk Minimization (ERM)
algorithm of the loss function lσ is actually

arg min
f∈HK

1
|D|

|D|∑
i=1

lσ(f(µx̂i)− yi),

whereK is the Gaussian kernel in this experiment. The error criterion we choose in our CCV algorith-
m is exactly the loss function in the above ERM approach. Specifically, denote {({xi,s}dis=1, yi)}mi=1
as the validation set, and {ŷi,σ,λ,h}mi=1 as the estimated values calculated by the IRLS algorithm
for the specific scaling parameter σ, regularization parameter λ and Gaussian kernel bandwidth
parameter h, the CCV algorithm for selecting the best hyperparameters is shown in Algorithm 2
which consists of three steps for the selection of the scaling parameter σ, in each step, the best σ
value is selected according to the ERM approach based on the best σ value selected in the last step.

Algorithm 2 CCV algorithm for selecting the best hyperparameters
Input: data D̂ = {({xi,s}dis=1, yi)}

|D|
i=1, initial scaling parameter σ0 > 0.

Output: the best hyperparameters σ, λ and h.
Step 1: (σ1, λ1, h1) = arg minσ,λ,h 1

m

∑m
i=1 lσ0(yi − ŷi,σ,λ,h),

Step 2: (σ2, λ2, h2) = arg minσ,λ,h 1
m

∑m
i=1 lσ1(yi − ŷi,σ,λ,h),

Step 3: (σ3, λ3, h3) = arg minσ,λ,h 1
m

∑m
i=1 lσ2(yi − ŷi,σ,λ,h),

return σ3, λ3, h3

5.3 Numerical Results
In this section, we demonstrate the numerical results of our experiment. We implement the
algorithms in section 5.2 to learn the best estimators for Cauchy loss, Huber loss, Fair loss and
Least Square loss respectively on two datasets, the first dataset is exactly generated according to
section 5.1, the second dataset is just based on the first dataset except replacing several points in
the training set by the random outliers. We can observe from Figure 1 that the learned estimators
of all of four losses learn quite well for the first dataset which doesn’t include noise, and the learned
estimator of Least Square loss can even learn somehow better; In the case of the second dataset
which includes outliers, the learned estimator of Least Square loss is highly influenced by the
outliers and doesn’t learn well comparing with the true function, whereas the learned estimators of
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Figure 1: The learned entropy of the first marginal distribution of a rotated 2d Gaussian w.r.t. the
rotation angle for Least Square loss, Cauchy loss, Huber loss and Fair loss on noise-free data (left)
and data with outliers (right).

the robust losses, i.e. Cauchy loss, Huber loss and Fair loss still learn as well as that learned from
noise-free data ignoring the influence of the outliers. Such numerical results actually demonstrate
the robustness of our regularized RDR scheme with respect to the outliers.
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Appendix
This appendix provides detailed proofs of the representations and estimates stated in Section 3.

A Representations and norm estimates with integral oper-
ators

This part derives representations of the estimators in terms of integral operators and provides
related lemmas concerning their norms. We first prove Lemma 1.

20



Proof of Lemma 1. Taking the Fréchet derivative of the regularized functional in (1.2) yields

1
|D|

|D|∑
i=1

V ′
( [fσ

D̂,λ
(µx̂i)− yi]2

σ2

)
(fσ
D̂,λ

(µx̂i)− yi)Kµx̂i
+ λfσ

D̂,λ
= 0. (A.1)

It follows that

1
|D|

|D|∑
i=1

[
V ′
( [fσ

D̂,λ
(µx̂i)− yi]2

σ2

)
− V ′(0)

]
(fσ
D̂,λ

(µx̂i)− yi)Kµx̂i

+V ′(0) 1
|D|

|D|∑
i=1

(fσ
D̂,λ

(µx̂i)− yi)Kµx̂i
+ λfσ

D̂,λ
= 0.

Substituting the representation of ED̂,λ,σ and using the definitions of LK,D̂ and ŜTDy together with
the normalization condition V ′(0) = 1, we find

ED̂,λ,σ + [LK,D̂f
σ
D̂,λ
− ŜTDy] + λfσ

D̂,λ
= 0.

