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Abstract

In this paper, we develop an alternating direction method of multipliers (ADMM) for deep
neural networks training with sigmoid-type activation functions (called sigmoid-ADMM
pair), mainly motivated by the gradient-free nature of ADMM in avoiding the saturation
of sigmoid-type activations and the advantages of deep neural networks with sigmoid-type
activations (called deep sigmoid nets) over their rectified linear unit (ReLU) counterparts
(called deep ReLU nets) in terms of approximation. In particular, we prove that the ap-
proximation capability of deep sigmoid nets is not worse than that of deep ReLU nets by
showing that ReLU activation function can be well approximated by deep sigmoid nets
with two hidden layers and finitely many free parameters but not vice-verse. We also
establish the global convergence of the proposed ADMM for the nonlinearly constrained
formulation of the deep sigmoid nets training from arbitrary initial points to a Karush-
Kuhn-Tucker (KKT) point at a rate of order O(1/k). Besides sigmoid activation, such a
convergence theorem holds for a general class of smooth activations. Compared with the
widely used stochastic gradient descent (SGD) algorithm for the deep ReLU nets training
(called ReLU-SGD pair), the proposed sigmoid-ADMM pair is practically stable with re-
spect to the algorithmic hyperparameters including the learning rate, initial schemes and
the pro-processing of the input data. Moreover, we find that to approximate and learn sim-
ple but important functions the proposed sigmoid-ADMM pair numerically outperforms the
ReLU-SGD pair.

Keywords: Deep learning, ADMM, sigmoid, global convergence, saturation avoidance

1. Introduction

In the era of big data, data of massive size are collected in a wide range of applications in-
cluding image processing, recommender systems, search engineering, social activity mining
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and natural language processing (Zhou et al., 2014). These massive data provide a spring-
board to design machine learning systems matching or outperforming human capability but
pose several challenges on how to develop learning systems to sufficiently exploit the data.
As shown in Figure 1, the traditional approach comes down to a three-step learning pro-
cess. It at first adopts delicate data transformations to yield a tractable representation of
the original massive data; then develops some interpretable and computable optimization
models based on the transformed data to embody the utility of data; finally designs efficient
algorithms to solve the proposed optimization problems. These three steps are called feature
extraction, model selection and algorithm designation respectively. Since feature extraction
usually involves human ingenuity and prior knowledge, it is labor intensive, especially when
the data size is huge. Therefore, it is highly desired to reduce the human factors in the
learning process.

Figure 1: Philosophy behind deep learning

Deep learning (Hinton and Salakhutdinov, 2006; LeCun et al., 2015), which utilizes deep
neural networks (deep nets for short) for feature extraction and model selection simulta-
neously, provides a promising way to reduce human factors in machine learning. Just as
Figure 1 purports to show, deep learning transforms the classical three-step strategy into
a two-step approach: neural networks selection and algorithm designation. It is thus im-
portant to pursue why such a transformation is feasible and efficient. In particular, we are
interested in making clear of when deep nets are better than classical methods such as shal-
low neural networks (shallow nets) and kernel methods, and which optimization algorithm
is good enough to realize the benefits brought from deep nets.

In the past decade, deep nets with ReLU activations (deep ReLU nets) equipped with
the well known stochastic gradient descent (SGD) algorithm have been successfully used
in image classification (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012;
Sainath et al., 2013), natural language processing (Devlin et al., 2014), demonstrating the
power of ReLU-SGD pair in deep learning. The problem is, however, that there is a crucial
inconsistency between approximation and optimization for the ReLU-SGD pair. To be
detailed, from the approximation theory viewpoint, it is necessary to deepen the network
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to approximate smooth function (Yarotsky, 2017), extract manifold structures (Shaham
et al., 2018), realize rotation-invariance features (Han et al., 2020) and provide localized
approximation (Safran and Shamir, 2017). However, from the optimization viewpoint, it is
difficult to solve optimization problems associated with too deep networks with theoretical
guarantees (Goodfellow et al., 2016). Besides the lack of convergence (to a global minima)
guarantees, deep ReLU nets equipped with SGD may suffer from the issue of gradient
explosion/vanishing (Goodfellow et al., 2016) and is usually sensitive to its algorithmic
hyper-parameters such as the initialization (Glorot and Bengio, 2010; Sutskever et al., 2013;
Hanin and Rolnick, 2018) and learning rate (Senior et al., 2013; Daniel et al., 2016; Ruder,
2016) in the sense that these parameters have dramatic impacts on the performance of SGD
and thus should be carefully tuned in practice. In a nutshell, deep ReLU nets should be deep
enough to exhibit excellent approximation capability while too deep networks frequently
impose additional difficulty in optimization.

There are numerous remedies to tackle the aforementioned inconsistency for the ReLU-
SGD pair with intuition that SGD as well as its variants is capable of efficiently solving the
optimization problem associated with deep ReLU nets. In particular, some tricks on either
the network architectures such as ResNets (He et al., 2016) or the training procedure such as
the batch normalization (Ioffe and Szegedy, 2015) and weight normalization (Salimans and
Kingma, 2016) have been developed to address the issue of gradient vanishing/explosion;
several efficient initialization schemes including the MSRA initialization (He et al., 2015)
have been proposed for deep ReLU nets; some guarantees have been established (Allen-Zhu
et al., 2019; Du et al., 2019; Zou and Gu, 2019) in the over-parametrized setting to verify
the convergence of SGD; and numerous strategies of learning rates (Chollet et al., 2015;
Gotmare et al., 2019; Smith and Topin, 2017) have been provided to enhance the feasibility
of SGD.

Different from the aforementioned approach focusing on modifying SGD for deep ReLU
nets, we pursue an alternative direction to ease the training via reducing the depth. Our
studies stem from an interesting observation in neural networks approximation. As far as
the approximation capability is concerned, deep nets with sigmoid-type activation functions
(deep sigmoid nets) theoretically perform better than deep ReLU nets for some function
classes in the sense that to attain the same approximation accuracy, the depth and number
of parameters of the former is much smaller than those of the latter. This phenomenon was
observed in approximating smooth functions (Mhaskar, 1996; Yarotsky, 2017), reflecting
the rotation invariance feature (Chui et al., 2019; Han et al., 2020) and capturing sparse
signals (Lin et al., 2017; Schwab and Zech, 2019).

In spite of their advantages in approximation, deep sigmoid nets have not been widely
used in the deep learning community. The major reason is due to the saturation problem of
the sigmoid function 1 (Goodfellow et al., 2016, Section 6.3), which is easy to cause gradient
vanishing for gradient-descent based algorithms in the deep sigmoid nets training (Bengio
et al., 1994; LeCun et al., 1998). Specifically, as shown in Figure 2 (b), derivatives of sig-
moid functions vanish numerically in a large range. In this paper, we aim at developing
a gradient-free algorithm for the deep sigmoid nets training to avoid saturation of deep
sigmoid nets and sufficiently embody their theoretical advantages. As a typical gradient-

1. A function f : R → R is said to be saturating if it is differentiable and its derivative f ′(x) satisfies
lim|x|→+∞ f ′(x) = 0.
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Figure 2: The cons of SGD and pros of ADMM in solving deep sigmoid nets. The setting
of numerical simulation in (c) can be found in the Table 2 below.

free optimization algorithm, alternating direction method of multipliers (ADMM) can be
regarded as a primal-dual method based on an augmented Lagrangian by introducing non-
linear constraints and enables a convergent sequence satisfying the nonlinear constraints.
Therefore, ADMM attracted rising attention in deep learning with various implementations
(Carreira-Perpinan and Wang, 2014; Taylor et al., 2016; Kiaee et al., 2016; Yang et al.,
2016; Gotmare et al., 2018; Murdock et al., 2018). Under this circumstance, we propose
an efficient ADMM algorithm based on a novel update order and an efficient sub-problem
solver. Surprisingly, as shown in Figure 2 (c), the proposed sigmoid-ADMM pair performs
better than ReLU-SGD pair in approximating the simple but extremely important square
function (Yarotsky, 2017; Petersen and Voigtlaender, 2018; Han et al., 2020). This implies
that ADMM may be an efficient algorithm to sufficiently realize theoretical advantages of
deep sigmoid nets. Our contributions of this paper can be summarized as the following
three folds.

•Methodology Novelty: We develop a novel sigmoid-ADMM pair for deep learning.
Compared with the widely used ReLU-SGD pair, the proposed sigmoid-ADMM pair is sta-
ble with respect to algorithmic hyperparameters including learning rates, initial schemes
and the pro-processing of input data. Furthermore, we find that to approximate and learn
simple but important functions including the square function, radial functions and product
gate, deep sigmoid nets theoretically beat deep ReLU nets and the proposed sigmoid-ADMM
pair outperforms the ReLU-SGD pair. In terms of algorithm designs, different from existing
ADMM methods in deep learning, our proposed ADMM adopts a backward-forward update
order that is similar as BackProp (Rumelhart et al., 1986) and a local linear approxima-
tion for sub-problems, and more importantly keeps all the nonlinear constraints such that
the solution found by the proposed algorithm can converge to a solution satisfying these
nonlinear constraints.

• Theoretical Novelty: To demonstrate the theoretical advantages of deep sigmoid
nets, we rigorously prove that the approximation capability of deep sigmoid nets is not worse
than deep ReLU nets by showing that ReLU can be well approximated by deep sigmoid
nets with two hidden layers and finitely many free parameters but not vice-verse. We also
establish the global convergence of the proposed ADMM for the nonlinearly constrained
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formulation of the deep sigmoid nets training from arbitrary initial points to a Karush-
Kuhn-Tucker (KKT) point at a rate of order O(1/k). Different from the existing literature
on convergence of nonconvex ADMM (Hong et al., 2016; Wang et al., 2019; Gao et al.,
2020) for linear or multiaffine constrained optimization problems, our analysis provides a
new methodology to deal with the nonlinear constraints in deep learning. In a word, our
approach actually leads to a general convergence framework for ADMM with “smooth”
enough activations.
• Numerical Novelty: In terms of numerical performance, the effectiveness (particu-

larly the stability to initial schemes and the easy-to-tune property of algorithmic parame-
ters) of the proposed ADMM has been demonstrated by numerous experiments including
a series of toy simulations and three real-data experiments. Numerical results illustrate
the outperformance of the sigmoid-ADMM pair over the ReLU-SGD pair in approximating
the extremely important square function, product gate, piecewise L1 radial and smooth
L2 radial functions with stable algorithmic hyperparameters. Together with some other
important functions such as the localized approximation (Chui et al., 1994), these natu-
ral functions realized in this paper can represent some important data features such as
piecewise smoothness in image processing (Krizhevsky et al., 2012), sparseness in computer
vision (LeCun et al., 2015), and rotation-invariance in earthquake prediction (Vikraman,
2016). The effectiveness of the proposed ADMM is further demonstrated by real-data ex-
periments, i.e., earthquake intensity, extended Yale B databases and PTB Diagnostic ECG
databases, which reflect the partially radial and low-dimensional manifold features in some
extent.

The rest of this paper is organized as follows. In the next section, we demonstrate the
advantage of deep sigmoid nets in approximation (see Theorem 3). Section 3 describes the
proposed ADMM method for the considered DNN training model followed by the main
convergence theorem (see Theorem 4). Section 4 provides some discussions on related work
and key ideas of our proofs. Section 5 provides some toy simulations to show the effectiveness
of the proposed ADMM method in realizing some important natural functions. Section 6
provides two real data experiments to further demonstrate the effectiveness of the proposed
method. All proofs are presented in Appendix.

Notations: For any matrix A ∈ Rm×n, [A]ij denotes its (i, j)-th entry. Given a matrix
A, ‖A‖F , ‖A‖2 and ‖A‖max denote the Frobenius norm, operator norm, and max-norm of
A, respectively, where ‖A‖max = maxi,j |[A]ij |. Then obviously, ‖A‖max ≤ ‖A‖2 ≤ ‖A‖F .
We let W<i := [W1,W2, . . . ,Wi−1], W>i := [Wi+1, . . . ,WN ] for i = 1, . . . , N , W<1 = ∅ and
W>N = ∅. I denotes the identity matrix whose size can be determined according to the
text. Denote by R and N the real and natural number sets, respectively.

2. Deep Sigmoid Nets in Approximation

For the depth N ∈ N of a neural network, let di ∈ N be the number of hidden neurons at
the i-th hidden layer for i = 1, . . . , N − 1. Denote an affine mapping Ji : Rdi−1 → Rdi by
Ji(x) := Wix + bi for di × di−1 weight matrix and thresholds bi ∈ Rdi . For a univariate
activation function σi, i = 1 . . . , N , denote further σi(x) when σi is applied component-wise
to the vector x. Define an N -layer feedforward neural network by

NN,d1,...,dN ,σ = a · σN ◦ JN ◦ σN−1 ◦ JN−1 ◦ · · · ◦ σ1 ◦ J1(x), (1)
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where a ∈ RdN . The deep net defined in (1) is called the deep ReLU net and deep sigmoid
net, provided σi(t) ≡ σrelu(t) = max{t, 0} and σi(t) ≡ σ(t) = 1

1+e−t respectively.
Since the (sub-)gradient computation of ReLU is very simple, deep ReLU nets have

attracted enormous research activities in the deep learning community (Nair and Hinton,
2010). The power of deep ReLU nets, compared with shallow nets with ReLU (shallow
ReLU nets) has been sufficiently explored in the literature (Yarotsky, 2017; Petersen and
Voigtlaender, 2018; Shaham et al., 2018; Schwab and Zech, 2019; Chui et al., 2020; Han
et al., 2020). In particular, it was proved in (Yarotsky, 2017, Proposition 2) that the
following “square-gate” property holds for deep ReLU nets, which is beyond the capability
of shallow ReLU nets due to the non-smoothness of ReLU.

Lemma 1 The function f(t) = t2 on the segment [−M,M ] for M > 0 can be approximated
within any accuracy ε > 0 by a deep ReLU net with the depth and free parameters of order
O(log(1/ε)).

The above lemma exhibits the necessity of the depth for deep ReLU nets to act as a
“square-gate”. Since the depth depends on the accuracy, it requires many hidden layers for
deep ReLU nets for such an easy task and too many hidden layers enhance the difficulty
for analyzing SGD (Goodfellow et al., 2016, Sec.8.2). This presents the reason why the
numerical accuracy of deep ReLU nets in approximating t2 is not so good, just as Figure 2
exhibits. Differently, due to the infinitely differentiable property of the sigmoid function, it
is easy for shallow sigmoid nets (Chui et al., 2019, Proposition 1) to play as a “square-gate”,
as shown in the following lemma.

Lemma 2 Let M > 0. For ε > 0, there is a shallow sigmoid net N3 with 3 free parameters
bounded by O(ε−6) such that

|t2 −N3(t)| ≤ ε, t ∈ [−M,M ].

Besides the “square-gate”, deep sigmoid nets are capable of acting as a “product-gate”
(Chui et al., 2019), providing localized approximation (Chui et al., 1994), extracting the
rotation-invariance property (Chui et al., 2019) and reflecting the sparseness in spatial
domain (Lin, 2019) and frequency domain (Lin et al., 2017) with much fewer hidden layers
than deep ReLU nets. The following Table 1 presents a comparison between deep sigmoid
nets and deep ReLU nets in feature selection and approximation.

Table 1 presents theoretical advantages of deep sigmoid nets over deep ReLU nets.
In fact, as the following theorem shows, it is easy to construct a sigmoid net with two
hidden layers and small number of free parameters to approximate ReLU, implying that
the approximation capability of deep sigmoid nets is at least not worse than that of deep
ReLU nets with comparable hidden layers and free parameters.

Theorem 3 Let 1 ≤ p < ∞ and M ≥ 1. Then for any ε ∈ (0, 1/2) and M > 0, there is
a sigmoid net h∗ with 2 hidden layers and at most 27 free parameters bounded by O(ε−7)
such that

‖h∗ − σrelu‖Lp([−M,M ]) ≤ ε, (2)

where Lp([−M,M ]) denotes the Lp space of functions defined on [−M,M ].
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Table 1: Depth required for deep nets in feature extraction and approximation within ac-
curacy ε

Features sigmoid ReLU

Square-gate 1 (Chui et al., 2019) log(ε−1) (Yarotsky, 2017)

Product-gate 1 (Chui et al., 2019) log(ε−1) (Yarotsky, 2017)

Localized approximation 2 (Chui et al., 1994) 2(Chui et al., 2020)

k-spatially sparse+smooth 2 (Lin, 2019) > 8 (Chui et al., 2020)

Smooth+Manifold 3 (Chui et al., 2018) 4 (Shaham et al., 2018)

Smooth 1 (Mhaskar, 1996) log(ε−1) (Yarotsky, 2017)

k-sparse (frequency) k (Lin et al., 2017) k log(ε−1) (Schwab and Zech, 2019)

Radial+smooth 4 (Chui et al., 2019) > 8 (Han et al., 2020)

The proof of Theorem 3 is postponed in Appendix A. For an arbitrary deep ReLU net

N relu
L,d1,...,dL

= a · σrelu ◦ JL ◦ σrelu ◦ JL−1 ◦ · · · ◦ σrelu ◦ J1(x)

with bounded free parameters, Theorem 3 shows that we can construct a deep sigmoid net

N sigmoid
L,d1,...,dL

= a · h∗ ◦ JL ◦ h∗ ◦ JL−1 ◦ · · · ◦ h∗ ◦ J1(x)

that possesses at least similar approximation capability. However, due to the infinitely
differentiable property of the sigmoid function, it is difficult to construct a deep ReLU net
with accuracy-independent depth and width to approximate it. Indeed, it can be found
in (Petersen and Voigtlaender, 2018, Theorem 4.5) that for any open interval Ω and deep
ReLU net N relu

L,n with L hidden layers and n free parameters, there holds

‖σ −N relu
L,n ‖Lp(Ω) ≥ C ′′n−2L, (3)

where σ is the sigmoid activation and C ′′ is a constant independent of n or L. Comparing
(2) with (3), we find that any functions being well approximated by deep ReLU nets can
also be well approximated by deep sigmoid nets, but not vice-verse.