Namely,
(λI + LK,D̂)fσ

D̂,λ
− ŜTDy + ED̂,λ,σ = 0.

Hence we have the first representation (3.6). The second one follows immediately after replacing D̂
by D in the above procedure.

In the following, we use Ez|D| [·] to denote the expectation w.r.t. z|D| = {zi = (µxi , yi)}
|D|
i=1.

Use Exd,|D||z|D| to denote the conditional expectation w.r.t. sample
{
{xi,s}dis=1

}|D|
i=1 conditioned on

{z1, z2, ..., z|D|}. Namely

Ez|D| [·] := E{(µxi ,yi)}|D|i=1
[·], Exd,|D||z|D| [·] := E

{{xi,s}
di
s=1}

|D|
i=1

∣∣{zi}|D|i=1
[·].

The following lemma found in [12] will be used for dealing with approximations of integral operators.

Lemma 2. Suppose the boundedness condition (2.1) of kernels k and K and (α,L)-Hölder continuity
condition (2.2) holds for K. If d1 = d2 = · · · = d|D| = d, then

{
Exd,|D||z|D|

[∥∥ŜTDy − STDy∥∥2
K

]} 1
2 ≤ (2 +

√
π) 1

2ML
2α2 B

α
2
k

d
α
2

,{
Exd,|D||z|D|

[∥∥LK,D̂ − LK,D∥∥2
]} 1

2 ≤ B
1
2
KL(2 +

√
π) 1

2
2α+2

2 B
α
2
k

d
α
2

.

The RKHS norms of fσ
D̂,λ

and fσD,λ can be bounded as follows.

Lemma 3. Assume the smoothness condition (2.7) for V and |y| ≤M almost surely, then

‖fσ
D̂,λ
‖K ≤

√
CVMλ−1/2, (A.2)

and
‖fσD,λ‖K ≤

√
CVMλ−1/2. (A.3)
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Proof. Denote

ED̂,σ(f) = σ2

|D|

|D|∑
i=1

V
( [f(µx̂i)− yi]2

σ2

)
. (A.4)

According to the definition of fσ
D̂,λ

in (1.2), we have

ED̂,σ(fσ
D̂,λ

) + λ‖fσ
D̂,λ
‖2K ≤ ED̂,σ(0). (A.5)

Note that V ′(s) > 0 for s > 0. Then V (s) ≥ V (0) for s ≥ 0 which implies ED̂,σ(fσ
D̂,λ

) ≥ σ2V (0). It
follows that

λ‖fσ
D̂,λ
‖2K ≤ ED̂,σ(0)− ED̂,σ(fσ

D̂,λ
) ≤ σ2

|D|

|D|∑
i=1

V ( |y|
2
i

σ2 )− σ2V (0)

≤ σ2

|D|

|D|∑
i=1

[
V ( |yi|

2

σ2 )− V (0)
]
≤ CV σ

2

|D|

|D|∑
i=1

|yi|2

σ2 ≤ CVM
2.

Hence, we have ‖fσ
D̂,λ
‖K ≤

√
CVMλ−1/2. The same procedure with D̂ replaced by D and µx̂i

replaced by µxi implies ‖fσD,λ‖K ≤
√
CVMλ−1/2.

The following lemma provides upper bounds for the RKHS norms of the quantities ED,λ,σ and
ED̂,λ,σ.

Lemma 4. Assume |y| ≤M almost surely. Under the smoothness condition (2.6) for V , the norms
of ED,λ,σ and ED̂,λ,σ can be bounded as

‖ED̂,λ,σ‖K , ‖ED,λ,σ‖K ≤ 22pcp
√
BKσ

−2p
[
B
p+1/2
K (

√
CVM)2p+1λ−(p+ 1

2 ) +M2p+1
]
. (A.6)

Proof. According to the smoothness condition (2.6) for V , we have

‖ED̂,λ,σ‖K ≤ 1
|D|

|D|∑
i=1

∣∣∣V ′( [fσ
D̂,λ

(µx̂i)− yi]2

σ2

)
− V ′(0)

∣∣∣|fσ
D̂,λ

(µx̂i)− yi| · ‖Kµx̂i
‖K

≤ κcpσ
−2p

|D|

|D|∑
i=1

(
‖fσ
D̂,λ
‖∞ + |yi|

)2p+1
.

But ‖fσ
D̂,λ
‖∞ ≤

√
BK‖fσD̂,λ‖K by the reproducing property of the Mercer kernel K. Then we can

apply Lemma 3 and see that

‖ED̂,λ,σ‖K ≤ cp
√
BKσ

−2p
(√

BK‖fσD̂,λ‖K +M
)2p+1

≤ 22pcp
√
BKσ

−2p[Bp+1/2
K (

√
CVM)2p+1λ−(p+ 1

2 ) +M2p+1].

The proof for the bound of ‖ED,λ,σ‖K is the same.

The following lemma with a standard proof is needed in our analysis.
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Lemma 5. Let a sample D be drawn independently according to a Borel probability measure ρ and
Φ : R+ → R+ be a positive continuous function. If for some m ∈ N+, a positive random variable
X|D|,λ ≥ 0 satisfies X|D|,λ ≤ Φ(A|D|,λ) logm 2

δ with probability at least 1− δ for any δ ∈ (0, 1), then

E
[
Xs
|D|,λ

]
≤
(
2Γ(ms+ 1) + (log 2)ms

)
Φ(A|D|,λ)s, ∀s ≥ 1.

The same result holds when A|D|,λ is replaced by A′|D|,λ.
Proof. The condition implies that, for 0 < δ < 2,

Prob
{
X|D|,λ ≤ Φ(A|D|,λ) logm 4

δ

}
≥ 1− δ

2 . (A.7)

Make a variable change γ = Φ(A|D|,λ)s logms 4
δ . It follows that γ 1

s = Φ(A|D|,λ)
(
log 4

δ

)m and
δ
2 = 2 exp{−γ 1

ms /Φ(A|D|,λ)1/m}. Note that for γ > Φ(A|D|,λ)s logms 2, the random variable
ξ = Xs

|D|,λ satisfies

Prob
{
ξ > γ

}
= Prob

{
ξ1/s > γ1/s

}
≤ δ

2 = 2 exp
{
− γ1/ms

Φ(A|D|,λ)1/m

}
.

Then by using the formula E[ξ] =
∫∞

0 Prob(ξ > γ)dγ, we have

E
[
ξ
]

=
∫ Φ(A|D|,λ)s logms 2

0
Prob(ξ > γ)dγ +

∫ ∞
Φ(A|D|,λ)s logms 2

Prob(ξ > γ)dγ

≤ Φ(A|D|,λ)s logms 2 +
∫ ∞

Φ(A|D|,λ)s logms 2
2 exp

{
− γ1/ms

Φ(A|D|,λ)1/m

}
dγ.

With a simple variable change γ = Φ(A|D|,λ)sxms, we see that the integral in above second term
equals

2msΦ(A|D|,λ)s
∫ ∞

log 2
xms−1e−xdx ≤ 2Γ(ms+ 1)Φ(A|D|,λ)s,

which completes the proof for the bound in terms of A|D|,λ. Using the same procedures with
A|D|,λ replaced by A′|D|,λ, we known the inequality holds with A|D|,λ replaced by A′|D|,λ.

In our error analysis with an integral operator approach, we need

B|D|,λ = ‖(λI + LK)− 1
2 (STDy − LKfρ)‖K , (A.8)

C|D|,λ = ‖(λI + LK)(λI + LK,D)−1‖, (A.9)

D|D|,λ = ‖(λI + LK)− 1
2 (LK − LK,D)‖. (A.10)

Probabilistic bounds for these quantities can be found in [3, 20, 22] which together with Lemma 5
applied to the functions Φ1(x) = 2M(κ+1)

κ x, Φ2(x) =
(
x√
λ

+ 1
)2

, and Φ3(x) = 2x give the following
bounds in expectations.
Lemma 6. For any s ≥ 0, the quantities B|D|,λ, C|D|,λ and D|D|,λ defined by (A.8), (A.9) and
(A.10) satisfy

E[Bs|D|,λ] ≤ (2Γ(s+ 1) + logs 2)
(2M(κ+ 1)

κ
A′|D|,λ

)s
,

E[Cs|D|,λ] ≤ (2Γ(2s+ 1) + log2s 2)Â2s
|D|,λ,

E[Ds|D|,λ] ≤ (2Γ(s+ 1) + logs 2)
(

2A|D|,λ
)s
.
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B Bounding the error involving the scaling parameter
With the above preparation, we can now prove Proposition 1 for estimating the error term
E
[
‖fσD,λ − fλ‖L2

ρXµ

]
.