It should be mentioned that though the depth and width in Theorem 3 are independent
of ε and relatively small, the magnitude of free parameters depends heavily on the accuracy
and may be large. Since such large free parameters are difficult to realize for an optimization
algorithm, a preferable way to shrink them is to deepen the network further. In particular,
it can be found in (Chui et al., 2019) that there is a shallow sigmoid net N sigmoid

2 with 2
free parameters of order O(1/ε) such that

|σ(
√
wN sigmoid

2 (
√
wt))− σ(wt)| ≤ ε,

where t, w ∈ R. Because we only focus on the power of deep sigmoid nets in approximation,
we do not shrink free parameters in Theorem 3.
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3. ADMM for Deep Sigmoid Nets

Let Z := {(xj , yj)}nj=1 ⊂ Rd0 × RdN be n samples. Denote X := (x1, x2, . . . , xn) ∈ Rd0×n

and Y := (y1, y2, . . . , yn) ∈ RdN×n. It is natural to consider the following regularized DNN
training problem

min
W

{
1

n

n∑
i=1

‖Φ(xi,W)− yi‖22 + λ′‖Wi‖2F

}
, (4)

where Φ(xi,W) denotes a deep sigmoid net with N layers, W = {Wi}Ni=1 and λ′ > 0 is the
regularization parameter. Here, we consider the square loss as analyzed in the literature
(Allen-Zhu et al., 2019; Du et al., 2019; Zou and Gu, 2019). We also absorb thresholds into
the weight matrices for the sake of simplicity. Based on the advantage of deep sigmoid nets
in approximation, (Chui et al., 2019; Lin, 2019) proved that the model defined by (4) with
N = 2 are optimal in embodying data features such as the spatial sparseness, smoothness
and rotation-invariance in the sense that it can achieve almost optimal generalization error
bounds in the framework of learning theory. The aim of this section is to introduce an
efficient algorithm to solve the optimization problem (4).

Due to the saturation problem of the sigmoid function (see Figure 2 (b)), the issue of
gradient vanishing or explosion frequently happens for running SGD on deep sigmoid nets
(see Figure 4 (a) for example), implying that the classical SGD is not a good candidate to
solve (4). We then turn to designing a gradient-free optimization algorithm, like ADMM,
to efficiently solve (4). For DNN training, there are generally two important ingredients
in designing ADMM: update order and solution to each sub-problem. The novelty of our
proposed algorithm is the use of backward-forward update order similar to BackProp in
(Rumelhart et al., 1986) and local linear approximation to sub-problems.

3.1 Update order in ADMM for deep learning training

The optimization problem (4) can be equivalently reformulated as the following constrained
optimization problem

minimize
W,V

1

2
‖VN − Y ‖2F +

λ

2

N∑
i=1

‖Wi‖2F (5)

subject to Vi = σ(WiVi−1), i = 1, . . . , N − 1, VN = WNVN−1,

where V := {Vi}Ni=1 represents the set of responses of all layers and λ = λ′n
2 . We define the

augmented Lagrangian of (5) as follows:

L(W,V, {Λi}Ni=1) :=
1

2
‖VN − Y ‖2F +

λ

2

N∑
i=1

‖Wi‖2F (6)

+

N−1∑
i=1

(
βi
2
‖σ(WiVi−1)− Vi‖2F + 〈Λi, σ(WiVi−1)− Vi〉

)
+
βN
2
‖WNVN−1 − VN‖2F + 〈ΛN ,WNVN−1 − VN 〉,
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where Λi ∈ Rdi×n is the multiplier matrix associated with the i-th constraint, and βi is the
associated penalty parameter for i = 1, . . . , N .

ADMM is an augmented-Lagrangian based primal-dual method, which updates the pri-
mal variables ({Wi}Ni=1 and {Vi}Ni=1 in (6)) via a Gauss-Seidel scheme and then multipliers
({Λi}Ni=1 in (6)) via a gradient ascent scheme in a parallel way (Boyd et al., 2011). As
suggested in (Wang et al., 2019), the update order of the primal variables is tricky for
ADMM in terms of the convergence analysis in the nonconvex setting. In light of (Wang
et al., 2019), the key idea to yield a desired update order with convergence guarantee is
to arrange the updates of some special primal variables followed by the updates of mul-
tipliers such that the updates of multipliers can be explicitly expressed by the updates of
these special primal variables, and thus the dual ascent quantities arisen by the updates of
multipliers shall be controlled by the descent quantities brought by the updates of these
special primal variables. Hence, the arrangement of these special primal variables is crucial.

It can be noted that there are 2N blocks of primal variables, i.e., {Wi}Ni=1 and {Vi}Ni=1

and N blocks of multipliers {Λi}Ni=1 involved in (6). For better elaboration of our idea, we
take N = 3 for an example. Notice that the multipliers {Λi}3i=1 are only involved in these
inner product terms 〈Λ1, σ(W1X)−V1〉, 〈Λ2, σ(W2V1)−V2〉 and 〈Λ3,W3V2−V3〉. By these
terms, the gradient of the i-th inner product with respect to Vi is −Λi, while the associated
gradient with respect to Wi is a more complex term (namely, (Λ1 � σ′(W1X))XT for W1,
(Λ2 � σ′(W2V1))V T

1 for W2, and Λ3V
T

2 for W3, where � represents Hadamard product). If
the update of Wi is used to express Λi, then according to the Wi subproblem, an inverse
operation of a nonlinear or linear mapping is required, while such an inverse does not
necessarily exist. Specifically, following the analysis of Lemma 8 shown later and taking
the expression of W3 for example, the term Λ3V

T
2 will be involved in the expression of W3.

In this case, if we wish to express Λ3 by W3, then the inverse of V2 is generally required,
while it does not necessarily exist. Due to this, it should be more convenient to express
Λi (i = 1, 2, 3) via exploiting the Vi subproblem instead of the Wi subproblem. Therefore,
we suggest firstly update the blocks of Wi’s and then Vi’s such that Λi’s can be explicitly
expressed via the latest updates of Vi’s. To be detailed, for each loop, we update {Wi}Ni=1

in the backward order, i.e., WN →WN−1 → · · · →W1, then update {Vj}Nj=1 in the forward
order, i.e., V1 → V2 → · · · → VN , motivated by BackProp in (Rumelhart et al., 1986), and
finally update the multipliers {Λi}Ni=1 in a parallel way, as shown by the following Figure 3.

Figure 3: Update order of ADMM

Specifically, given an initialization {W 0
i }Ni=1, we set

V 0
j = σ(W 0

j V
0
j−1), j = 1, . . . , N − 1, V 0

N = W 0
NV

0
N−1, and Λ0

i = 0, i = 1, . . . , N, (7)

where V 0
0 = X. Given the (k-1)-th iterate

(
{W k−1

i }Ni=1, {V
k−1
i }Ni=1, {Λ

k−1
i }Ni=1

)
, we define

the Wi- and Vi-subproblems at the k-th iteration via minimizing the augmented Lagrangian
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(6) with respect to only one block but fixing the other blocks at the latest updates, according
to the update order specified in Figure 3, shown as follows:

W k
N = arg min

WN

{
λ

2
‖WN‖2F +

βN
2
‖WNV

k−1
N−1 − V

k−1
N ‖2F + 〈Λk−1

N ,WNV
k−1
N−1 − V

k−1
N 〉

}
, (8)

and for i = N − 1, . . . , 1,

W k
i = arg min

Wi

{
λ

2
‖Wi‖2F +

βi
2
‖σ(WiV

k−1
i−1 )− V k−1

i ‖2F + 〈Λk−1
i , σ(WiV

k−1
i−1 )− V k−1

i 〉
}
, (9)

and for j = 1, . . . , N − 2,

V k
j = arg min

Vj

{
βj
2
‖σ(W k

j V
k
j−1)− Vj‖2F + 〈Λk−1

j , σ(W k
j V

k
j−1)− Vj 〉 (10)

+
βj+1

2
‖σ(W k

j+1Vj)− V k−1
j+1 ‖

2
F + 〈Λk−1

j+1 , σ(W k
j+1Vj)− V k−1

j+1 〉
}
,

V k
N−1 = arg min

VN−1

{
βN−1

2
‖σ(W k

N−1V
k
N−2)− VN−1‖2F + 〈Λk−1

N−1, σ(W k
N−1V

k
N−2)− VN−1 〉

+
βN
2
‖W k

NVN−1 − V k−1
N ‖2F + 〈Λk−1

N ,W k
NVN−1 − V k−1

N 〉
}
, (11)

V k
N = arg min

VN

{
1

2
‖VN − Y ‖2F +

βN
2
‖W k

NV
k
N−1 − VN‖2F + 〈Λk−1

N ,W k
NV

k
N−1 − VN 〉

}
. (12)

Once
(
{W k

i }Ni=1, {V k
i }Ni=1

)
have been updated, we then update the multipliers {Λki }Ni=1 par-

allelly according to the following: for i = 1, . . . , N − 1,

Λki = Λk−1
i + βi(σ(W k

i V
k
i−1)− V k

i ), ΛkN = Λk−1
N + βN (W k

NV
k
N−1 − V k

N ). (13)

Based on these, each iterate of ADMM only involves several relatively simpler sub-problems.
It should be mentioned that the suggested update order is actually a technical require-

ment in the convergence proof (see, Lemma 8 below), which also appears in the previous
work (Wang et al., 2019). Moreover, the following local linear approximation is also required
to establish Lemma 8.

3.2 Local linear approximation for sub-problems

Note that Wi-subproblems (i = 1, . . . , N − 1) involve functions of the following form

Hσ(W ;A,B) =
1

2
‖σ(WA)−B‖2F , (14)

while Vj-subproblems (j = 1, . . . , N − 2) involve functions of the following form

Mσ(V ; Ã, B̃) =
1

2
‖σ(ÃV )− B̃‖2F , (15)

where A,B, Ã, B̃ are four given matrices related to the previous updates. Due to the
nonlinearity of the sigmoid activation function, the subproblems are generally difficult to be
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solved, or at least some additional numerical solvers are required to solve these subproblems.
To break such computational hurdle, we adopt the first-order approximations of the original
functions presented in (14) and (15) at the latest updates, instead of themselves, to update
the variables, that is,

Hk
σ(W ;A,B) := Hσ(W k−1;A,B) + 〈(σ(W k−1A)−B)� σ′(W k−1A), (W −W k−1)A〉

+
hk

4
‖(W −W k−1)A‖2F , (16)

Mk
σ (V ; Ã, B̃) := Mσ(V k−1; Ã, B̃) + 〈(σ(ÃV k−1)− B̃)� σ′(ÃV k−1), Ã(V − V k−1)〉

+
µk

4
‖Ã(V − V k−1)‖2F , (17)

where W k−1 and V k−1 are the (k-1)-th iterate, and σ′(W k−1A) and σ′(ÃV k−1) represent
the componentwise derivatives, hk and µk can be specified as the upper bounds of twice of
the locally Lipschitz constants of functions Hσ and Mσ, respectively, shown as

hk = L(‖B‖max), µk = L(‖B̃‖max).

Here, for any given c ∈ R,

L(|c|) := 2L2(L0 + |c|) + 2L2
1 (18)

is an upper bound of the Lipschitz constant of the gradient of function (σ(u) − c)2 with
constants L0 = 1, L1 = 1

4 and L2 = 1
4 related to the sigmoid activation σ.

Henceforth, we call this treatment as the local linear approximation (LLA), which
can be viewed as adopting certain prox-linear scheme (Xu and Yin, 2013) to update the
subproblems of ADMM. Based on (16) and (17), the original updates (9) of {W k

i }
N−1
i=1 are

replaced by

W k
i = arg min

Wi

{
λ

2
‖Wi‖2F + βiH

k
σ(Wi;V

k−1
i−1 , V

k−1
i − β−1

i Λk−1
i )

}
, (19)

and by completing perfect squares and some simplifications, the original updates (10) of
{V k

j }
N−2
j=1 are replaced by

V k
j = arg min

Vj

{
βj
2
‖σ(W k

j V
k
j−1) + β−1

j Λk−1
j − Vj‖2F + βj+1M

k
σ (Vj ;W

k
j+1, V

k−1
j+1 − β

−1
j+1Λk−1

j+1)

}
,

(20)

with hki and µkj being specified as follows

hki = L(‖V k−1
i − β−1

i Λk−1
i ‖max), i = 1, . . . , N − 1, (21)

µkj = L(‖V k−1
j+1 − β

−1
j+1Λk−1

j+1‖max), j = 1, . . . , N − 2, (22)

where L(·) is defined in (18). Note that with these alternatives, all the subproblems can be
solved with analytic expressions (see, Lemma 8 in Appendix C.1).
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3.3 ADMM for deep sigmoid nets

The ADMM algorithm for DNN training problem (5) is summarized in Algorithm 1. As
shown in Figure 4 (b) and Figure 2 (c), ADMM does not suffer from either the issue of
gradient explosion or the issue of gradient vanishing caused by the saturation of sigmoid
activation and thus can approximate the square function within high precision. The in-
tuition behind ADMM to avoid the issues of gradient explosion and vanishing is that the
suggested ADMM does not exactly follow the chain rule as exploited in BackProp and SGD,
but introduces the multipliers as certain compensation to eventually fit the chain rule at the
stationary point. From Algorithm 1, besides the regularization parameter λ related to the
DNN training model, only the penalty parameters βi’s should be tuned. In the algorithmic
perspective, penalty parameters can be regarded as the dual step sizes for the updates of
multipliers, which play similar roles as learning rates in SGD. As shown by our experiment
results below, the performance of ADMM is not sensitive to penalty parameters, making the
parameters be easy-to-tune. Moreover, by exploiting the LLA, the updates for all variables
can be very cheap with analytic expressions (see Lemma 8 in Appendix C.1).

As compared to the existing ADMM methods for deep learning (Carreira-Perpinan and
Wang, 2014; Taylor et al., 2016; Kiaee et al., 2016; Murdock et al., 2018), there are two
major differences shown as follows. The first one is that the existing ADMM type methods
in deep learning only keep partial nonlinear constraints for the sake of reducing the difficulty
of optimization, while the ADMM method suggested in this paper keeps all the nonlinear
constraints, and thus our proposed ADMM can come back to the original DNN training
model in the sense that its convergent limit fits all the nonlinear constraints as shown in
Theorem 4 below. To overcome the difficulty from optimization, we introduce an elegant
update order and the LLA technique for subproblems. The second one is that most of
existing ADMM methods focus on deep ReLU nets, while our proposed ADMM is designed
for deep sigmoid nets.

It should be pointed out that the subproblems of the proposed algorithm require invert-
ing matrices at each iteration, which could be expensive. Although there are some practical
tricks like warm-start and solving inexactly via doing gradient descent by a fixed number
of times to improve the computational efficiency of the proposed ADMM (e.g., in (Liu
et al., 2021) ), the major focus of this paper is mainly on the development of an effective
ADMM method with theoretical guarantees for the training of deep sigmoid nets, and we
will consider its practical acceleration in the future.

3.4 Convergence of ADMM for deep sigmoid nets

Without loss of generality, we assume that X,Y and {W 0
i }Ni=1 are normalized with ‖X‖F =

1, ‖Y ‖F = 1 and ‖W 0
i ‖F = 1, i = 1, . . . , N , and all numbers of hidden layers are the same,

i.e., di = d, ∀i = 1, . . . , N − 1. Under these settings, we present the main convergence
theorem of ADMM in the following, while that of ADMM under more general settings is
presented in Theorem 7 in Appendix B.
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Algorithm 1 ADMM for Deep Sigmoid Nets Training

Samples: X := [x1, . . . , xn] ∈ Rd0×n, Y := [y1, . . . , yn] ∈ RdN×n.
Initialization: ({W 0

i }Ni=1, {V 0
i }Ni=1, {Λ0

i }Ni=1) is set according to (7). V k
0 ≡ X,∀k ∈ N.

Parameters: λ > 0, βi > 0, i = 1, . . . , N .

for k = 1, . . . do
I (Backward Estimation)
for i = N : −1 : 1 do

Update W k
N via (8) and the other W k

i via (19).
end for
I(Forward Prediction)
for j = 1 : N do

Update V k
j (j = 1, . . . , N − 2) via (20), V k

N−1 via (11), and V k
N via (12).

end for
I(Updating Multipliers)
Λk
i = Λk−1

i + βi(σ(W k
i V

k
i−1)− V k

i ), i = 1, . . . , N − 1,

Λk
N = Λk−1

N + βN (W k
NV

k
N−1 − V k

N ).
k ← k + 1

end for
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(b) Saturation-avoidance of ADMM

Figure 4: Gradient vanishing of SGD and saturation-avoidance of ADMM in the training
of deep sigmoid nets. The numerical setting is the same as that of Figure 2.

Theorem 4 Let {Q̧k := ({W k
i }Ni=1, {V k

i }Ni=1, {Λki }Ni=1)} be a sequence generated by Algo-

rithm 1. If 2 ≤ N ≤
√
n, λ ≥ c̃N

N−3
2 (nd)

N
2
− 1

4 and {βi}Ni=1 satisfy

βN ≥ 3.5, βN−1 ≥ 16βN , βi ≥ c̃1βN−1(Nnd)
N−1−i

2 , i = 1, . . . , N − 2 (23)

for some constants c̃, c̃1 > 0 independent of n,N , then we have:

(a) the augmented Lagrangian sequence {L(Qk)} is convergent.

(b) {Qk} converges to a stationary point Q∗ := ({W ∗i }Ni=1, {V ∗i }Ni=1, {Λ∗i }Ni=1) of the aug-
mented Lagrangian L, which is also a KKT point (defined in(24) below) of problem
(5), implying that {W ∗i }Ni=1 is a stationary point of problem (4) with λ′ = 2λ/n.
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(c) 1
K

∑K
k=1 ‖∇L(Qk)‖2F → 0 at a rate of order O( 1

K ).

Theorem 4 establishes the global convergence of ADMM to a KKT point at a rate of
O(1/K). By (23), the parameters {βi}Ni=1 increase exponentially fast from the output layer
to the input layer. Moreover, by Theorem 4, the regularization parameter λ is also required
to grow exponentially fast as the depth increases. Back to the original DNN training

model (4), the requirement on the regularization parameter λ′ is λ′ ≥ c̃N
N−3

2 d
N
2
− 1

4n
N
2
− 5

4 .
Particularly, when N = 2, namely, the neural networks with single hidden layer, then
λ′ = c̃ 4

√
d3/n is a good choice, which implies that the regularization parameter can be

small when the sample size n is sufficiently large. Despite these convergence conditions
seem a little stringent, by the existing literature (Chui et al., 2018, 2019), the depth of
deep sigmoid nets is usually small, say, 2 or 3 for realizing some important data features in
deep learning. Moreover, as shown in the numerical results to be presented in Sections 5
and 6, a moderately large augmented Lagrangian parameter (say, each βi = 1) and a small
regularization parameter (say, λ = 10−6) are empirically enough for the proposed ADMM.
In this case, the KKT point found by ADMM should be close to the optimal solutions to
the empirical risk minimization of DNN training.