Proof of Proposition 1. Note that ‖g‖L2
ρXµ

= ‖L1/2
K g‖K for any g ∈ L2

ρXµ
. Then we know that∥∥∥(λI + LK)1/2g

∥∥∥
K
≥
∥∥∥L1/2

K g
∥∥∥
K

= ‖g‖L2
ρXµ

and for g ∈ HK , ∥∥∥(λI + LK)1/2g
∥∥∥
K
≥ λ1/2 ‖g‖K .

In particular,

max{‖fσD,λ − fλ‖L2
ρXµ

,
√
λ‖fσD,λ − fλ‖K} ≤ ‖(λI + LK)1/2 (fσD,λ − fλ) ‖K .

Applying the expression (3.11) for fσD,λ−fλ to the above bound and denoting Q := (STDy−LKfρ) +
(LK − LK,D)fλ, we know that max{‖fσD,λ − fλ‖L2

ρXµ

,
√
λ‖fσD,λ − fλ‖K} is bounded by

‖(λI + LK)1/2(λI + LK,D)−1/2(λI + LK,D)−1/2Q‖K + ‖(λI + LK)1/2(λI + LK,D)−1ED,λ,σ‖K .

Inserting (λI + LK)1/2(λI + LK)−1/2 in the middle, we see that the first term can be further
bounded by

‖(λI + LK)1/2(λI + LK,D)−1/2‖ ‖(λI + LK,D)−1/2(λI + LK)1/2‖ ‖(λI + LK)−1/2Q‖K
+‖(λI + LK)1/2(λI + LK,D)−1/2‖‖(λI + LK,D)−1/2ED,λ,σ‖K .

The first two operator norms above can be bounded by C1/2
|D|,λ due to the identity ‖T s1T s2 ‖ ≤

‖T1T2‖s valid for any s ∈ (0, 1] and positive self-adjoint operators T1, T2. Thus, in terms of the
notations B|D|,λ,D|D|,λ defined in (A.8) and (A.10) for the norms of (λI + LK)− 1

2 (STDy − LKfρ)
and (λI + LK)− 1

2 (LK − LK,D), noting the fact ‖(λI + LK,D)−1/2‖ ≤ λ−1/2, we have

max{‖fσD,λ − fλ‖L2
ρXµ

,
√
λ‖fσD,λ − fλ‖K}

≤ C|D|,λB|D|,λ + C|D|,λD|D|,λ‖fλ‖K + C1/2
|D|,λ

1√
λ
‖ED,λ,σ‖K . (B.1)

Taking expectations and using the Schwarz inequality, we know that E
[
‖fσD,λ − fλ‖L2

ρXµ

]
can be

bounded by{
E[C2
|D|,λ]

} 1
2
{
E[B2

|D|,λ]
} 1

2 +
{
E[C2
|D|,λ]

} 1
2
{
E[D2

|D|,λ]
} 1

2 ‖fλ‖K+
{
E[C|D|,λ]

} 1
2 1√

λ

{
E[‖ED,λ,σ‖2K ]

} 1
2
.

At the end, we apply Lemmas 4 and 6 and know that the desired bound for E
[
‖fσD,λ − fλ‖L2

ρXµ

]
holds true. The proof of Proposition 1 is complete.
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C Bounding the error involving the second-stage sampling
This part aims at proving Proposition 2 for estimating the norm

∥∥fσ
D̂,λ
− fσD,λ

∥∥
L2
ρXµ

of the error

term involving the second-stage sampling. To this end, we need basic estimates for the norm
Ez|D|

[
‖fσD,λ‖2K

]
and the operator norm ‖L1/2

K (λI + LK,D̂)−1‖.