Remark 1: KKT conditions. Based on (6), the Karush-Kuhn-Tucker (KKT) condi-
tions of the problem (5) can be derived as follows. Specifically, let {Wi, Vi}Ni=1 be an optimal
solution of problem (5), then there exit multipliers {Λi}Ni=1 such that the following hold:

0 = λW1 + (Λ1 � σ′(W1V0))V T
0 ,

0 = λWi + (Λi � σ′(WiVi−1))V T
i−1, i = 2, . . . , N − 1,

0 = λWN + ΛNV
T
N−1,

0 = −Λi +W T
i+1(Λi+1 � σ′(Wi+1Vi)), i = 1, . . . , N − 2, (24)

0 = −ΛN−1 +W T
NΛN ,

0 = −ΛN + (VN − Y ),

0 = σ(WiVi−1)− Vi, i = 1, . . . , N − 1,

0 = WNVN−1 − VN

where V0 = X. From (24), the KKT point of problem (5) exactly fits these nonlinear
constraints. Moreover, given a KKT point ({W ∗i }Ni=1, {V ∗i }Ni=1, {Λ∗i }Ni=1) of (5), substituting
the last five equations into the first three equations of (24) shows that {W ∗i }Ni=1 is also a
stationary point of the original DNN training model (4).

Remark 2: More general activations: As presented in Theorem 7 in Appendix B,
the convergence results in Theorem 4 still hold for a general class of smooth activations
such as the hyperbolic tangent activation as studied in (Lin et al., 2019). Actually, the
approximation result yielded in Theorem 3 can be also easily extended to a class of twice
differentiable sigmoid-type activations.

4. Related Work and Discussions

In this section, we present some related works and show the novelty of our studies.
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4.1 Deep sigmoid nets versus deep ReLU nets in approximation

Deep ReLU nets are the most popular neural networks in deep learning. Compared with
deep sigmoid nets, there are commonly three advantages of deep ReLU nets (Nair and
Hinton, 2010). At first, the piecewise linear property makes it easy to compute the derivative
to ease the training via gradient-type algorithms. Then, the derivative of ReLU is either
1 or 0, which in a large extent alleviates the saturation phenomenon for deep sigmoid
nets and particularly the gradient vanishing/explotion issue of the gradient-descent based
algorithms for the training of deep neural networks. Finally, σrelu(t) = 0 for t < 0 enables
the sparseness of the neural networks, which coincides with the biological mechanism for
neural systems.

Theoretical verification for the power of depth in deep ReLU nets is a hot topic in deep
learning theory. It stems from the study in (Eldan and Shamir, 2016), where some functions
were constructed to be well approximated by deep ReLU nets but cannot be expressed
by shallow ReLU nets with similar number of parameters. Then, numerous interesting
results on the expressivity and generalization of deep ReLU nets have been provided in
(Yarotsky, 2017; Safran and Shamir, 2017; Shaham et al., 2018; Petersen and Voigtlaender,
2018; Schwab and Zech, 2019; Guo et al.; Zhou, 2018, 2020; Chui et al., 2020; Han et al.,
2020). Typically, it was proved in (Yarotsky, 2017) that deep ReLU nets perform at least
not worse than the classical linear approaches in approximating smooth functions, and are
beyond the capability of shallow ReLU nets. Furthermore, it was also exhibited in (Shaham
et al., 2018) that deep ReLU nets can extract the manifold structure of the input space and
the smoothness of the target functions simultaneously.

The problem is, however, that there are frequently too many hidden layers for deep
ReLU nets to extract data features. Even for approximating the extremely simple square
function, Lemma 1 requires log(ε−1) depth, which is totally different from deep sigmoid
nets. Due to its infinitely differentiable property, sigmoid function is the most popular
activation for shallow nets (Pinkus, 1999). The universal approximation property of shallow
sigmoid nets has been verified in (Cybenko, 1989) for thirty years. Furthermore, (Mhaskar,
1993, 1996) showed that the approximation capability of shallow sigmoid nets is at least
not worse than that of polynomials. However, there are also several bottlenecks for shallow
sigmoid nets in embodying the locality (Chui et al., 1994), extracting the rotation-invariance
(Chui et al., 2019) and producing sparse estimators (Lin et al., 2017), which show the
necessity to deepen the neural networks. Different from deep ReLU nets, adding only a
few hidden layers can significantly improve the approximation capability of shallow sigmoid
nets. In particular, deep sigmoid nets with two hidden layers are capable of providing
localized approximation (Chui et al., 1994), reflecting the spatially sparseness (Lin, 2019)
and embodying the rotation-invariance (Chui et al., 2019).

In a nutshell, as shown in Table 1, it was proved in the existing literature that any
function expressible for deep ReLU nets can also be well approximated by deep sigmoid
nets with fewer hidden layers and free parameters. Our Theorem 3 partly reveals the
reason for such a phenomenon in the sense that ReLU can be well approximated by sigmoid
nets but not vice-verse.
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4.2 Algorithms for DNN training

In order to address the choice of learning rate in SGD, there are many variants of SGD
incorporated with adaptive learning rates called adaptive gradient methods. Some impor-
tant adaptive gradient methods are Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), Adam (Kingma and Ba, 2015), and AMSGrad
(Reddi et al., 2018). Although these adaptive gradient methods have been widely used
in deep learning, there are few theoretical guarantees when applied to the deep neural
network training, a highly nonconvex and possibly nonsmooth optimization problem (Wu
et al., 2019). Regardless the lack of theoretical guarantees of the existing variants of SGD,
another major flaw is that they may suffer from the issue of gradient explosion/vanishing
(Goodfellow et al., 2016), essentially due to the use of BackProp (Rumelhart et al., 1986)
for updating the gradient during the iteration procedure.

To address the issue of gradient vanishing, there are some tricks that focus on either
the design of the network architectures such as ResNets (He et al., 2016) or the training
procedure such as the batch normalization (Ioffe and Szegedy, 2015) and weight normal-
ization (Salimans and Kingma, 2016). Besides these tricks, there are many works in the
perspective of algorithm design, aiming to propose some alternatives of SGD to alleviate
the issue of gradient vanishing. Among these alternatives, the so called gradient-free type
methods have recently attracted rising attention in deep learning since they may in principle
alleviate this issue by their gradient-free natures, where the alternating direction method of
multipliers (ADMM) and block coordinate descent (BCD) methods are two most popular
ones (see, (Carreira-Perpinan and Wang, 2014; Taylor et al., 2016; Kiaee et al., 2016; Yang
et al., 2016; Murdock et al., 2018; Gotmare et al., 2018; Zhang and Brand, 2017; Gu et al.,
2018; Lau et al., 2018; Zeng et al., 2019)). Besides the gradient-free nature, another ad-
vantage of both ADMM and BCD is that they can be easily implemented in a distributed
and parallel manner, and thus are capable of solving distributed/decentralized large-scale
problems (Boyd et al., 2011).

In the perspective of constrained optimization, all the BackProp (BP), BCD and ADMM
can be regarded as certain Lagrangian methods or variants for the nonlinearly constrained
formulation of DNN training problem. In (LeCun, 1988), BP was firstly reformulated as
a Lagrangian multiplier method. The fitting of nonlinear equations motivated by the for-
ward pass of the neural networks plays a central role in the development of BP. Following
the Lagrangian framework, the BCD methods for DNN training proposed by (Zhang and
Brand, 2017; Lau et al., 2018; Zeng et al., 2019; Gu et al., 2018) can be regarded as certain
Lagrangian relaxation methods without requiring the exact fitting of nonlinear constraints.
Unlike in BP, such nonlinear constraints are directly lifted as quadratic penalties to the ob-
jective function in BCD, rather than involving these nonlinear constraints with Lagrangian
multipliers. However, such a lifted treatment of nonlinear constraints in BCD as penal-
ties suffers from an inconsistent issue in the sense that the solution found by BCD cannot
converge to a solution satisfying these nonlinear constraints. To tackle this issue, ADMM,
a primal-dual method based on the augmented Lagrangian by introducing the nonlinear
constraints via Lagrangian multipliers, enables a convergent sequence satisfying the nonlin-
ear constraints. Therefore, ADMM attracted rising attention in deep learning with various
implementations (Carreira-Perpinan and Wang, 2014; Taylor et al., 2016; Kiaee et al., 2016;
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Yang et al., 2016; Gotmare et al., 2018; Murdock et al., 2018). However, most of the existing
ADMM type methods in deep learning only keep partial nonlinear constraints for the sake
of reducing the difficulty of optimization, and there are few convergence guarantees (Gao
et al., 2020).

4.3 Convergence of ADMM and challenges

Most results in the literature on the convergence of nonconvex ADMM focused on linear
constrained optimization problems (e.g. (Hong et al., 2016; Wang et al., 2019)). Following
the similar analysis of (Wang et al., 2019), (Gao et al., 2020) extended the convergence
results of ADMM to multiaffine constrained optimization problems. In the analysis of
(Hong et al., 2016; Wang et al., 2019; Gao et al., 2020), the separation of a special block of
variables is crucial for the convergence of ADMM in both linear and multiaffine scenarios.
Following the notations of (Wang et al., 2019), the linear constraint considered in (Wang
et al., 2019) is of the form

Ax +By = 0 (25)

where x := (x0, . . . , xp) includes p + 1 blocks of variables, y is a special block of variables,
A := [A0, . . . , Ap] and B are two matrices satisfying Im(A) ⊆ Im(B), where Im(·) returns
the image of a matrix. Similarly, (Gao et al., 2020) extended (25) to multiaffine constraint
of the form, A(x1, x2) + B(y) = 0, where A and B are respectively some multiaffine and
linear maps satisfying Im(A) ⊆ Im(B). Leveraging this special block variable y, the dual
variables (namely, multipliers) is expressed solely by y (Wang et al., 2019, Lemma 3), and
the amount of dual ascent part is controlled by the amount of descent part brought by the
primal y-block update (Wang et al., 2019, Lemma 5). Together with the descent quantity
arisen by the x-block update, the total progress of one step ADMM update is descent along
the augmented Lagrangian. Such a technique is in the core of analysis in (Wang et al.,
2019) and (Gao et al., 2020) to deal with some multiaffine constraints in deep learning.

However, in a general formulation of ADMM for DNN training (e.g. (5)), it is impossible
to separate such a special variable block y satisfying these requirements. Let us take a three-
layer neural network for example. Let W := {Wi}3i=1 be the weight matrices of the neural
network, and V := {Vi}3i=1 be the response matrices of the neural network and X be the
input matrix, then the nonlinear constraints are of the following form,

σ(W1X)− V1 = 0, (26a)

σ(W2V1)− V2 = 0, (26b)

W3V2 − V3 = 0, (26c)

where σ is the sigmoid activation. Note that in (26b) and (26c), W2 is coupled with V1 and
W3 is coupled with V2, respectively, so none of these four variable blocks can be separated
from the others. Although W1 in (26a) and V3 in (26c) can be separated, the image inclusion
constraint above is not satisfied. Therefore, one cannot exploit the structure in (Wang et al.,
2019; Gao et al., 2020) to study such constraints in deep learning.
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4.4 Key stones to the challenges and main idea of proof

In order to address the challenge of such nonlinear constraints σ(WiVi−1) − Vi = 0, we
introduce a local linear approximation (LLA) technique. Let us take (26) for example to
illustrate this idea. The most difficult block of variable is V1 which involves two constraints,
namely, a linear constraint in (26a), and a nonlinear constraint in (26b). Now we fix
W1,W2 and V2 as the previous updates, say W 0

1 ,W
0
2 and V 0

2 , respectively. For the update
of V1-block, we keep the linear constraint, but relax the nonlinear constraint with its linear
approximation at the previous update V 0

1 ,

σ(W 0
2 V

0
1 )− V 0

2 + σ′(W 0
2 V

0
1 )�

[
W 0

2 (V1 − V 0
1 )
]
≈ 0, (27)

assuming the differentiability of activation function σ. The other blocks can be handled in
a similar way. Taking W1 block for example, we relax the related nonlinear constraint via
its linear approximation at the previous update W 0

1 , namely, σ(W 0
1X)− V 0

1 + σ′(W 0
1X)�

((W1 −W 0
1 )X) ≈ 0. The operations of LLA on the nonlinear constraints can be regarded

as applying certain prox-linear updates (Xu and Yin, 2013) to replace the subproblems of
ADMM involving nonlinear constraints as shown in Section 3.2.

To make such a local linear approximation valid, intuitively one needs: (a) the activation
function σ is smooth enough; and (b) the linear approximation occurs in a small enough
neighbourhood around the previous updates. Condition (a) is mild and naturally satisfied
by the sigmoid type activations. But condition (b) requires us to introduce a new Lyapunov
function defined in (29) by adding to the original augmented Lagrangian a proximal control
between Vi and its previous updates. Equipped with such a Lyapunov function, we are able
to show that an auxiliary sequence converges to a stationary point of the new Lyapunov
function (see Theorem 5 below), which leads to the convergence of the original sequence
generated by ADMM (see Theorem 4 in Section 3.4). Specifically, denote {Q̂k} as

Q̂k := (Qk, {V̂ k
i }Ni=1), (28)

with V̂ k
i := V k−1

i for i = 1, . . . , N and k ≥ 1, and L̂(Q̂k) as

L̂(Q̂k) := L(Qk) +
N∑
i=1

ξi‖V k
i − V̂ k

i ‖2F (29)

for some positive constant ξi > 0 (i = 1, . . . , N) specified later in Appendix D.1.4. Then
we state the convergence of {Q̂k} as follows.

Theorem 5 (Convergence of {Q̂k}) Under conditions of Theorem 4, we have:

(a) L̂(Q̂k) is convergent.

(b) Q̂k converges to some stationary point Q̂∗ of L̂.

(c) 1
K

∑K
k=1 ‖∇L̂(Q̂k)‖2F → 0 at a O( 1

K ) rate.

Theorem 5 presents the function value convergence and sequence convergence to a sta-
tionary point at a O(1/K) rate of the auxiliary sequence {Q̂k}. By the definitions (28)
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and (29) of Q̂k and L̂ , Theorem 5 directly implies Theorem 4. As shown by the proofs in
Appendix D, the claims in Theorem 5 also hold under the more general assumptions for
Theorem 7 in Appendix B. In Theorem 5, we only give the convergence guarantee for the
proposed ADMM. It would be interesting to derive the convergence rate to highlight the
role of algorithmic parameters. We will keep in study and report the result in future work.

Our main idea of proof for Theorem 5 can be summarized as follows: we firstly es-
tablish a sufficient descent lemma along the new Lyapunov function (see Lemma 14 in
Appendix D.1), then show a relative error lemma (see Lemma 21 in Appendix D.1.5),
and later verify the Kurdyka- Lojasiewicz property ( Lojasiewicz, 1993; Kurdyka, 1998) (see
Lemma 13 in Appendix C.2) and the limiting continuity property of the new Lyapunov
function by Assumption 1, and finally establish Theorem 5 via following the analysis frame-
work formulated in (Attouch et al., 2013, Theorem 2.9). In order to prove Lemma 14, we
prove the following three lemmas, namely, a one-step progress lemma (see Lemma 15 in
Appendix D.1.1), a dual-bounded-by-primal lemma (see Lemma 18 in Appendix D.1.2),
and a boundedness lemma (see Lemma 19 in Appendix D.1.3), while to prove Lemma 21,
besides Lemmas 18 and 19, we also use the Lipschitz continuity of the activation and its
derivative by Assumption 1 in Appendix B. The proof sketch can be illustrated by Figure
5.

Figure 5: Proof sketch of convergence of ADMM.

According to Figure 5, we show the boundedness of the sequence before the establish-
ment of the sufficient descent lemma (i.e., Lemma 14). Such a proof procedure is different
from the existing ones in the literature (say, (Wang et al., 2019)), where a sequence bound-
edness is usually implied by firstly showing the (sufficient) descent lemma (Wang et al.,
2019, Lemma 6).
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5. Toy Simulations

In this section, we conduct a series of simulations to show the effectiveness of the pro-
posed ADMM in approximating and learning some natural functions including the square
function, product gate, a piecewise L1 radial function, and a smooth L2 radial function,
which play important roles in reflecting some commonly used data features (Safran and
Shamir, 2017; Shaham et al., 2018; Chui et al., 2019; Guo et al.). In particular, we
provide empirical studies to show that these important natural functions can be numer-
ically well approximated or learned by the proposed ADMM-sigmoid pair. Furthermore
we also show that the proposed ADMM-sigmoid pair is stable to its algorithmic hyper-
parameters, via comparing to the popular deep learning optimizers including the vanilla
SGD, SGD with momentum (called SGDM for short henceforth) and Adam (Kingma
and Ba, 2015). There are four experiments concerning approximation and learning tasks:
(a) approximation of square function, (b) approximation of product gate, (c) learning
of a piecewise L1 radial function, and (d) learning of a smooth L2 radial function. All
numerical experiments were carried out in Matlab R2015b environment running Win-
dows 10, Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.2GHz 3.2GH. The codes are available
at https://github.com/JinshanZeng/ADMM-DeepLearning.

5.1 Experimental settings

In all our experiments, we use deep fully connected neural networks with different depths and
widths. Throughout the paper, the depth and width of deep neural networks are respectively
the number of hidden layers and number of neurons in each hidden layer. For simplicity,
we only consider deep neural networks with the same width for all the hidden layers. We
consider both deep sigmoid nets and deep ReLU nets in the simulation. Motivated by the
existing literature (Guo et al.), the depth required for deep ReLU nets is in general much
more than that for deep sigmoid nets in the aforementioned approximation or learning tasks.
For the fairness of comparison, we consider deep ReLU nets with more hidden layers, i.e.,
the maximal depth of deep ReLU nets is 20 while that of deep sigmoid nets is only 5 or 6, as
presented in Table 2. Besides the vanilla SGD-ReLU pair (SGD (ReLU) for short), we also
consider SGD-sigmoid pair (SGD (sigmoid) for short), SGDM-ReLU pair (SGDM (ReLU)
for short), and Adam-ReLU pair (Adam (ReLU) for short) as the competitors. Similarly,
we denote by ADMM (sigmoid) the proposed ADMM-sigmoid pair.

For each experiment, our purposes are mainly two folds: excellent approximation or
learning performance, and stability with respect to initialization schemes and penalty pa-
rameters with appropriate neural network structures for the proposed ADMM-sigmoid pair.
For the first purpose, we consider deep neural networks with different depths and widths
as presented in Table 2. Moreover, for ADMM, we empirically set the regularization pa-
rameter λ = 10−6 and the augmented Lagrangian parameters βi’s as the same 1, while
for SGD methods, we empirically utilize the step exponential decay (or, called geometric
decay) learning rate schedule with the decay exponent 0.95 for every 10 epochs. For SGDM
and Adam, we use the default settings as presented in Table 2. The number of epochs in
all experiments is empirically set as 2000. The specific settings of these experiments are
presented in Table 2.
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Table 2: Experimental settings for toy simulations. Sample sizes for approximation tasks
are set as 1000, and training and test samples sizes for learning tasks are set as
1000 respectively. The notation [a : b] is denoted by the set {a, a + 1, . . . , b} for
two integers a, b. † In the case of learning the L2 radial function, ranges of depth
of deep sigmoid and ReLU nets are [2, 6] and [2, 20], respectively.

task functions
deep fully-connected NNs SGDs (sigmoid/ReLU), SGDM SGDM

Adam
ADMM

width depth learning rate (lr) batch size (momentum) (λ, β)

Approx.
x2 20× [1 : 5] [1, 5] (sigmoid), lr: 0.001

uv 60× [1 : 5] [1, 20] (ReLU) 0.1× 0.95k 50 0.5 β1: 0.9 (10−6, 1)

Learn.
(‖x‖1 − 1)+ 10× [1 : 6] per 10 epochs, β2: 0.999

g(|x|2) 100× [1 : 5] [2, 6], [2, 20] † ε: 1e-8

For the second purpose, we consider different regularization and penalty parameters
(λ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}, β ∈ {0.01, 0.1, 0.5, 1, 5, 10, 100}), as well as sev-
eral existing initialization schemes for ADMM under the optimal neural network structure
determined by the first part. Particularly, we consider the following four types of schemes
yielding six typical initializations:

(1) LeCun random initialization (LeCun et al., 1998): the components of the weight
matrix Wl at the l-th layer are generated i.i.d. according to some random distribution
with zero mean and variance 1

dl−1
, l = 1, . . . , N . Particularly, we consider two special

LeCun random initialization schemes generated respectively according to the uniform

and Gaussian distributions, i.e., Wl ∼ U([−
√

3
dl−1

,
√

3
dl−1

]) (LeCun-Unif for short)

and Wl ∼ N (0, 1
dl−1

) (LeCun-Gauss for short).

(2) Random orthogonal initialization (Saxe et al., 2014): the weight matrix W is set
as some random orthogonal matrix such that W TW = I or WW T = I. We call it
Orth-Unif (or Orth-Gauss) for short if the random matrix is generated i.i.d. according
to the uniform random (or, Gaussian) distribution.

(3) Xavier initialization (Glorot and Bengio, 2010): eachWl ∼ U([−
√

6
dl−1+dl

,
√

6
dl−1+dl

]),

l = 1, . . . , N .

(4) MSRA initialization (He et al., 2015): Wl ∼ N (0, 2
dl

), l = 1, . . . , N − 1, and

WN ∼ N (0, 1
dN

) since there is no ReLU activation for the last layer.

The default settings for initial threshold vectors in the above initialization schemes are set
to be 0. For each group of parameters, we run 20 trails for average. Specifically, for the
approximation tasks, the performance of an algorithm is measured by the approximation
error, defined as the average of these 20 trails’s mean square errors, while for the learning
tasks, the performance of an algorithm is measured by the test error, defined as the average
of the mean square errors of these trails over the test data.

5.2 Approximation of square function

In these experiments, we consider the performance of the ADMM-sigmoid pair in approx-
imating the univariate square function, that is, f(x) = x2 on [−1, 1]. The specific experi-
mental settings can be found in Table 2.
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Table 3: Experimental results of different algorithms in approximating f(x) = x2. The
standard derivation of the approximation error is presented in the parentheses.
The running time is recorded in seconds. The depth and width of the optimal
network structure in terms of approximation error is presented in the last row.

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Approx. Error 5.34e-8(2.34e-8) 3.95e-8(1.25e-8) 3.33e-8(1.46e-8) 2.46e-4(1.69e-4) 2.53e-9(1.18e-9)

Run Time (s) 26.99 41.35 38.26 3.45 9.47

(depth, width) (18,100) (15,100) (15,80) (2,60) (2,100)
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Figure 6: Effect of the depth of neural networks in approximating the square function.

A. Approximation performance of ADMM. Experiment results over the best neu-
ral network structures are presented in Table 3, and trends of approximation errors with
respect to the depth are shown in Figure 6. From Table 3, the ADMM-SGD pair can ap-
proximate the square function within very high precision, i.e., in the order of 10−9, which
is slightly better than that of competitors for deeper ReLU nets, and is much better than
the SGD-sigmoid pair with the same depth. Specifically, optimal depths for SGD (ReLU),
SGDM (ReLU) and Adam (ReLU) are 18, 15, 15, respectively, while the optimal depth for
ADMM (sigmoid) is only 2, which matches the theoretical results in approximation theory,
as shown in (Chui et al., 2019, Proposition 2). In terms of running time, ADMM (sigmoid)
with optimal network structures is generally faster than the SGDM (ReLU) and Adam
(ReLU) with optimal network structures as presented in the third row of Table 3, mainly
due to the depth required for ADMM (sigmoid) is much less than those for deep ReLU
nets SGD (ReLU), SGDM (ReLU) and Adam (ReLU). Moreover, according to Figure 6,
ADMM (sigmoid) can yield high approximation precision with less layers than the com-
petitors. These experimental results demonstrate that the proposed ADMM can embody
the advantage of deep sigmoid nets on approximating the square function, as pointed out
in the existing theoretical literature (Chui et al., 2019).
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ADMM (sigmoid): approximation of f(x) = x2
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Figure 7: Effect of parameters for ADMM in approximating the univariate square function.

B. Effect of parameters for ADMM. There are mainly two parameters for the
proposed ADMM, i.e., the model parameter λ (also called as the regularization parame-
ter) and the algorithm parameter β involved in the augmented Lagrangian (also called as
the penalty parameter). In this experiment, we consider the performance of ADMM in
approximating the univariate square function with different model and algorithmic param-
eters, under the optimal neural networks, i.e., deep fully-connected neural networks with
depth 2 and width 100. Specifically, the regularization and penalty parameters vary from
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1} and {0.01, 0.1, 0.5, 1, 5, 10, 100}, respectively. The ap-
proximation errors of ADMM with these parameters are shown in Figure 7(a). From Figure
7(a), considering the penalty parameter β, ADMM with β = 1 achieves the best perfor-
mance in most cases, as also observed in the experiments later. Thus, in practice, we can
empirically set the penalty parameter β as 1. Since λ is a model parameter, it usually has
significant effect on the performance of the proposed ADMM. From Figure 7(a), a small
regularization parameter (say, λ = 10−6) is sufficient to yield an ADMM solver with high
approximation precision.

C. Effect of initial schemes. Besides the MSRA initialization (He et al., 2015), there
are some other commonly used initial schemes such as the random orthogonal initializa-
tions (Saxe et al., 2014), LeCun random initializations (LeCun et al., 1998), and Xavier
initialization (Glorot and Bengio, 2010). Under the optimal parameter settings presented
in Table 3, the performance of the ADMM-sigmoid pair with different initialization schemes
is presented in Figure 7(b). From Figure 7(b), the proposed ADMM performs well for all
the initialization schemes. This demonstrates that the proposed ADMM is stable to the
initial scheme.
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Table 4: Experimental results of different algorithms in approximating f(u, v) = uv.

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Approx. Error 1.22e-6(3.68e-7) 3.37e-7(1.29e-7) 1.13e-6(4.37e-7) 1.13e-3(2.33e-4) 2.62e-9(1.05e-9)

Run Time (s) 66.37 54.17 46.58 9.72 17.29

(depth, width) (20,300) (18,180) (13,120) (2,240) (2,300)
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Figure 8: Effect of the depth of neural networks in approximating the product-gate function.

5.3 Approximation of product gate

In this subsection, we present experimental results in approximating the product gate func-
tion, i.e., f(u, v) = uv for u, v ∈ [−1, 1]. The specific experimental settings in approximating
the product gate function can be found in Table 2.

A. Approximation performance of ADMM. The performance of ADMM and com-
petitors is presented in Table 4, and their performance with respect to the depth is depicted
in Figure 8. From Table 4, the product gate function can be well approximated by the
ADMM-sigmoid pair with precision in the order of 10−9, which is better than those of
competitors including SGD (ReLU), SGDM (ReLU) and Adam (ReLU), even when more
hidden layers are involved in the training. It follows from Figure 8(b) and Table 4 that the
optimal depth for ADMM in approximating the product gate function is 2, which matches
the theoretical depth for the approximation of product gate as shown in (Chui et al., 2019,
Proposition 3). Similar to the case of approximating square function, the running time of
the proposed ADMM-sigmoid pair is less than the SGD type competitors for deep ReLU
nets with more hidden layers.

B. Effect of parameters of ADMM. Similar to Section 5.2 B, we also consider the
effect of parameters λ and β for ADMM under the optimal network structures, which is
presented in Figure 9(a). From Figure 9(a), the effect of the concerned parameters on
the performance of ADMM in approximating the product gate function is very similar
to that in the approximation of univariate square function. It can be observed that the
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ADMM (sigmoid): approximation of f(u,v) = uv
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Figure 9: Effect of parameters for ADMM in approximating the product-gate function.

settings of parameters with (λ = 10−6, β = 1) are empirically good for ADMM in these two
approximation tasks.

C. Effect of initial schemes. Moreover, in this experiment, we consider the per-
formance of ADMM (sigmoid) for the aforementioned six different initialization schemes.
The experimental results are shown in Figure 9(b). It can be observed in Figure 9(b) that
all the initial schemes are generally effective in yielding an ADMM solver with high preci-
sion. Among these effective initialization schemes, the LeCun type of initializations perform
slightly worse than the others. This, in some extent, also implies that the proposed ADMM
is usually stable to initial schemes.

5.4 Learning L1 radial function

In this subsection, we consider the performance of the ADMM-sigmoid pair for learning
a two-dimensional L1 radial function, i.e., f(x) = (‖x‖1 − 1)+ := max{0, ‖x‖1 − 1} for
x ∈ [r, (1 + ε)r] × [r, (1 + ε)r] for some r > 0 and ε > 0. Such an L1 radial function was
particularly considered in (Safran and Shamir, 2017). In our experiments, we let ε = 1/2
and r = 1− ε

2 in light of the theoretical studies in (Safran and Shamir, 2017). Different from
the approximation tasks in Sections 5.2 and 5.3, samples generated for the learning task
include both training and test samples, where training samples are commonly generated
with certain noise and the test samples are clean data. In these experiments, we consider
Gaussian noises with different variances.

A. Learning performance of ADMM. Optimal test errors of different algorithms
for learning the L1 radial function are presented in Table 5, where the variance of Gaussian
noise added into the training samples is 0.1. The associated test errors of these algorithms
with respect to the depth of neural networks are presented in Figure 10. From Table
5, the considered L1 radial function can be well learned by both ADMM and SGD type
methods. Specifically, the performance of the proposed ADMM is slightly better than SGD
type methods. In particular, the optimal depth of deep sigmoid nets trained by ADMM is
only 4, which is much less than those of deep ReLU nets trained by SGD type methods.
Under optimal network structures, the running time of the suggested ADMM-pair is slightly
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Table 5: Performance of different algorithms for learning L1 radial function with 0.1 Gaus-
sian noise.

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Test Error 2.48e-5(9.74e-6) 2.26e-5(7.88e-6) 2.16e-5(8.53e-6) 4.58e-5(1.59e-5) 1.69e-5(4.34e-6)

Run Time (s) 23.24 18.23 14.66 1.68 10.36

(depth, width) (17,50) (13,50) (10,50) (1,20) (4,10)
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Figure 10: Effect of the depth of neural networks in learning the L1 radial function.

less than that of SGD type methods for deep ReLU nets, due to the less depth of deep
sigmoid nets. According to Figure 10(b), the proposed ADMM performs better than SGD
for training deep sigmoid nets, and as the depth increasing, the performance of SGD gets
worse possibly due to the vanishing gradient issue, while our suggested ADMM can alleviate
the issue of vanishing gradient and thus achieve better and better performance in general
as the depth increases in our considered range of depth, i.e., {1, 2, 3, 4, 5}.

B. Effect of parameters and initialization. Under the optimal neural network
structures specified in Table 5, we consider the effect of parameters, i.e., (λ, β) for ADMM,
as well as the effect of the initialization schemes for both ADMM and SGD type methods.
The numerical results are shown in Figure 11. From Figure 11(a), we can observe that
the specific parametric setting, i.e., λ = 10−6 and β = 1, is also empirically effective in
learning L1 radial function. By Figure 11(b), the proposed ADMM performs well for all
the concerned random initialization schemes.

C. Robustness to the noise. Moreover, we consider the performance of the proposed
ADMM for training data with different levels of noise. Specifically, under the optimal
parameters specified in Table 5, we consider several levels of noise, where the variance
of Gaussian noise varies from {0.1, 0.3, . . . , 1.5}. Trends of training and test errors are
presented in Figure 12(a) and (b) respectively. From Figure 12(a), the proposed ADMM is
generally trained well in the sense that the training error almost fits the true noise level.
In this case, we can observe from Figure 12(b) that the proposed ADMM is robustness to
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Figure 11: Effect of parameters and initial schemes for ADMM in learning the L1 radial
function.
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Figure 12: Robustness of the proposed ADMM to the noise in learning L1 radial function.

the noise in the sense that the test error increases much slower than the increasing of the
variance of Gaussian noise.

5.5 Learning L2 radial function

In this subsection, we consider to learn certain smooth L2 radial function that frequently
reflects the rotation-invariance feature in deep learning (Chui et al., 2019). Specifically,
we adopt a two-dimensional smooth L2 radial function, i.e., f(x) = g(|x|2), where x ∈
[−1, 1]× [−1, 1], |x|2 :=

∑2
i=1 x

2
i , and g(t) = (1− t)5

+(8t2 + 5t+ 1) on R is some Wendland
function (Lin et al., 2019). Except the target function f , the experimental settings in these
experiments are similar to those in Section 5.4.
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Table 6: Test errors of different algorithms for learning L2 radial function with 0.1 Gaussian
noise.

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Test Error 1.68e-5(6.43e-6) 1.21e-5(5.25e-6) 1.02e-5(4.88e-6) 9.33e-5(1.42e-5) 9.28e-6(1.01e-6)

Run Time (s) 104.52 116.44 108.49 18.13 47.36

(depth, width) (16,300) (12,400) (11,400) (4,200) (5,300)

2 4 6 8 10 12 14 16 18 20

Depth

10-5

10-4

10-3

10-2

T
es

t e
rr

or

Learning of f(x) = g(|x|2)

SGD (ReLU)
SGDM (ReLU)
Adam (ReLU)

(a) Deep ReLU nets

2 3 4 5 6

Depth

10-5

10-4

10-3

10-2

T
es

t e
rr

or

Learning of f(x) = g(|x|2)

ADMM (sigmoid)
SGD (sigmoid)

(b) Deep sigmoid nets

Figure 13: Effect of the depth of neural networks in learning the L2 radial function.

A. Learning performance of ADMM. The test error of the considered algorithms
in learning such a smooth L2 radial function is presented in Table 6, while trends of test
errors with respect to the depth are shown in Figure 13. By Table 6, the considered smooth
L2 radial function can be learned by the proposed ADMM well with a small test error.
Specifically, in terms of test error, the performance of the ADMM-sigmoid pair is slightly
better than that of SGD type methods for deep ReLU nets, and the optimal depth of deep
sigmoid nets required by ADMM is much smaller than those of deep ReLU nets required
by the concerned SGD type methods. Due to less depth, the running time of ADMM is
less than that of the concerned SGD type methods for deep ReLU nets under the optimal
settings of neural networks. Moreover, from Figure 13(a), a deeper ReLU network with
about 10 layers is generally required to learn the L2 radial function with a good test error,
while from Figure 13(b), the depth of deep sigmoid nets trained by ADMM can be much
smaller (i.e., about 5) to yield a good test error.

B. Effect of parameters and initialization. In this part, we consider the effect of
parameters (i.e., λ and β) of ADMM as well as the effect of initialization for learning the
L2 radial function in the optimal settings specified in Table 6. The numerical results are
presented in Figure 14. From Figure 14(a), the effect of parameters are similar to previous
three simulations and it can be observed that the specific settings, i.e., λ = 10−6 and β = 1,
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ADMM (sigmoid): learning of f(x) = g(|x|2)
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Figure 14: Effect of parameters and initial schemes for ADMM in learning smooth L2 radial
function.
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Figure 15: Robustness of the proposed ADMM to the noise in learning L2 radial function.

are empirically effective. From Figure 14, we also observe that ADMM is effective to all the
random initialization schemes.

C. Robustness to noise. Similar to the learning of L1 radial function, we consider the
performance of the proposed ADMM for noisy training data with different levels of noise.
Specifically, the variance of the Gaussian noise added into the training samples varies from
{0.1, 0.3, 0.5, 0.7, 0.9, 1.1}. Curves of training error and test error are shown respectively in
Figure 15(a) and (b). From Figure 15, the behavior in learning L2 radial function is similar
to that in learning L1 radial function as shown in Figure 12. This demonstrates that the
proposed ADMM is also robust to noise in learning such a smooth L2 radial function.
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Table 7: Experimental settings for real-data experiments. The number of epochs for each
case is set empirically to be 200.

dataset
(training size, Network structure SGDs (sigmoid/ReLU),SGDM SGDM Adam ADMM

test size) width depth batch size learning rate (momentum) lr:0.001 (λ, β)

Earthquake (4173,4000) 20× [1 : 10] [1:6] 100 0.1× 0.95k, β1: 0.9 λ ∈ 10[−6:−2]

EYB (2432,2432) 20× [1 : 10] 1 50 per 10 epochs 0.5 β2: 0.999 β = 1
PTB (7000,7552) 64× [1 : 4] [1:10] 100 ε: 1e-8

6. Real Data Experiments

In this section, we provide three real-data experiments over the earthquake intensity database,
the extended Yale B (EYB) face recognition database and the PTB Diagnostic ECG
database, to demonstrate the effectiveness of the proposed ADMM. We choose these three
datasets since they can in some sense reflect certain features that can be well approximated
by deep sigmoid nets, and thus, the benefits of the proposed ADMM can be embodied over
these datasets. Specific experimental settings are presented in Table 7, where the penalty
parameter β is empirically set as 1 and the regularization parameter λ is chosen via cross
validation from the set {10−6, 10−5, 10−4, 10−3, 10−2} according to the previous studies of
toy simulations.

6.1 Earthquake intensity dataset

Earthquake Intensity Database is from: https://www.ngdc.noaa.gov/hazard/intintro.shtml.
This database contains more than 157,000 reports on over 20,000 earthquakes that affected
the United States from the year 1638 to 1985. For each record, the features include the
geographic latitudes and longitudes of the epicentre and “reporting city” (or, locality) where
the Modified Mercalli Intensity (MMI) was observed, magnitudes (as a measure of seismic
energy), and the hypocentral depth (positive downward) in kilometers from the surface.
The output label of each record is measured by MMI, varying from 1 to 12 in integer. An
illustration of the generation procedure of each earthquake record is shown in Figure 16(a).
In this paper, we transfer such multi-classification task into the binary classification since
this database is very unbalanced (say, there is only one sample for the class with MMI
being 1). Specifically, we set the labels lying in 1 to 4 as the positive class, while the other
labels lying in 5 to 12 as the negative class, mainly according to the damage extent of
the earthquake suggested by the referred website. Moreover, we removed those incomplete
records with missing labels. After such preprocessing, there are total 8173 effective records,
where the numbers of samples in positive and negative classes are respectively 5011 and
3162. We divide the total data set into the training and test sets randomly, where the
training and test sample sizes are 4173 and 4000, respectively. Before training, we use the
z-scoring normalization for each feature, that is, xi−µ

σ with µ and σ being respectively the
mean and standard deviation of the ith feature {xi}. The classification accuracies of all
algorithms are shown in Table 8. The effect of the depth of neural network, algorithmic
parameters, and random initial schemes are shown in Figure 16 (b)-(d) respectively.