Proposition 3. Assume |y| ≤M almost surely. Under the smoothness condition (2.6) for V , there
holds {

E
[
‖fσD,λ‖2K

]}1/2
≤ 2Cp,κ,CV ,M

(A|D|,λ√
λ

+ 1
)2
(
A′|D|,λ√

λ
+
A|D|,λ√

λ
‖fλ‖K

)

+2Cp,κ,CV ,M
(A|D|,λ√

λ
+ 1
)
σ−2p(λ−(p+ 3

2 ) + λ−1) + 2‖fλ‖K ,

where Cp,κ,CV ,M is the constant given in the statement of Proposition 1

Proof. By (B.1), we have

‖fσD,λ − fλ‖K ≤
1√
λ
C|D|,λB|D|,λ + 1√

λ
C|D|,λD|D|,λ‖fλ‖K + 1√

λ
C1/2
|D|,λ

1√
λ
‖ED,λ,σ‖K .

Combining this with the triangle inequality ‖fσD,λ‖K ≤ ‖fσD,λ − fλ‖K + ‖fλ‖K yields

‖fσD,λ‖K ≤
1√
λ
C|D|,λB|D|,λ + 1√

λ
C|D|,λD|D|,λ‖fλ‖K + 1√

λ
C1/2
|D|,λ

1√
λ
e(λ) + ‖fλ‖K ,

where we have denoted the right-hand side of the error bound (A.6) for ‖ED,λ,σ‖K by e(λ). It
follows that

‖fσD,λ‖2K ≤
4
λ

{
C2
|D|,λB

2
|D|,λ + C2

|D|,λD
2
|D|,λ‖fλ‖

2
K + C|D|,λ

1
λ
e(λ)2

}
+ 4‖fλ‖2K .

Taking expectations tells us that E
[
‖fσD,λ‖2K

]
can be bounded by

4
λ

({
E
[
C4
|D|,λ

]}1/2{
E
[
B4
|D|,λ

]}1/2
+
{
E
[
C4
|D|,λ

]}1/2{
E
[
D4
|D|,λ

]}1/2
‖fλ‖2K

+
{
E
[
C|D|,λ

]} 1
λ
e(λ)2

)
+ 4‖fλ‖2K .

Hence {
E
[
‖fσD,λ‖2K

]}1/2
≤ 2√

λ

{
E
[
C4
|D|,λ

]}1/4{
E
[
B4
|D|,λ

]}1/4

+ 2√
λ

{
E
[
C4
|D|,λ

]}1/4{
E
[
D4
|D|,λ

]}1/4
‖fλ‖K

+ 2√
λ

{
E
[
C|D|,λ

]}1/2 1√
λ
e(λ) + 2‖fλ‖K .

Then the desired bound for E
[
‖fσD,λ‖2K

]}1/2
follows from Lemma 6 with the constant Cp,κ,CV ,M

given in Proposition 1. The proof of the proposition is complete.
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Lemma 7. Suppose the boundedness condition (2.1) of kernels k and K and (α,L)-Hölder continuity
condition (2.2) holds for K. If d1 = d2 = · · · = d|D| = d, then

{
Exd,|D||z|D| [‖L

1/2
K (λI+LK,D̂)−1‖2]

}1/2
≤
(√

2λ− 3
2
√
BK(2+

√
π) 1

2L
2α+2

2 B
α
2
k

d
α
2

)
C|D|,λ+

√
2λ−1/2C1/2

|D|,λ.

Proof. Write (λI + LK,D̂)−1 as
{

(λI + LK,D̂)−1 − (λI + LK,D)−1
}

+ (λI + LK,D)−1 and identify{
(λI + LK,D̂)−1 − (λI + LK,D)−1

}
with (λI+LK,D)−1

{
LK,D − LK,D̂

}
(λI+LK,D̂)−1. We follow

the same procedure as in the proof of Proposition 1 and know that ‖L1/2
K (λI + LK,D̂)−1‖ can be

bounded by

‖(λI + LK)1/2(λI + LK,D)−1/2‖ ‖(λI + LK,D)−1/2(λI + LK)1/2‖
‖(λI + LK)−1/2(LK,D − LK,D̂)(λI + LK,D̂)−1‖

+‖(λI + LK)1/2(λI + LK,D)−1/2‖ ‖(λI + LK,D)−1/2‖

≤ C|D|,λλ−1/2λ−1‖LK,D − LK,D̂‖+ λ−1/2C1/2
|D|,λ,

It follows that

‖L1/2
K (λI + LK,D̂)−1‖2 ≤ 2λ−3C2

|D|,λ‖LK,D − LK,D̂‖
2 + 2λ−1C|D|,λ.

Taking expectations and applying Lemma 2 verifies the desired bound. This completes the proof.

We are in a position to prove Proposition 2.

Proof of Proposition 2. Based on the representations (3.6) and (3.7), we can decompose the differ-
ence fσ

D̂,λ
− fσD,λ as I1 − I2 where

I1 = (λI + LK,D̂)−1ŜTDy − (λI + LK,D)−1STDy, (C.1)
I2 = (λI + LK,D̂)−1ED̂,λ,σ − (λI + LK,D)−1ED,λ,σ. (C.2)

Then E[‖fσ
D̂,λ
− fσD,λ‖L2

ρXµ

] ≤ E[‖I1‖L2
ρXµ

] + E[‖I2‖L2
ρXµ

] and we estimate the two terms in the
following.

To estimate E[‖I1‖L2
ρXµ

] = E[‖L1/2
K I1‖2K ], we decompose L1/2

K I1 further as

L
1/2
K I1 = (λI + LK,D̂)−1(ŜTDy − STDy) +

[
(λI + LK,D̂)−1 − (λI + LK,D)−1

]
STDy

= L
1/2
K (λI + LK,D̂)−1(ŜTDy − STDy)

+L1/2
K (λI + LK,D̂)−1(LK,D − LK,D̂)(λI + LK,D)−1STDy. (C.3)

Then we follow the same procedure as in the proof of Proposition 1 and apply Lemmas 2, 7 and 6
to obtain a bound for the first term in (C.3) as

E
[∥∥∥L1/2

K (λI + LK,D̂)−1(ŜTDy − STDy)
∥∥∥
K

]
≤ Ez|D|

[{
Exd,|D||z|D| [‖L

1/2
K (λI + LK,D̂)−1‖2]

}1/2{
Exd,|D||z|D|

[∥∥ŜTDy − SDy∥∥2
K

]} 1
2

]
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≤

[(√
2λ−3/2(2 +

√
π)L

2 2+α
2 B

α
2
k

d
α
2

)
Ez|D| [C|D|,λ] +

√
2λ−1/2Ez|D| [C

1/2
|D|,λ]

]
· (2 +

√
π)1/2LM

2α2 B
α
2
k

d
α
2

≤ c1d
−α2

[
1

λ
3
2 d

α
2

(A|D|,λ√
λ

+ 1
)2

+ λ−
1
2

(A|D|,λ√
λ

+ 1
)]
,

where c1 is a constant independent of |D|, d, λ, or σ.
The second term of (C.3) can be seen from (3.7) of Lemma 1 to be equal to

L
1/2
K (λI + LK,D̂)−1(LK,D − LK,D̂)

[
fσD,λ + (λI + LK,D)−1ED,λ,σ)

]
.

Hence

E
[∥∥∥L1/2

K (λI + LK,D̂)−1(LK,D − LK,D̂)(λI + LK,D)−1STDy
∥∥∥
K

]
≤ Ez|D|

[{
Exd,|D||z|D| [‖L

1/2
K (λI + LK,D̂)−1‖2]

}1/2{
Exd,|D||z|D|

[∥∥LK,D̂ − LK,D∥∥2
K

]} 1
2

(
‖fσD,λ‖K + ‖(λI + LK,D)−1ED,λ,σ‖K

) ]