According to Table 8, the performance of the proposed ADMM is comparable to the
state-of-the-art methods in terms of test accuracy. Specifically, the proposed ADMM is
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Table 8: Test accuracies (%) of different algorithms for earthquake intensity database. The
baseline of the test accuracy is 80.48% (Zeng et al., 2020).

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Test Acc(%) 81.24(0.45) 81.16(0.32) 81.31(0.36) 79.94(0.23) 81.26(0.31)

Run Time (s) 4.74 14.20 13.24 2.60 12.64

(depth, width) (2,120) (5,140) (4,80) (1,100) (3,80)

slightly worse than Adam, and outperforms the other competitors in terms of test accuracy,
while in terms of running time, the proposed ADMM is slightly faster than Adam and SGDM
under the associated optimal network settings, mainly because the optimal depth of the deep
sigmoid nets trained by ADMM is less than those of deep ReLU nets trained by Adam and
SGDM. Compared to the SGD counterpart for deep sigmoid nets, the performance of the
proposed ADMM is much better in terms of test accuracy. It can be observed from Figure
16(b) that the vanilla SGD may suffer from the gradient vanishing/explosion issue when
training a slightly deeper sigmoid nets (say, the depth is larger than 5) due to the saturation
of the sigmoid activation, while the proposed ADMM can avoid such saturation and thus
alleviate the gradient vanishing/explosion issue. From Figure 16(c), the proposed ADMM
with the default settings, i.e., λ = 1e-6 and β = 1 in general yields the best performance.
Moreover, it can be observed from Figure 16(d) that the proposed ADMM is stable to the
commonly used initialization schemes under the optimal neural network structure specified
in Table 8.

6.2 Extended Yale B face recognition database

In the extended Yale B (EYB) database, well-known face recognition database (Lee et al.,
2005), there are in total 2432 images for 38 objects under 9 poses and 64 illumination
conditions, where for each objective, there are 64 images. The pixel size of each image is
32×32. In our experiments, we randomly divide these 64 images for each objective into two
equal parts, that is, one half of images are used for training while the rest half of images
are used for testing. For each image, we normalize it via the z-scoring normalization. The
specific experimental settings for this database can be found in Table 7. Particularly, we
empirically use a shallow neural network with depth one and various of widths, since such
shallow neural network is good enough to extract the low-dimensional manifold feature
of this face recognition data, as shown in Table 9. The effect of network structures and
stability of the proposed ADMM to initialization schemes are shown in Figure 17(a) and
(b) respectively.

According to Table 9, the proposed ADMM achieves the state-of-the-art test accuracy
(see, Lu et al. (2020)) with a smaller width of the sigmoid nets when compared to the
concerned competitors. From Figure 17, the proposed ADMM can achieve a very high test
accuracy for most of the concerned widths of the networks and is stable to the commonly
used random initial schemes.
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(a) An illustration of earthquake data
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Figure 16: Performance of ADMM in earthquake intensity data: (a) an illustration of the
earthquake intensity data (Zeng et al., 2020); (b) the effect of depth of the neural
network for different algorithms; (c) the effect of algorithmic parameters for the
proposed ADMM; (d) the stability of the proposed ADMM to different initial
schemes.

6.3 PTB Diagnostic ECG database

An ECG is a 1D signal which is the result of recording the electrical activity of the heart
using an electrode. It is one of popular tools that cardiologists use to diagnose heart anoma-
lies and diseases. The PTB diagnostic ECG database is available at https://github.com/
CVxTz/ECG_Heartbeat_Classification and was preprocessed by (Kachuee et al., 2018).
There are 14,552 samples in total with 2 categories. The specific experimental settings for
this database can be found in Table 7. The experiment results of the proposed ADMM
and concerned competitors are presented in Table 10. The effect of network structures and
stability of the proposed ADMM to initialization schemes are shown in Figure 18(a) and
(b) respectively.
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Table 9: Performance of different algorithms for extended Yale B database. The baseline
of the test accuracy is about 96% in (Lu et al., 2020).

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Test Acc(%) 98.84(0.28) 97.18(0.28) 98.91(0.34) 98.67(0.41) 98.93(0.43)

Run Time (s) 19.78 23.99 48.92 16.95 21.36

(depth, width) (1,200) (1,200) (1,200) (1,140) (1,60)
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(b) Stability to initial schemes of ADMM

Figure 17: Performance of ADMM in extended Yale B database: (a) the effect of width
for different algorithms; (b) the stability of the proposed ADMM to different
random initial schemes.

According to Table 10, the proposed ADMM achieves the state-of-the-art test accuracy
(see, Kachuee et al. (2018)) with a less width of sigmoid nets when compared to the con-
cerned competitors. Specifically, the optimal depth of deep sigmoid nets trained by ADMM
is 4, while those of deep ReLU nets trained respectively by SGD, SGDM and Adam are 8,
7, 7. This also verifies our previous claim on the advantage of deep sigmoid nets in feature
representation. Due to less hidden layers, the proposed ADMM is slightly faster than the
SGD competitors for deep ReLU nets. From Figure 18(a), when the depth of deep sigmoid
nets is larger than 8, the performance of all considered algorithms degrades much possibly
due to the overfitting. From Figure 18(b), the proposed ADMM is stable to the commonly
used random initial schemes under the optimal neural network setting as presented in Table
10.
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Table 10: Performance of different algorithms for PTB diagnostic ECG database. The
baseline of the test accuracy is 99.20% in (Kachuee et al., 2018).

Algorithm SGD (ReLU) SGDM (ReLU) Adam (ReLU) SGD (sigmoid) ADMM (sigmoid)

Test Acc(%) 99.18(0.32) 99.16(0.28) 99.25(0.25) 96.88(0.46) 99.22(0.11)

Run Time (s) 29.82 40.77 30.83 12.28 29.17

(depth, width) (8,192) (7,192) (7,256) (3,256) (4,128)
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Figure 18: Performance of ADMM in PTB diagnostic ECG database: (a) the effect of depth
for different algorithms; (b) the stability of the proposed ADMM to different
initial schemes.
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Appendix A. Proof of Theorem 3

To prove Theorem 3, we need the following “product-gate” for shallow sigmoid nets, which
can be found in (Chui et al., 2019, Proposition 1).
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Lemma 6 Let M > 0. For any ν ∈ (0, 1) there exists a shallow sigmoid net hprod9,ν : R2 → R
with 9 free parameters bounded by O(ν−6) such that for any t, t′ ∈ [−M,M ],

|tt′ − hprod9,ν (t, t′)| ≤ ν.

Then, we can give the proof of Theorem 3 as follows.

Proof [Proof of Theorem 3] Let σ0(t) be the heaviside function, i.e., σ0(t) =

{
1, t ≥ 0
0, t < 0.

Then, σrelu(t) = tσ0(t). A direct computation yields σ(0) = 1/2 and σ′(0) = 1/4. For
0 < µ < 1/2, according to the Taylor formula

σ(µt) =
1

2
+
µt

4
+

∫ µt

0
(σ′(u)− σ′(0))du,

we have

t =
4

µ
σ(µt)− 2

µ
− 4

µ

∫ µt

0
(σ′(u)− σ′(0))du.

Therefore,∣∣∣∣t− 4

µ
σ(µt)− 4

µ
σ(0 · t)

∣∣∣∣ ≤ 4

µ

∫ µt

0
|σ′(u)− σ′(0)|du ≤ 4

µ
max
v≥0
|σ′′(v)|

∫ µt

0
udu ≤ 2µt2.

Denote

hlinear2,µ =
4

µ
σ(µt)− 4

µ
σ(0 · t).

Then for |t| ≤M , there holds

|t− hlinear2,µ (t)| ≤ 2M2
0µ, (30)

where M0 > 0 satisfying M0 + M2
0 = M . This shows that hlinear2,µ is a good approximation

of t. On the other hand, for ε, τ > 0 and A = 1
τ log 1

ε , we have

σ(At) =
1

1 + e−At
≤ 1

1 + eAτ
≤ ε, t ≤ −τ

and

|σ(At)− 1| ≤ e−Aτ

1 + e−Aτ
≤ e−Aτ ≤ ε, t ≥ τ,

showing

|σ(At)− σ0(t)| ≤ ε, t ∈ [−M0,−τ ] ∪ [τ,M0]. (31)

Since |σ(At)| ≤ 1 and |hlinear2,µ (t)| ≤ |t|+ 2M2
0µ ≤M0 +M2

0 for |t| ≤M0, we then utilize the

“product-gate” exhibited in Lemma 6 with M = M0 +M2
0 to construct a deep sigmoid net

with two hidden layers and at most 27 free parameters to approximate σrelu(t). Define

hrelu9,2,µ,ν,A(t) = hprod9,ν

(
σ(At), hlinear2,µ (t)

)
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for t ∈ [−M0,M0]. We then have from Lemma 6, (30) and (31) that for any t ∈ [−M0,−τ ]∪
[τ,M0]

|tσ0(t)− hrelu9,2,µ,ν,A(t)|
≤ |tσ0(t)− tσ(At)|+ |tσ(At)− hlinear2,µ (t)σ(At)|+ |hlinear2,µ (t)σ(At)− hrelu9,2,µ,ν,A(t)|
≤ M0ε+ 2M2

0µ+ ν

and

|hrelu9,2,µ,ν,A(t)| ≤ Cν−6, ∀t ∈ [−M,M ].

Let ε = µ = ν = ε. We have for any 0 < ε < 1/2,

|σrelu(t)− hrelu9,2,µ,ν,A(t)| ≤ (M0 + 1 + 2M2
0 )ε, t ∈ [−M0,−τ ] ∪ [τ,M0] (32)

and the free parameters of hrelu9,2,µ,ν,A(t) are bounded by max{O( 1
ε6

), 1
τ log 1

ε}. Then, setting

τ = ε7, we have

∫ M

−M
|σrelu(t)− hrelu9,2,µ,ν,A(t)|pdt =

(∫ −τ
M

+

∫ τ

−τ
+

∫ M

τ

)
|σrelu(t)− hrelu9,2,µ,ν,A(t)|p

≤ 2Mε+ 2Cτε−6 ≤ 2(M + C)ε.

This completes the proof of Theorem 3 by a simple scaling.

Appendix B. Generic convergence of ADMM without normalization

In this appendix, we consider more general settings than that in Section 3.4, where X and Y
are not necessarily normalized with unit norms, and the numbers of neurons of hidden layers
can be different, and the activation function σ can be any twice differentiable activation
satisfying the following assumptions.

Assumption 1 Let σ : R → R be a twice-differentiable bounded function with bounded
first- and second-order derivatives, namely, there exist positive constants L0(≥ 1

8), L1, L2

such that: |σ(u)| ≤ L0, |σ′(u)| ≤ L1 and |σ′′(u)| ≤ L2 for any u ∈ R. Moreover, σ is
either a real analytic (Krantz and Parks, 2002, Definition 1.1.5) or semialgebraic function
(Bochnak et al., 1998).

Besides the sigmoid activation, some typical activations satisfying Assumption 1 include
the sigmoid-type activations (Lin et al., 2019) such as the hyperbolic tangent activation.
For the abuse use of notation, in this appendix, we still use σ as any activation satisfying
Assumption 1. Before presenting our main theorem under these generic settings, we define
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the following constants:

L3 := 2(L2
1 + L2L0 + L2), (33)

γ := max
1≤i≤N

‖W 0
i ‖F , (34)

dmin := min
1≤i≤N−1

di, (35)

fmin :=
√

6
(√

3L1 + 2(L0L3)1/2(ndmin)1/4
)
, (36)

α3 :=

(
fmin

L1

)2

, (37)

C3 := max

{
max

0≤j≤N−2

2L0

√
ndj+1

γj
,

‖Y ‖F
(βN − 3)γN−1

}
, (38)

λ̃i := 3L1C3βiγ
i−3(4C3γ

i−1 + L0

√
ndi)

(
1 +

√
6L3C2

3γ
2i−2

L1(4C3γi−1 + L0

√
ndi)

)
, 2 ≤ i ≤ N − 1,

λ̄ := max
2≤i≤N−1

{
λ̃i,

1

6
(1 + 3L−1

1 L2L3γ
i−1)2C2

3γ
2(i−2)βi

}
,

λ̂ := L1β1‖X‖F (4C3 + L0

√
nd1)γ−1

(
1 +

√
2L3C3‖X‖Fγ

L1(4C3 + L0

√
nd1)

)
.

With these defined constants, we impose some conditions on the the penalty parameters
{βi}Ni=1 in the augmented Lagrangian, the regularization parameter λ, the minimal number
of hidden neurons dmin, and the initializations of {V 0

i }Ni=1 and {Λ0
i }Ni=1 as follows

βN ≥ 3.5, (39)

βN−1

βN
≥ 16γ2, (40)

βi
βi+1

≥ max
{

6
√
N(2L2

1 + (4L3 + L2)C3γ
i)γ2, 6(

√
3L1 +

√
2L3C3γi)

2γ2
}
, i = 1, . . . , N − 2,

(41)

λ ≥ max
{

12βNC
2
3γ

2N−4, λ̄, λ̂
}
, (42)

dmin ≥
(
max

{√
24N + 1L1 −

√
18L1, 0

})4
n(24L0L3)2

, (43)

‖V 0
i ‖F ≤ 3C3γ

i−1, ‖Λ0
i ‖F ≤ C3βiγ

i−1, i = 1, . . . , N. (44)

Under these assumptions, we state the main convergence theorem of ADMM as follows.

Theorem 7 Let Assumption 1 hold. Let {Qk := ({W k
i }Ni=1, {V k

i }Ni=1, {Λki }Ni=1)} be a se-
quence generated by Algorithm 1 with hki = L(‖V k−1

i − β−1
i Λk−1

i ‖max) for i = 1, . . . , N − 1.
and µkj = L(‖V k−1

j+1 − β
−1
j+1Λk−1

j+1‖max) for j = 1, . . . , N − 2, where L(·) is defined in (18).
Assume that (39)-(44) hold, then the following hold:
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(a) {L(Qk)} is convergent.

(b) {Qk} converges to a stationary point Q∗ := ({W ∗i }Ni=1, {V ∗i }Ni=1, {Λ∗i }Ni=1) of L, which
is also a KKT point (24) of problem (5), implying {W ∗i }Ni=1 is a stationary point of
problem (4) with λ′ = 2λ/n.

(c) 1
K

∑K
k=1 ‖∇L(Qk)‖2F → 0 at a O( 1

K ) rate.

Theorem 4 presented in the context is a special case of Theorem 7 with γ = 1, ‖X‖F =
‖Y ‖F = 1, ‖W 0

i ‖F = 1, i = 1, . . . , N , and the initialization strategy (7). Actually, the
initialization strategy (7) satisfies (44) shown as follows:

‖V 0
j ‖F ≤ L0

√
ndj ≤

1

2
C3γ

j−1, j = 1, . . . , N − 1, (45)

‖V 0
N‖F ≤ γ ·

1

2
C3γ

N−2 =
1

2
C3γ

N−1, (46)

‖Λ0
i ‖F = 0, i = 1, . . . , N,

where the first inequality in (45) holds by the boundedness of activation, and the second
inequality in (45) holds by the definition (38) of C3, and the inequality in (46) holds for
‖W 0

N‖F ≤ γ and (45) with j = N − 1. By the definitions (28) and (29) of Q̂k and L̂ , if we
can show that Theorem 5 holds under the assumptions of Theorem 7, then we directly yield
Theorem 7. Thus, we only need to prove Theorem 5 under the assumptions of Theorem 7.

Appendix C. Preliminaries

Before presenting the proof of Theorem 5 under the assumptions of Theorem 7, we provide
some preliminary definitions and lemmas which serve as the basis of our proof.

C.1 Dual expressed by primal

According to the specific updates of Algorithm 1, we show that the updates of dual variables
{Λki }Ni=1 can be expressed explicitly by the updates of primal variables {W k

i }Ni=1 and {V k
i }Ni=1

as in the following lemma.

Lemma 8 (Dual expressed by primal) Suppose that Assumption 1 holds. Let {Qk :=(
{W k

i }Ni=1, {V k
i }Ni=1, {Λki }Ni=1

)
} be a sequence generated by Algorithm 1. Then we have

ΛkN = V k
N − Y, ∀k ∈ N, (47)

ΛkN−1 = (W k
N )TΛkN + βN (W k

N )
T

(V k
N − V k−1

N ), (48)

Λkj = (W k
j+1)T

(
Λkj+1 � σ′(W k

j+1V
k−1
j )

)
+ βj+1(W k

j+1)T
[(

(σ(W k
j+1V

k−1
j )− σ(W k

j+1V
k
j ))

+(V k
j+1 − V k−1

j+1 )
)
� σ′(W k

j+1V
k−1
j ) + µkjW

k
j+1(V k

j − V k−1
j )/2

]
, j = N − 2, . . . , 1. (49)

Proof We firstly derive the explicit updates of {W k
i }Ni=1 and {V k

j }Nj=1, then based on these
updates, we prove Lemma 8.
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1) Wi-subproblems: According to the update (8), W k
N is updated via

W k
N = (βNV

k−1
N − Λk−1

N )(V k−1
N−1)T

(
λI + βNV

k−1
N−1V

k−1
N−1

T
)−1

. (50)

By (19), for i = 1, . . . , N − 1, we get

W k
i = W k−1

i

βih
k
i

2
V k−1
i−1 (V k−1

i−1 )
T
(
λI +

βih
k
i

2
V k−1
i−1 (V k−1

i−1 )
T
)−1

−
[(

Λk−1
i + βi(σ(W k−1

i V k−1
i−1 )− V k−1

i )
)
� σ′(W k−1

i V k−1
i−1 )

]
(V k−1
i−1 )

T
(
λI +

βih
k
i

2
V k−1
i−1 (V k−1

i−1 )
T
)−1

= W k−1
i −W k−1

i

(
I +

βih
k
i

2λ
V k−1
i−1 (V k−1

i−1 )
T
)−1

(51)

−
[(

Λk−1
i + βi(σ(W k−1

i V k−1
i−1 )− V k−1

i )
)
� σ′(W k−1

i V k−1
i−1 )

]
(V k−1
i−1 )

T
(
λI +

βih
k
i

2
V k−1
i−1 V

k−1
i−1

T
)−1

.