≤
√
BKL(2 + π) 1

2
2α+2

2 B
α
2
k

d
α
2

[√
2(2 +

√
π) 1

2L2
α+2

2 B
α
2
k

1
λ

3
2 d

α
2

+
√

2λ− 1
2

]
·
(
{Ez|D| [C2

|D|,λ]}1/2{Ez|D| [‖fσD,λ‖2K ]}1/2 + {Ez|D| [C|D|,λ]}1/2{Ez|D| [‖fσD,λ‖2K ]}1/2
)

+
√
BKL(2 + π) 1

2
2α+2

2 B
α
2
k

d
α
2

[√
2(2 +

√
π) 1

2L2
α+2

2 B
α
2
k

1
λ

3
2 d

α
2

+
√

2λ− 1
2

]
·
(
Ez|D| [C|D|,λ] + Ez|D| [C

1/2
|D|,λ]

)
· 22pcp

√
BKσ

−2p[Bp+1/2
K (

√
CVM)2p+1λ−(p+ 3

2 ) +M2p+1λ−1],

where Lemma 4 has been used. Applying Lemma 6 to C|D|,λ and Proposition 3, we have

E
[∥∥∥L1/2

K (λI + LK,D̂)−1(LK,D − LK,D̂)(λI + LK,D)−1STDy
∥∥∥
K

]
≤ c2d

−α2
[ 1
λ

3
2 d

α
2

+ λ−
1
2

]
·
[
Â2
|D|,λ + Â|D|,λ

]
{
Â2
|D|,λ

A′|D|,λ√
λ

+ Â2
|D|,λ

A|D|,λ√
λ
‖fλ‖K + Â|D|,λσ−2p(λ−(p+ 3

2 ) + λ−1) + ‖fλ‖K

}
,

where c2 is a constant independent of |D|, d, λ, or σ.
Now we estimate the norm of I2 in (C.2) which can be expressed as

I2 = [(λI + LK,D̂)−1 − (λI + LK,D)−1]ED̂,λ,σ + (λI + LK,D)−1(ED̂,λ,σ − ED,λ,σ).

Applying the identity (λI+LK,D̂)−1−(λI+LK,D)−1 = (λI+LK,D̂)−1(LK,D−LK,D̂)(λI+LK,D)−1

again, the first term above can be bounded as∥∥∥L1/2
K [(λI + LK,D̂)−1 − (λI + LK,D)−1]ED̂,λ,σ

∥∥∥
K

≤ ‖L1/2
K [(λI + LK,D̂)−1‖‖LK,D − LK,D̂‖‖(λI + LK,D)−1ED̂,λ,σ‖K .
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Then we apply Lemma 4 and the same procedure we use for estimating the second term of I1 to get

E
[∥∥∥L1/2

K [(λI + LK,D̂)−1 − (λI + LK,D)−1]ED̂,λ,σ
∥∥∥
K

]
≤ c3d−

α
2

[ 1
λ

3
2 d

α
2

+ λ−
1
2

]
·
[
Â2
|D|,λ + Â|D|,λ

]
σ−2p(λ−(p+ 3

2 ) + λ−1),

where c3 is a constant independent of |D|, d, λ, or σ.
In the same way, the second term of I2 can be bounded as∥∥∥L1/2

K (λI + LK,D)−1(ED̂,λ,σ − ED,λ,σ)
∥∥∥
K

≤
∥∥∥L1/2

K (λI + LK,D)−1
∥∥∥(‖ED̂,λ,σ‖K + ‖ED,λ,σ‖K

)
≤
∥∥∥(λI + LK)1/2(λI + LK,D)−1/2

∥∥∥ ∥∥∥(λI + LK,D)−1/2
∥∥∥(‖ED̂,λ,σ‖K + ‖ED,λ,σ‖K

)
.

Then we apply Lemmas 4 and 6 and estimate the expected value of the norm as

E
[∥∥∥L1/2

K (λI + LK,D)−1(ED̂,λ,σ − ED,λ,σ)
∥∥∥
K

]
≤ c4Â|D|,λσ−2p

[
λ−(p+1) + λ−1/2

]
,

where c4 is a constant independent of |D|, d, λ, or σ.
Combining all the above bounds for the two terms of I1 and two terms of I2, we know that with

C̄ = max{c1, c2, c3, c4}, the desired bound holds true. The proof of Proposition 2 is complete.
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