Particularly, when i = 1, W k
1 is updated by

W k
1 = W k−1

1

β1h
k
1

2
V0V0

T

(
λI +

β1h
k
1

2
V0V0

T

)−1

−
[(

Λk−1
1 + β1(σ(W k−1

1 V0)− V k−1
1 )

)
� σ′(W k−1

1 V0)
]
V0

T

(
λI +

β1h
k
1

2
V0V0

T

)−1

= W k−1
1 −W k−1

1

(
I +

β1h
k
1

2λ
V0V0

T

)−1

(52)

−
[(

Λk−1
1 + β1(σ(W k−1

1 V0)− V k−1
1 )

)
� σ′(W k−1

1 V0)
]
V0

T

(
λI +

β1h
k
1

2
V0V0

T

)−1

.

2) Vj-subproblems: According to (12), it holds

V k
N − Y −

[
Λk−1
N + βN

(
W k
NV

k
N−1 − V k

N

)]
= 0. (53)

By the relation ΛkN = Λk−1
N + βN

(
W k
NV

k
N−1 − V k

N

)
, (53) implies

ΛkN = V k
N − Y, ∀k ∈ N, (54)

which shows (47) in Lemma 8. Substituting the equality (54) with the index value k − 1
into (53) yields

V k
N =

1

1 + βN
V k−1
N +

βN
1 + βN

W k
NV

k
N−1. (55)

According to (11), it holds

−
[
Λk−1
N−1 + βN−1(σ(W k

N−1V
k
N−2)− V k

N−1)
]

+ (W k
N )

T
[
Λk−1
N + βN

(
W k
NV

k
N−1 − V k−1

N

)]
= 0,
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which implies

V k
N−1 = (56)

(βN−1I + βN (W k
N )

T
W k
N )−1

[
Λk−1
N−1 + βN−1σ(W k

N−1V
k
N−2)− (W k

N )
T
(

Λk−1
N − βNV k−1

N

)]
,

and together with the updates of ΛkN−1 and ΛkN in Algorithm 1 yields

ΛkN−1 = (W k
N )T

[
Λk−1
N + βN

(
W k
NV

k
N−1 − V k−1

N

)]
= (W k

N )
T
(

ΛkN + βN (V k
N − V k−1

N )
)
.

This implies (48) in Lemma 8.

By (20), for j = 1, . . . , N − 2, V k
j satisfies the following optimality condition

−
[
Λk−1
j + βj(σ(W k

j V
k
j−1)− V k

j )
]

+
βj+1µ

k
j

2
W k
j+1

T
W k
j+1(V k

j − V k−1
j )

+W k
j+1

T
[(

Λk−1
j+1 + βj+1(σ(W k

j+1V
k−1
j )− V k−1

j+1 )
)
� σ′(W k

j+1V
k−1
j )

]
= 0,

which implies

V k
j =

(
βjI +

βj+1µ
k
j

2
W k
j+1

T
W k
j+1

)−1 [
1

2
βj+1µ

k
jW

k
j+1

T
W k
j+1V

k−1
j +

(
Λk−1
j + βjσ(W k

j V
k
j−1)

)
+W k

j+1
T
(

[Λk−1
j+1 + βj+1(σ(W k

j+1V
k−1
j )− V k−1

j+1 )]� σ′(W k
j+1V

k−1
j )

)]
= V k−1

j −

(
I +

βj+1µ
k
j

2βj
W k
j+1

T
W k
j+1

)−1

V k−1
j

+

(
βjI +

βj+1µ
k
j

2
W k
j+1

T
W k
j+1

)−1 [(
Λk−1
j + βjσ(W k

j V
k
j−1)

)
+W k

j+1
T
([

Λk−1
j+1 + βj+1(σ(W k

j+1V
k−1
j )− V k−1

j+1 )
]
� σ′(W k

j+1V
k−1
j )

)]
. (57)

and together with the updates of Λkj and Λkj+1 in Algorithm 1 yields

Λkj = (W k
j+1)

T
[(

Λk−1
j+1 + βj+1

(
σ(W k

j+1V
k−1
j )− V k−1

j+1

))
� σ′(W k

j+1V
k−1
j )

]
+
βj+1µ

k
j

2
(W k

j+1)
T
W k
j+1(V k

j − V k−1
j ),

= (W k
j+1)

T
(

Λkj+1 � σ′(W k
j+1V

k−1
j )

)
+ βj+1(W k

j+1)
T
[(

(σ(W k
j+1V

k−1
j )− σ(W k

j+1V
k
j ))

+(V k
j+1 − V k−1

j+1 )
)
� σ′(W k

j+1V
k−1
j ) + µkjW

k
j+1(V k

j − V k−1
j )/2

]
.

The final equality implies (49) in Lemma 8. This completes the proof of this lemma.
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C.2 Kurdyka- Lojasiewicz property

The Kurdyka- Lojasiewicz (KL) property ( Lojasiewicz, 1993; Kurdyka, 1998) plays a crucial
role in the convergence analysis of nonconvex algorithm (see, Attouch et al. (2013)). The
following definition is adopted from (Bolte et al., 2007).

Definition 9 (KL property) An extended real valued function h : X → R∪{+∞} is said
to have the Kurdyka- Lojasiewicz property at x∗ ∈ dom(∂h) if there exist a neighborhood U
of x∗, a constant η > 0, and a continuous concave function φ(s) = cs1−θ for some c > 0
and θ ∈ [0, 1) such that the Kurdyka- Lojasiewicz inequality holds

φ′(h(x)−h(x∗))dist(0, ∂h(x)) ≥ 1, ∀x ∈ U ∩dom(∂h) and h(x∗) < h(x) < h(x∗) + η, (58)

where ∂h(x) denotes the limiting-subdifferential of h at x ∈ dom(h) (introduced in Mor-
dukhovich (2006)), dom(h) := {x ∈ X : h(x) < +∞}, dom(∂h) := {x ∈ X : ∂h(x) 6= ∅},
and dist(0, ∂h(x)) := min{‖z‖ : z ∈ ∂h(x)}, where ‖ · ‖ represents the Euclidean norm.

Proper lower semi-continuous functions which satisfy the Kurdyka- Lojasiewicz inequality
at each point of dom(∂h) are called KL functions.

Note that we have adopted in the definition of KL inequality (58) the following notational
conventions: 00 = 1,∞/∞ = 0/0 = 0. This property was firstly introduced by ( Lojasiewicz,
1993) on real analytic functions (Krantz and Parks, 2002) for θ ∈ [1

2 , 1), then was extended
to functions defined on the o-minimal structure in (Kurdyka, 1998), and later was extended
to nonsmooth subanalytic functions in (Bolte et al., 2007). In the following, we give the
definitions of real-analytic and semialgebraic functions.

Definition 10 (Real analytic, Definition 1.1.5 in (Krantz and Parks, 2002)) A func-
tion h with domain being an open set U ⊂ R and range either the real or the complex num-
bers, is said to be real analytic at u if the function f may be represented by a convergent
power series on some interval of positive radius centered at u:

h(x) =

∞∑
j=0

αj(x− u)j ,

for some {αj} ⊂ R. The function is said to be real analytic on V ⊂ U if it is real analytic
at each u ∈ V. The real analytic function f over Rp for some positive integer p > 1 can be
defined similarly.

According to (Krantz and Parks, 2002), some typical real analytic functions include
polynomials, exponential functions, and the logarithm, trigonometric and power functions
on any open set of their domains. One can verify whether a multivariable real function h(x)
on Rp is analytic by checking the analyticity of g(t) := h(x + ty) for any x,y ∈ Rp. The
following lemma shows some important properties of real analytic functions.

Lemma 11 (Krantz and Parks, 2002) The sums, products, and compositions of real
analytic functions are real analytic functions.
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Let h : Rp → R ∪ {+∞} be an extended-real-valued function (respectively, h : Rp ⇒ Rq
be a point-to-set mapping), its graph is defined by

Graph(h) := {(x, y) ∈ Rp × R : y = h(x)},
(resp. Graph(h) := {(x, y) ∈ Rp × Rq : y ∈ h(x)}),

and its domain by dom(h) := {x ∈ Rp : h(x) < +∞} (resp. dom(h) := {x ∈ Rp : h(x) 6=
∅}).

Definition 12 (Semialgebraic)

(a) A set D ⊂ Rp is called semialgebraic (Bochnak et al., 1998) if it can be represented as

D =
s⋃
i=1

t⋂
j=1

{x ∈ Rp : Pij(x) = 0, Qij(x) > 0},

where Pij , Qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t.

(b) A function h : Rp → R ∪ {+∞} (resp. a point-to-set mapping h : Rp ⇒ Rq) is called
semialgebraic if its graph Graph(h) is semialgebraic.

According to ( Lojasiewicz, 1965; Bochnak et al., 1998) and (Shiota, 1997, I.2.9, p.52),
the class of semialgebraic sets is stable under the operation of finite union, finite intersec-
tion, Cartesian product or complementation. Some typical examples include polynomial
functions, the indicator function of a semialgebraic set, and the Euclidean norm (Bochnak
et al., 1998, p.26).

Lemma 13 (KL properties of L and L̂) Suppose that Assumption 1 holds, then both L
and L̂ are KL functions.

Proof Let Q :=
(
{Wi}Ni=1, {Vi}Ni=1, {Λi}Ni=1

)
, Q̂ :=

(
Q, {V̂i}Ni=1

)
and

L1(Q) :=
1

2
‖VN − Y ‖2F +

λ

2

N∑
i=1

‖Wi‖2F +
N∑
i=1

βi
2
‖σi(WiVi−1)− Vi‖2F ,

L2(Q) :=

N∑
i=1

〈Λi, σi(WiVi−1)− Vi〉.

Then L(Q) = L1(Q)+L2(Q), L̂(Q̂) = L(Q)+
∑N

i=1 ξi‖Vi−V̂i‖2F , where ξi > 0, i = 1, . . . , N .
According to the same arguments as in the proof of (Zeng et al., 2019, Proposition 2), L1

is real analytic (resp. semialgebraic) if σi is real analytic (resp. semialgebraic). By the
closedness of real analytic (resp. semialgebraic) functions under the sum, product and com-
position (see, Krantz and Parks (2002); Bochnak et al. (1998)), we can show that L2 is also
real analytic (resp. semialgebraic) if σi is real analytic (resp. semialgebraic). Thus, L is
a finite sum of real analytic or semialgebraic functions. According to Shiota (1997), L is
a subanalytic function. By Assumption 1, L is continuous. Thus, L is a KL function by
(Bolte et al., 2007, Theorem 3.1). Since

∑N
i=1 ξi‖Vi − V̂i‖2F is polynomial, L̂ is also a KL

function by a similar argument. This completes the proof.
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Appendix D. Proofs for Theorem 5

As stated in Section 4.4, the main idea of proof of Theorem 5 is shown as follows: we firstly
establish the desired sufficient descent lemma (see, Lemma 14) via estimating the progress
made by one step update, and bounding dual by primal as well as showing the boundedness
of the sequence, then develop the desired relative error lemma (see, Lemma 21) via the
optimality conditions of all subproblems, the Lipschitz continuity of the activation as well
as the boundedness of the sequence, and finally prove this theorem via (Attouch et al., 2013,
Theorem 2.9), together with Lemma 13 and the continuous assumption of the activation.
In the following, we establish these lemmas followed by the detailed proof of Theorem 5.

D.1 Proof for Lemma 14: Sufficient descent lemma

In order to prove Theorem 5, the following sufficient descent lemma plays a key role.

Lemma 14 (Sufficient descent) Under assumptions of Theorem 7, for k ≥ 2, there holds

L̂(Q̂k) ≤ L̂(Q̂k−1)− a

(
N∑
i=1

‖W k
i −W k−1

i ‖2F +
N∑
i=1

‖V k
i − V k−1

i ‖2F

)
, (59)

where a is some positive constant specified later in (98) in Appendix D.1.4.

From Lemma 14, we establish the sufficient descent property of an auxiliary sequence
{Q̂k} instead of the sequence {Qk} itself, along a new Laypunov function L̂ but not the
original augmented Lagrangian L. This is different from the convergence analysis of ADMM
in (Wang et al., 2019) for linear constrained optimization problems, where the sufficient
descent lemma is shown for the original sequence along the augmented Lagrangian (see,
(Wang et al., 2019, Lemma 5)). In order to establish Lemma 14, the following three lemmas
are required, where the first lemma shows the progress made by one step update (called,
one-step progress lemma), the second lemma bounds the discrepancies of two successive
dual updates via those of the primal updates (called, dual-bounded-by-primal lemma), and
the third lemma shows the boundedness of the sequence (called, boundedness lemma).

D.1.1 Lemma 15: One-step progress lemma

We present the first lemma that estimates the progress made by a single update of ADMM.

Lemma 15 (One-step progress) Let Assumption 1 hold. Let
{
Qk :=

(
{W k

i }Ni=1, {V k
i }Ni=1,

{Λki }Ni=1

)}
be a sequence generated by Algorithm 1 with {hki }

N−1
i=1 and {µkj }

N−2
j=1 specified in

(21) and (22), respectively. Then for any integer k ≥ 1, the following holds

L(Qk) ≤ L(Qk−1)−
N∑
i=1

(
λ

2
‖W k

i −W k−1
i ‖2F +

βih
k
i

4
‖(W k

i −W k−1
i )V k−1

i−1 ‖
2
F

)
(60)

−
N−1∑
j=1

(
βj
2
‖V k

j − V k−1
j ‖2F +

βj+1µ
k
j

4
‖W k

j+1(V k
j − V k−1

j )‖2F

)
− 1 + βN

2
‖V k

N − V k−1
N ‖2F

+
N∑
i=1

β−1
i ‖Λ

k
i − Λk−1

i ‖2F ,
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where V k
0 ≡ X, hkN = 1 and µkN−1 = 1.

From Lemma 15, there are two key parts that contribute to the progress along the
augmented Lagrangian sequence, namely, the descent part arisen by the primal updates
and the ascent part brought by the dual updates. Due to the existence of the dual ascent
part, the convergence of nonconvex ADMM is usually very challengeable. By (60), in order
to further estimate the progress in terms of the primal updates, we shall bound these dual
ascent parts via the primal updates as shown in Lemma 18 below.

To prove Lemma 15, we firstly establish two preliminary lemmas.

Lemma 16 Given a constant c ∈ R, let fc be the function on R given by fc(u) = (σ(u)−c)2.
Then the following holds

fc(v) ≤ fc(u) + f ′c(u)(v − u) +
L(|c|)

2
(v − u)2,∀u, v ∈ R

where L(|c|) is defined in (18).

Proof According to Assumption 1, by some simple derivations, we can show |f ′′c (u)| ≤
L(|c|), ∀u ∈ R. This yields the inequality fc(v) ≤ fc(u)+f ′c(u)(v−u)+ L(|c|)

2 (v−u)2, ∀u, v ∈
R.

Note that the W k
i (i = 1, . . . , N − 1) and V k

j (j = 1, . . . , N − 2) updates involve the
following update schemes, i.e.,

W k = arg min
W

{
λ

2
‖W‖2F + βHk

σ(W ;A,B)

}
, (61)

V k = arg min
V

{
λ

2
‖V − C‖2F + βMk

σ (V ;A,B)

}
(62)

for some matrices A,B and C, positive constants λ and β. Based on Lemma 16, we provide
a lemma to estimate the descent quantities of the above two updates.

Lemma 17 Suppose that Assumption 1 holds. Let W k and V k be updated according to
(61) and (62), respectively, then

λ

2
‖W k‖2F + βHσ(W k;A,B) ≤ λ

2
‖W k−1‖2F + βHσ(W k−1;A,B) (63)

− λ

2
‖W k −W k−1‖2F −

βhk

4
‖(W k −W k−1)A‖2F ,

λ

2
‖V k − C‖2F + βMσ(V k;A,B) ≤ λ

2
‖V k−1 − C‖2F + βMσ(V k−1;A,B) (64)

− λ

2
‖V k − V k−1‖2F −

βµk

4
‖A(V k − V k−1)‖2F ,

where hk := L(‖B‖max) and µk := L(‖B‖max).
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Proof We first establish the descent inequality (63) then similarly show (64).

Let h(W ) := λ
2‖W‖

2
F + βHk

σ(W ;A,B). By Taylor’s formula, the optimality of W k, and
noting that h(W ) is a quadratic function, there holds

h(W k−1) = h(W k) +
λ

2
‖W k −W k−1‖2F +

βhk

4
‖(W k −W k−1)A‖2F ,

which implies

λ

2
‖W k−1‖2F + βHσ(W k−1;A,B)

=
λ

2
‖W k‖2F + β

(
Hσ(W k−1;A,B) + 〈∇Hσ(W k−1;A,B),W k −W k−1〉+

hk

4
‖(W k −W k−1)A‖2F

)
+
λ

2
‖W k −W k−1‖2F +

βhk

4
‖(W k −W k−1)A‖2F

≥ λ

2
‖W k‖2F + βHσ(W k;A,B) +

λ

2
‖W k −W k−1‖2F +

βhk

4
‖(W k −W k−1)A‖2F ,

where the final inequality holds by the definition (14) of Hσ(W ;A,B) = 1
2‖σ(WA)− B‖2F

and by specializing Lemma 16 with v = [W kA]ij , u = [W k−1A]ij and c = Bij for any i, j,
where [W kA]ij and [W k−1A]ij are the (i, j)-th entries of W kA and W k−1A, respectively.
This yields (63).

Similarly, we can establish the inequality (64). This completes the proof.

Based on Lemma 17, we prove Lemma 15 as follows.

Proof [Proof of Lemma 15] We establish (60) via estimating the progress for each block
update. At first, we consider the W k

N update. By (8), it is easy to show

L(W k−1
<N ,W k

N , {V k−1
j }Nj=1, {Λk−1

j }Nj=1) ≤ L(W k−1
<N ,W k−1

N , {V k−1
j }Nj=1, {Λk−1

j }Nj=1)

− λ

2
‖W k

N −W k−1
N ‖2F −

βN
2
‖(W k

N −W k−1
N )V k−1

N−1‖
2
F . (65)

By (19), W k
i (i = 1, . . . , N − 1) is updated according to (61) with λ = λ, β = βi, A = V k−1

i−1

and B = V k−1
i − β−1

i Λk−1
i . Then by Lemma 17, it holds

L(W k−1
<i ,W k

i ,W
k
>i, {V k−1

j }Nj=1, {Λk−1
j }Nj=1) ≤ L(W k−1

<i ,W k−1
i ,W k

>i, {V k−1
j }Nj=1, {Λk−1

j }Nj=1)

− λ

2
‖W k

i −W k−1
i ‖2F −

βih
k
i

4
‖(W k

i −W k−1
i )V k−1

i−1 ‖
2
F . (66)

Similarly, for the V k
j -update (j = 1, . . . , N − 2), by (20) and Lemma 17, the following holds

L({W k
i }Ni=1, V

k
<j , V

k
j , V

k−1
>j , {Λk−1

i }Ni=1) ≤ L({W k
i }Ni=1, V

k
<j , V

k−1
j , V k−1

>j , {Λk−1
i }Ni=1)

− βj
2
‖V k

j − V k−1
j ‖2F −

βj+1µ
k
j

4
‖W k

j+1(V k
j − V k−1

j )‖2F . (67)
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For the V k
N−1 and V k

N updates, by (11) and (12), we can easily obtain the following

L({W k
i }Ni=1, V

k
<N−1, V

k
N−1, V

k−1
N , {Λk−1

i }Ni=1) ≤ L({W k
i }Ni=1, V

k
<N−1, V

k−1
N−1, V

k−1
N , {Λk−1

i }Ni=1)

− βN−1

2
‖V k

N−1 − V k−1
N−1‖

2
F −

βN
2
‖W k

N (V k
N−1 − V k−1

N−1)‖2F (68)

and

L({W k
i }Ni=1, V

k
<N , V

k
N , {Λk−1

i }Ni=1) ≤ L({W k
i }Ni=1, V

k
<N , V

k−1
N , {Λk−1

i }Ni=1)

− 1 + βN
2
‖V k

N − V k−1
N ‖2F . (69)

Particularly, by the updates of Λkj (j = 1, . . . , N), we have

L({W k
i }Ni=1, {V k

j }Nj=1, {Λki }Ni=1)

= L({W k
i }Ni=1, {V k

j }Nj=1, {Λk−1
i }Ni=1) +

N∑
i=1

〈Λki − Λk−1
i , σi(W

k
i V

k
i−1)− V k

i 〉

= L({W k
i }Ni=1, {V k

j }Nj=1, {Λk−1
i }Ni=1) +

N∑
i=1

β−1
i ‖Λ

k
i − Λk−1

i ‖2F . (70)

Summing up (65)-(70) yields (60).

D.1.2 Lemma 18: Dual-bounded-by-primal lemma

By Lemma 15, how to control the amount of ascent part brought by the dual updates via
the amount of descent part characterized by the primal updates is very important. The
following lemma shows that the dual ascent quantity {‖Λkj − Λk−1

j ‖2F }Nj=1 can be bounded

by the discrepancies between two successive primal updates {‖W k
i −W

k−1
i ‖2F }Ni=1, {‖V k

i −
V k−1
i ‖2F }Ni=1, and {‖V k−1

i − V k−2
i ‖2F }Ni=1 via a recursive way.

Lemma 18 (Dual-bounded-by-primal) Let Assumption 1 hold. For any positive inte-
ger k ≥ 2, the following hold

‖ΛkN − Λk−1
N ‖F = ‖V k

N − V k−1
N ‖F , (71)

‖ΛkN−1 − Λk−1
N−1‖F ≤ ‖W

k
N‖F · ‖ΛkN − Λk−1

N ‖F + ‖Λk−1
N ‖F · ‖W k

N −W k−1
N ‖F

+ βN‖W k
N‖F · ‖V k

N − V k−1
N ‖F + βN‖W k−1

N ‖F · ‖V k−1
N − V k−2

N ‖F , (72)
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and for j = 1, . . . , N − 2,

‖Λkj − Λk−1
j ‖F ≤ L1‖W k

j+1‖F · ‖Λkj+1 − Λk−1
j+1‖F (73)

+
(
L1‖Λk−1

j+1‖F + L2‖W k−1
j+1 ‖F · ‖Λ

k−1
j+1‖F · ‖V

k−1
j ‖F

)
· ‖W k

j+1 −W k−1
j+1 ‖F

+ L1βj+1

(
‖W k

j+1‖F · ‖V k
j+1 − V k−1

j+1 ‖F + ‖W k−1
j+1 ‖F · ‖V

k−1
j+1 − V

k−2
j+1 ‖F

)
+

(
L2

1 +
µkj
2

)
βj+1‖W k

j+1‖2F · ‖V k
j − V k−1

j ‖F

+
(

(L2
1 + µk−1

j /2) · βj+1 + L2‖Λk−1
j+1‖F

)
‖W k−1

j+1 ‖
2
F · ‖V k−1

j − V k−2
j ‖F ,

where L1 and L2 are two constants specified in Assumption 1.

From Lemma 18, the amount of the dual ascent part at j-th layer is related to all
the later layers (i.e., i = j + 1, . . . , N) via a recursive way. Besides these terms {‖W k

i −
W k−1
i ‖2F }Ni=1 and {‖V k

i −V
k−1
i ‖2F }Ni=1 exist in the upper bounds, the discrepancies between

the previous two updates {‖V k−1
i − V k−2

i ‖2F }Ni=1 are also involved in the upper bounds.
This may bring some challenge to construct the Lyapunov function such that the sequence
or its variant is a descent sequence, because in this case, the augmented Lagrangian shall
not be an appropriate Lyapunov function by Lemma 15, where the amount of descent part
is only characterized by {‖W k

i −W
k−1
i ‖2F }Ni=1 and {‖V k

i − V
k−1
i ‖2F }Ni=1 without {‖V k−1

i −
V k−2
i ‖2F }Ni=1.

Proof The equality (71) follows directly from (47). By the update (48) of ΛkN−1, the
following holds

ΛkN−1 − Λk−1
N−1

= (W k
N )

T
ΛkN − (W k−1

N )
T

Λk−1
N + βN (W k

N )
T

(V k
N − V k−1

N )− βN (W k−1
N )

T
(V k−1
N − V k−2

N )

= (W k
N )

T
(ΛkN − Λk−1

N ) + (W k
N −W k−1

N )TΛk−1
N + βN (W k

N )
T

(V k
N − V k−1

N )

− βN (W k−1
N )

T
(V k−1
N − V k−2

N ),

which implies (72) directly by the triangle inequality. For j = 1, . . . , N − 2, by the update
of (49),

Λkj − Λk−1
j = (W k

j+1)
T
(

Λkj+1 � σ′(W k
j+1V

k−1
j )

)
− (W k−1

j+1 )
T
(

Λk−1
j+1 � σ

′(W k−1
j+1 V

k−2
j )

)
+ βj+1(W k

j+1)
T
[(

(σ(W k
j+1V

k−1
j )− σ(W k

j+1V
k
j )) + (V k

j+1 − V k−1
j+1 )

)
� σ′(W k

j+1V
k−1
j )

+
µkj
2
W k
j+1(V k

j − V k−1
j )

]
− βj+1(W k−1

j+1 )
T
[(

(σ(W k−1
j+1 V

k−2
j )− σ(W k−1

j+1 V
k−1
j )) + (V k−1

j+1 − V
k−2
j+1 )

)
� σ′(W k−1

j+1 V
k−2
j )

+
µk−1
j

2
W k−1
j+1 (V k−1

j − V k−2
j )

]
.
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By Assumption 1 and the triangle inequality, the above equality implies that

‖Λkj − Λk−1
j ‖F ≤ ‖(W k

j+1)
T
(

Λkj+1 � σ′(W k
j+1V

k−1
j )

)
− (W k−1

j+1 )
T
(

Λk−1
j+1 � σ

′(W k−1
j+1 V

k−2
j )

)
‖F

+ βj+1‖W k
j+1‖F

(
(L2

1 + µkj /2)‖W k
j+1‖F ‖V k

j − V k−1
j ‖F + L1‖V k

j+1 − V k−1
j+1 ‖F

)
(74)

+ βj+1‖W k−1
j+1 ‖F

(
(L2

1 + µk−1
j /2)‖W k−1

j+1 ‖F ‖V
k−1
j − V k−2

j ‖F + L1‖V k−1
j+1 − V

k−2
j+1 ‖F

)
.

Note that

‖(W k
j+1)

T
(

Λkj+1 � σ′(W k
j+1V

k−1
j )

)
− (W k−1

j+1 )
T
(

Λk−1
j+1 � σ

′(W k−1
j+1 V

k−2
j )

)
‖F

≤ ‖W k
j+1 −W k−1

j+1 ‖F ‖Λ
k
j+1 � σ′(W k

j+1V
k−1
j )‖F

+ ‖W k−1
j+1 ‖F ‖Λ

k
j+1 � σ′(W k

j+1V
k−1
j )− Λk−1

j+1 � σ
′(W k−1

j+1 V
k−2
j )‖F

≤ L1‖Λkj+1‖F ‖W k
j+1 −W k−1

j+1 ‖F + L1‖W k−1
j+1 ‖F ‖Λ

k
j+1 − Λk−1

j+1‖F
+ L2‖W k−1

j+1 ‖F ‖Λ
k−1
j+1‖F ‖V

k−1
j ‖F ‖W k

j+1 −W k−1
j+1 ‖F

+ L2‖W k−1
j+1 ‖

2
F ‖Λk−1

j+1‖F ‖V
k−1
j − V k−2

j ‖F , (75)

where the final inequality holds for

‖Λkj+1 � σ′(W k
j+1V

k−1
j )− Λk−1

j+1 � σ
′(W k−1

j+1 V
k−2
j )‖F

≤ ‖(Λkj+1 − Λk−1
j+1)� σ′(W k

j+1V
k−1
j )‖F + ‖Λk−1

j+1 � (σ′(W k
j+1V

k−1
j )− σ′(W k−1

j+1 V
k−2
j ))‖F

≤ L1‖Λkj+1 − Λk−1
j+1‖F + L2‖Λk−1

j+1‖F ‖W
k
j+1V

k−1
j −W k−1

j+1 V
k−2
j ‖F

≤ L1‖Λkj+1 − Λk−1
j+1‖F + L2‖Λk−1

j+1‖F
(
‖W k

j+1 −W k−1
j+1 ‖F ‖V

k−1
j ‖F + ‖W k−1

j+1 ‖F ‖V
k−1
j − V k−2

j ‖F
)

by Assumption 1 and the triangle inequality. Substituting (75) into (74) yields (73). This
completes the proof of this lemma.

D.1.3 Lemma 19: Boundedness lemma

Note that in the upper bounds of Lemma 18, the terms {‖W k
i − W k−1

i ‖F }Ni=1, {‖V k
i −

V k−1
i ‖F }Ni=1 and {‖V k−1

i − V k−2
i ‖2F }Ni=1 are multiplied by many other terms including

{‖W k
i ‖F }Ni=1, {‖V k

i ‖F }Ni=1, {‖Λki ‖F }Ni=1, and the locally Lipschitz constants {hki := L(‖V k−1
i −

β−1
i Λk−1

i ‖max)}N−1
i=1 and {µkj := L(‖V k−1

j+1 − β
−1
j+1Λk−1

j+1‖max)}N−2
j=1 , highly depending on the

current or previous updates. In order to make these bounds in Lemma 18 only depend on
those desired terms, the following boundedness property of the sequence is required.
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Instead of the conditions of Theorem 7, we impose the following weaker conditions:

βN ≥ 3.5, (76)

βN−1

βN
≥ 7γ2, (77)

βi
βi+1

≥ 6
(√

3L1 +
√

2L3C3γi
)2
γ2, i = 1, . . . , N − 2, (78)

λ ≥ max

{
λ̂, 12βNC

2
3γ

2N−4, max
2≤j≤N−1

λ̃j

}
, (79)

‖W 0
i ‖F ≤ γ, ‖V 0

i ‖F ≤ 3C3γ
i−1, ‖Λ0

i ‖F ≤ C3βiγ
i−1, i = 1, . . . , N. (80)

It can be seen that the conditions (76)-(78) on βi’s are slightly weaker than the conditions
(39)-(41).

Lemma 19 (Boundedness) Under Assumption 1 and the above conditions (76)-(80), for
any k ∈ N, there hold

‖W k
i ‖F ≤ γ, ‖V k

i ‖F ≤ 3C3γ
i−1, ‖Λki ‖F ≤ C3βiγ

i−1, i = 1, . . . , N, (81)

hki ≤ 4L3C3γ
i−1, i = 1, . . . , N − 1, (82)

µki ≤ 4L3C3γ
i, i = 1, . . . , N − 2, (83)

where γ := max1≤i≤N ‖W 0
i ‖F (particularly, γ = 1 in the normalized case), C3 and L3 are

specified later in (38) and (33), respectively.

The boundedness of the sequence is mainly derived by the specific updates of the algo-
rithm and the introduced `2 regularization.
Proof [Proof of Lemma 19] We first show that the boundedness condition holds for k = 1.
By the definitions of (18) and (33), it holds

L(|c|) ≤ L3|c|, ∀ |c| ≥ 1.

By the settings (21), (22) of hki and µki , and (80),

h1
i ≤ L(‖V 0

i ‖F + β−1
i ‖Λ

0
i ‖F ) ≤ L(4C3γ

i−1) ≤ 4L3C3γ
i−1, i = 1, . . . , N − 1, (84)

µ1
i ≤ L(‖V 0

i+1‖F + β−1
i+1‖Λ

0
i+1‖F ) ≤ L(4C3γ

i) ≤ 4L3C3γ
i, i = 1, . . . , N − 2, (85)

where the final inequalities in both (84) and (85) hold for 4C3γ
i−1 ≥ 1 by the definition

(38) and L0 ≥ 1
8 in Assumption 1. In the following, we show that (80) holds.

(1) On boundedness of W 1
N . By (50),

‖W 1
N‖F ≤ λ−1 · 12βNC

2
3γ

2N−3 ≤ γ,

where the last inequality follows from the assumption (79) of λ.
(2) On boundedness of W 1

i , i = N − 1, . . . , 2. By (51),

‖W 1
i ‖F ≤

(
1− λ

λ+ 18βiL3C3
3γ

3i−5

)
γ +

3L1βiC3γ
i−2(4C3γ

i−1 + L0

√
ndi)

λ
.
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To make ‖W 1
i ‖F ≤ γ, it requires λ ≥ ai+

√
a2i+4aibi
2 , where ai := 3L1βiC3γ

i−3(4C3γ
i−1 +

L0

√
ndi), and bi = 18βiL3C

3
3γ

3i−5. By the assumption (79) of λ, we have

λ ≥ ai

(
1 +

√
bi
ai

)
≥
ai +

√
a2
i + 4aibi

2
.

Thus, ‖W 1
i ‖F ≤ γ for i = 2, . . . , N − 1.

(3) On boundedness of W 1
1 . By (52),

‖W 1
1 ‖F ≤

(
1− λ

λ+ 2β1L3C3‖X‖2F

)
γ +

L1β1‖X‖F (4C3 + L0

√
nd1)

λ
.

Similarly, by the assumption of λ (79), we can show that if

λ ≥ a1

(
1 +

√
b1
a1

)
≥ a1 +

√
a2

1 + 4a1b1
2

,

where a1 := L1β1‖X‖F (4C3 + L0

√
nd1)γ−1, b1 := 2β1L3C3‖X‖2F , then ‖W 1

1 ‖F ≤ γ.
(4) On boundedness of V 1

j , j = 1, . . . , N − 2. By (57),

‖V 1
j ‖F ≤

(
1− ρj

ρj + 2L3C3γj+2

)
· 3C3γ

j−1 + (C3γ
j−1 + L0

√
ndj) +

L1γ(4C3γ
j + L0

√
ndj+1)

ρj
,

where ρj :=
βj
βj+1

. To guarantee ‖V 1
j ‖F ≤ 3C3γ

j−1, it requires

ρj ≥
b̄j +

√
b̄2j + 4āj c̄j

2āj
,

where āj = 2 − L0

√
ndj

C3γj−1 , b̄j = 2L3C3γ
j+2 + 2L3γ

3L0

√
ndj + 4L1γ

2 +
L1L0

√
ndj+1

C3γj−2 , and

c̄j = 2L1L3γ
4(4C3γ

j + L0

√
ndj+1). By the definition of C3 (38),

āj ≥
3

2
, b̄j ≤

(
4.5L1 + 3L3C3γ

j
)
γ2, c̄j ≤ 9L1L3C3γ

j+4,

where the bound on b̄j follows from the following facts

2L0

√
ndj ≤ C3γ

j−1,
L1L0

√
ndj+1

C3γj−2
≤ 1

2
L1γ

2,

and the bound on c̄j is due to L0

√
ndj+1 ≤ 1

2C3γ
j .

Thus, it yields

b̄j +
√
b̄2j + 4āj c̄j

2āj
≤ 1

3
b̄j

(
1 +

√
1 +

6c̄j

b̄2j

)
≤ 2

3
b̄j +

√
6c̄j

3

≤
(

3L1 +
√

6L1L3C3γj + 2L3C3γ
j
)
γ2,
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where the first inequality holds for āj ≥ 3
2 , and the final inequality holds for the upper

bounds of b̄j and c̄j . Thus, we show the boundedness of V 1
j under our assumptions for any

j = 1, . . . , N − 2.

(5) On boundedness of V 1
N−1. By (56),

‖V 1
N−1‖F ≤ C3γ

N−2 + L0

√
ndN−1 + 4C3γ

Nρ−1
N−1

≤ 3

2
C3γ

N−2 + 4C3γ
Nρ−1

N−1 ≤ 3C3γ
N−2

where the first inequality holds by Assumption 1 and (80), the second inequality by the
definition (38) of C3, and the final inequality is due to (77).

(6) On boundedness of V 1
N . By (55), it shows that

‖V 1
N‖F ≤

3C3γ
N−1

1 + βN
+

βN
1 + βN

γ · 3C3γ
N−2 ≤ 3C3γ

N−1.

(7) On boundedness of Λ1
N . By (47),

‖Λ1
N‖F ≤ ‖V 1

N‖F + ‖Y ‖F ≤ 3C3γ
N−1 + ‖Y ‖F ≤ C3βNγ

N−1,

where the final inequality holds by the definition (38) of C3.

(8) On boundedness of Λ1
N−1. By (48),

‖Λ1
N−1‖F ≤ 7C3βNγ

N ≤ C3βN−1γ
N−2,

where the final inequality is due to (77).

(9) On boundedness of Λ1
j , j = N − 2, . . . , 1 by induction. By (49),

‖Λ1
j‖F ≤ βj+1γ

(
2L1L0

√
ndj+1 + 7L1C3γ

j + 12L3C
2
3γ

2j
)

≤ C3βj+1γ
j+1(8L1 + 12L3C3γ

j) ≤ C3βjγ
j−1,

where the second inequality holds for 2L0

√
ndj+1 ≤ C3γ

j , and the final inequality holds
for (78).

Therefore, we have shown that (81)-(83) hold for k = 1. Similarly, we can show that
once (81)-(83) hold for some k, then they will hold for k+ 1. Hence, we can show (81)-(83)
hold for any k ∈ N recursively. This completes the proof of this lemma.
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D.1.4 Proof of Lemma 14: Sufficient descent lemma

To prove Lemma 14, we first present a key lemma based on Lemma 18 and Lemma 19. For
any k ≥ 2 and j = 1, . . . , N − 2, we denote

Ek1,j := (L1γ)N−jL−1
1 C3βNγ

N−2‖W k
N −W k−1

N ‖F

+

N−1∑
i=j+1

(L1γ)i−j(C3βiγ
i−2 + 3L−1

1 L2C
2
3βiγ

2i−3)‖W k
i −W k−1

i ‖F ,

Ek2,j := (L1γ)N−j(1 + βN )L−1
1 ‖V

k
N − V k−1

N ‖F + (L1γ)N−1−jβN−1‖V k
N−1 − V k−1

N−1‖F

+
N−2∑
i=j+1

(L1γ)i−j
(
βi + (L2

1 + 2L3C3γ
i)γ2βi+1

)
‖V k

i − V k−1
i ‖F

+ (L2
1 + 2L3C3γ

j)γ2βj+1‖V k
j − V k−1

j ‖F ,

and

Ek3,j := (L1γ)N−jβNL
−1
1 ‖V

k−1
N − V k−2

N ‖F + (L1γ)N−1−jβN−1‖V k−1
N−1 − V

k−2
N−1‖F

+
N−2∑
i=j+1

(L1γ)i−j
[
βi + (L2

1 + 2L3C3γ
i + L2C3γ

i)γ2βi+1

]
‖V k−1

i − V k−2
i ‖F

+
(
L2

1 + 2L3C3γ
j + L2C3γ

j
)
βj+1γ

2‖V k−1
j − V k−2

j ‖F .

Lemma 20 Under assumptions of Lemma 19, for any k ≥ 2, we have

‖ΛkN − Λk−1
N ‖F = ‖V k

N − V k−1
N ‖F ,

‖ΛkN−1 − Λk−1
N−1‖F ≤ C3βNγ

N−1‖W k
N −W k−1

N ‖F + γ(1 + βN )‖V k
N − V k−1

N ‖F
+ βNγ‖V k−1

N − V k−2
N ‖F ,

and for j = 1, . . . , N − 2,

‖Λkj − Λk−1
j ‖F ≤ Ek1,j + Ek2,j + Ek3,j .

Moreover, the above inequalities imply

N∑
i=1

‖Λki − Λk−1
i ‖2F ≤ α

N∑
i=1

(
‖W k

i −W k−1
i ‖2F + ‖V k

i − V k−1
i ‖2F + ‖V k−1

i − V k−2
i ‖2F

)
(86)

for some constant α > 0 specified in the proof.

Proof The bounds of ‖ΛkN −Λk−1
N ‖F and ‖ΛkN−1−Λk−1

N−1‖F are obvious by Lemma 18 and
Lemma 19. For j = 1, . . . , N − 2, by Lemma 18 and Lemma 19, it holds

‖Λkj − Λk−1
j ‖F ≤ L1γ‖Λkj+1 − Λk−1

j+1‖F + T kj+1 + Ikj ,

where T kj+1 := (L1C3βj+1γ
j+3C2

3L2βj+1γ
2j)‖W k

j+1−W
k−1
j+1 ‖F +L1γβj+1(‖V k

j+1−V
k−1
j+1 ‖F +

‖V k−1
j+1 − V

k−2
j+1 ‖F ), and

Ikj := (L2
1 + 2L3C3γ

j)βj+1γ
2‖V k

j − V k−1
j ‖F +

(
L2

1 + 2L3C3γ
j + L2C3γ

j
)
βj+1γ

2‖V k−1
j − V k−2

j ‖F .

52



On ADMM in Deep Learning: Convergence and Saturation-Avoidance

By the above inequality, we have

‖Λkj − Λk−1
j ‖F ≤ (L1γ)N−1−j‖ΛkN−1 − Λk−1

N−1‖F + (L1γ)N−2−jT kN−1

+

N−2−j∑
i=1

(L1γ)i−1
(
T kj+i + L1γI

k
j+i

)
+ Ikj .

Substituting the definitions of T kj and Ikj into this inequality and after some simplifications

yields the desired bound for ‖Λkj − Λk−1
j ‖F . Summing up all the above inequalities and

using several times of the basic inequality (
∑p

i=1 ui)
2 ≤ p

∑p
i=1 u

2
i for any u ∈ Rp yields

(86) with some positive constant α. This completes the proof.

Based on Lemma 15, Lemma 19 and Lemma 20, we prove Lemma 14 as follows.
Proof [Proof of Lemma 14] By (41) and the definition (38) of C3 , we have for j =

1, . . . , N − 2,
βj
βj+1

≥ f2
minγ

2, and

βj ≥ f2(i−j)
min γ2(i−j)βi, j < i ≤ N − 1. (87)

By (36)-(37) and (43), it holds

α3 ≥ 24N + 1. (88)

To prove this lemma, we first estimate ‖Λki − Λk−1
i ‖2F for any i = 1, . . . , N . By Lemma

20, we get

‖ΛkN − Λk−1
N ‖2F = ‖V k

N − V k−1
N ‖2F , (89)

and using the basic inequality
(∑3

i=1 ai

)2
≤ 3

∑3
i=1 a

2
i ,

‖ΛkN−1 − Λk−1
N−1‖

2
F ≤ 3C2

3β
2
Nγ

2(N−1)‖W k
N −W k−1

N ‖2F + 3γ2(1 + βN )2‖V k
N − V k−1

N ‖2F (90)

+ 3β2
Nγ

2‖V k−1
N − V k−2

N ‖2F ,

and for j = 1, . . . , N − 2, using the inequality (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i ,

‖Λkj − Λk−1
j ‖2F ≤ 2(N − j)T k1,j + 4(N − j + 1)(T k2,j + T k3,j), (91)

where

T k1,j = (L1γ)2(N−j)L−2
1 C2

3β
2
Nγ

2(N−2)‖W k
N −W k−1

N ‖2F

+
N−1∑
i=j+1

(L1γ)2(i−j)(1 + 3L−1
1 L2C3γ

i−1)2C2
3β

2
i γ

2(i−2)‖W k
i −W k−1

i ‖2F ,

T k2,j = (L1γ)2(N−j)(1 + βN )2L−2
1 ‖V

k
N − V k−1

N ‖2F + (L1γ)2(N−1−j)β2
N−1‖V k

N−1 − V k−1
N−1‖

2
F

+

N−2∑
i=j+1

(L1γ)2(i−j) [βi + (L2
1 + 2L3C3γ

i)γ2βi+1

]2 ‖V k
i − V k−1

i ‖2F

+ (L2
1 + 2L3C3γ

j)2γ4β2
j+1‖V k

j − V k−1
j ‖2F ,
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and

T k3,j = (L1γ)2(N−j)β2
NL
−2
1 ‖V

k−1
N − V k−2

N ‖2F + (L1γ)2(N−1−j)β2
N−1‖V k−1

N−1 − V
k−2
N−1‖

2
F

+
N−2∑
i=j+1

(L1γ)2(i−j) [βi + (L2
1 + 2L3C3γ

i + L2C3γ
i)γ2βi+1

]2 ‖V k−1
i − V k−2

i ‖2F

+
(
L2

1 + 2L3C3γ
j + L2C3γ

j
)2
β2
j+1γ

4‖V k−1
j − V k−2

j ‖2F .

Substituting (89), (90) and (91) into Lemma 15 and after some simplifications yields

L(Qk) +
N∑
i=1

ξi‖V k
i − V k−1

i ‖2F ≤ L(Qk−1) +
N∑
i=1

ξi‖V k−1
i − V k−2

i ‖2F (92)

−
N∑
i=1

ζi‖W k
i −W k−1

i ‖2F −
N∑
i=1

(ηi − ξi)‖V k
i − V k−1

i ‖2F ,

where

ζN =
λ

2
− 3C2

3β
−1
N−1β

2
Nγ

2(N−1) − 2L−2
1 C2

3β
2
Nγ

2(N−2)
N−2∑
j=1

β−1
j (N − j)(L1γ)2(N−j)

ζi =
λ

2
− 2(1 + 3L−1

1 L2L3γ
i−1)2C2

3β
2
i γ

2(i−2)
i−1∑
j=1

β−1
j (N − j)(L1γ)2(i−j), i = 2, . . . , N − 1,

ζ1 =
λ

2
,

ηN =
1 + βN

2
− β−1

N − 3γ2 (1 + βN )2 β−1
N−1 −

4(1 + βN )2

L2
1

N−2∑
j=1

β−1
j (N − j + 1)(L1γ)2(N−j),

ξN = 3γ2β2
Nβ
−1
N−1 +

4β2
N

L2
1

N−2∑
j=1

β−1
j (N − j + 1)(L1γ)2(N−j), (93)

ηN−1 =
βN−1

2
− 4β2

N−1

N−2∑
j=1

β−1
j (N − j + 1)(L1γ)2(N−1−j),

ξN−1 = 4β2
N−1

N−2∑
j=1

β−1
j (N − j + 1)(L1γ)2(N−1−j), (94)
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and for i = 2, . . . , N − 2,

ηi =
βi
2
− 4

[
βi + (L2

1 + 2L3C3γ
i)γ2βi+1

]2 i−1∑
j=1

β−1
j (N − j + 1)(L1γ)2(i−j)

− 4(L2
1 + 2L3C3γ

i)2γ4β2
i+1β

−1
i (N − i+ 1),

ξi = 4
[
βi + (L2

1 + 2L3C3γ
i + L2C3γ

i)γ2βi+1

]2 i−1∑
j=1

β−1
j (N − j + 1)(L1γ)2(i−j) (95)

+ 4
(
L2

1 + 2L3C3γ
i + L2C3γ

i
)2
γ4β2

i+1β
−1
i (N − i+ 1),

and η1 = β1
2 − 4(L2

1 + 2L3C3γ)2γ4β2
2β
−1
1 N , and

ξ1 = 4
(
L2

1 + 2L3C3γ + L2C3γ
)2
γ4β2

2β
−1
1 N. (96)

Based on (92), to get (59), we need to show that

ζi > 0, ηi − ξi > 0, i = 1, . . . , N. (97)

Then, let

a := min{ζi, ηi − ξi, i = 1, . . . , N}, (98)

we get (59). In the following, we show (97).
It is obvious that ζ1 = λ

2 > 0. For i = 2, . . . , N − 1, by (87),

ζi ≥
λ

2
− 2C2

3βi(1 + 3L−1
1 L2L3γ

i−1)2γ2(i−2)
i−1∑
j=1

(N − j)α−(i−j)
3

>
λ

2
− 2C2

3βi(1 + 3L−1
1 L2L3γ

i−1)2γ2(i−2) · N

α3 − 1
≥ 0,

where the final inequality is due to α3 > 24N + 1 and the assumption of λ, i.e., (42).
Similarly, we can show that ζN > 0 as follows

ζN ≥
λ

2
− βNC2

3γ
2(N−2) ·

 3

16
+

1

8

N−2∑
j=1

(N − j)α−(N−j−1)
3


>
λ

2
− βNC2

3γ
2(N−2) ·

(
3

16
+

N

8(α3 − 1)

)
>
λ

2
− 1

5
βNC

2
3γ

2(N−2) > 0.

At the end, we show ηi − ξi > 0 for i = 1, . . . , N . Note that

η1 − ξ1 =
β1

2
− 4

[
(L2

1 + 2L3C3γ)2 + (L2
1 + 2L3C3γ + L2C3γ)2

]
γ4β2

2β
−1
1 N > 0,

where we have used (41) β1
β2
≥ 4
√
N
[
L2

1 + (2L3 + L2)C3γ
]
γ2.
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For i = 2, . . . , N − 2, let α1 := (L2
1 + 2L3C3γ

i)γ2, α2 := (L2
1 + 2L3C3γ

i + L2C3γ
i)γ2.

Note that

ηi − ξi =
βi
2
− 4

[
(βi + α1βi+1)2 + (βi + α2βi+1)2

] i−1∑
j=1

β−1
j (N − j + 1)(L1γ)2(i−j)

− 4(α2
1 + α2

2)β2
i+1β

−1
i (N − i+ 1)

>
βi
2
− 4

[
(βi + α1βi+1)2 + (βi + α2βi+1)2

] i−1∑
j=1

β−1
i (N − j + 1)α

−(i−j)
3

− 4N(α2
1 + α2

2)β2
i+1β

−1
i

> βi

[
1

2
− 4N

α3 − 1

(
(1 + α1 ·

βi+1

βi
)2 + (1 + α2 ·

βi+1

βi
)2

)
− 4N(α2

1 + α2
2)

(
βi+1

βi

)2
]

=
4N

α3 − 1
βi

[
α3 − 1

8N
− 2− 2(α1 + α2) · βi+1

βi
− α3(α2

1 + α2
2) ·
(
βi+1

βi

)2
]

>
4N

α3 − 1
βi

[
α3 − 1

8N
− 2− 2(α1 + α2) · βi+1

βi
− α3(α1 + α2)2 ·

(
βi+1

βi

)2
]

≥ 0, (99)

where the final inequality follows from (41), α3 > 24N + 1, and

1 +
√

1 + α3

(
α3−1
8N − 2

)
α3−1
8N − 2

≤ 1 +
√

24N + 2 ≤ 6
√
N.

Similarly, notice that

ηN−1 − ξN−1 =
βN−1

2
− 8β2

N−1

N−2∑
j=1

β−1
j (N − j + 1)(L1γ)2(N−1−j)

≥ βN−1

2
− 8βN−1

N−2∑
j=1

(N − j + 1)α
−(N−1−j)
3

> βN−1

(
1

2
− 8N

α3 − 1

)
≥ 1

6
βN−1 > 0.

56



On ADMM in Deep Learning: Convergence and Saturation-Avoidance

Finally, note that

ηN − ξN =
1 + βN

2
− β−1

N − 3γ2β−1
N−1[(1 + βN )2 + β2

N ]

− 4

L2
1

[(1 + βN )2 + β2
N ]

N−2∑
j=1

β−1
j (N − j + 1)(L1γ)2(N−j)

≥ 1 + βN
2

− β−1
N − 3γ2β−1

N−1[(1 + βN )2 + β2
N ]

− 4β−1
N−1γ

2[(1 + βN )2 + β2
N ]

N−2∑
j=1

(N − j + 1)α
−(N−1−j)
3

>
β2
N + βN − 2

2βN
− 2(3 +

4N

α3 − 1
)(β2

N + βN + 1)β−1
N−1γ

2

≥
β2
N + βN − 2

2βN
− 19

3
(β2
N + βN + 1)β−1

N−1γ
2

> 0,

where the final inequality follows from βN ≥ 3.5, which implies

16 >
38

3
·
β2
N + βN + 1

β2
N + βN − 2

,

and (40). This completes the proof.

D.1.5 Proof of Lemma 21: Relative error lemma

In the following, we provide a lemma to show that the gradients of the augmented La-
grangian and the new Lyapunov function can be bounded by the discrepancy between two
successive updates. Such a lemma is important to show the global convergence of a descent
sequence by (Attouch et al., 2013, Theorem 2.9).

Lemma 21 Under conditions of Theorem 7, for any positive k ≥ 2, there exists some
positive constant b̄ such that

‖∇L(Qk)‖F ≤ b̄
N∑
i=1

(‖W k
i −W k−1

i ‖F + ‖V k
i − V k−1

i ‖F + ‖V k−1
i − V k−2

i ‖F ), (100)

and ‖∇L̂(Q̂k)‖F ≤ b̂‖Q̂k − Q̂k−1‖F , where b̂ =
√

3Nb and b = b̄+ 4 max1≤i≤N ξi.

Proof Note that

∇L(Qk) =

({
∂L(Qk)
∂Wi

}N
i=1

,

{
∂L(Qk)
∂Vi

}N
i=1

,

{
∂L(Qk)
∂Λi

}N
i=1

)
,
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then ∥∥∥∇L(Qk)
∥∥∥
F
≤

N∑
i=1

(∥∥∥∥∂L(Qk)
∂Wi

∥∥∥∥
F

+

∥∥∥∥∂L(Qk)
∂Vi

∥∥∥∥
F

+

∥∥∥∥∂L(Qk)
∂Λi

∥∥∥∥
F

)
. (101)

In order to bound ‖∇L(Qk)‖F , we need to bound each component of ∇L(Qk).
On

∥∥∥∂L(Qk)
∂WN

∥∥∥
F

: By the optimality condition of (8),

λW k
N + βN (W k

NV
k−1
N−1 − V

k−1
N )V k−1

N−1

T
+ Λk−1

N V k−1
N−1

T
= 0,

which implies

∂L(Qk)
∂WN

= λW k
N + βN (W k

NV
k
N−1 − V k

N )(V k
N−1)

T
+ ΛkN (V k

N−1)
T

= βN

[
(W k

NV
k
N−1 − V k

N )(V k
N−1 − V k−1

N−1)T +
(
W k
N (V k

N−1 − V k−1
N−1)− (V k

N − V k−1
N )

)
V k−1
N−1

T
]

+ Λk−1
N (V k

N−1 − V k−1
N−1)T + (ΛkN − Λk−1

N )(V k
N−1)T .

By the boundedness of the sequence (81), the above equality yields∥∥∥∥∂L(Qk)
∂WN

∥∥∥∥
F

≤ 10βNC3γ
N−1‖V k

N−1 − V k−1
N−1‖F + 3C3γ

N−2(βN + 1)‖V k
N − V k−1

N ‖F . (102)

On
∥∥∥∂L(Qk)

∂Wi

∥∥∥
F

: For i = 2, . . . , N − 1, by the optimality condition of (19),

λW k
i +

(
(βiσ(W k−1

i V k−1
i−1 )− βiV k−1

i + Λk−1
i )� σ′(W k−1

i V k−1
i−1 )

)
V k−1
i−1

T

+
βih

k
i

2
(W k

i −W k−1
i )V k−1

i−1

T
= 0,

which implies

∂L(Qk)
∂Wi

= λW k
i +

(
(βiσ(W k

i V
k
i−1)− βiV k

i + Λki )� σ′(W k
i V

k
i−1)

)
V k
i−1

T

=
(

(βiσ(W k
i V

k
i−1)− βiV k

i + Λki )� σ′(W k
i V

k
i−1)

)
V k
i−1

T

−
(

(βiσ(W k−1
i V k−1

i−1 )− βiV k−1
i + Λk−1

i )� σ′(W k−1
i V k−1

i−1 )
)
V k−1
i−1

T

− βih
k
i

2
(W k

i −W k−1
i )V k−1

i−1

T

=
[
βi

(
σ(W k

i V
k
i−1)− σ(W k−1

i V k
i−1) + σ(W k−1

i V k
i−1)− σ(W k−1

i V k−1
i−1 )

)
� σ′(W k

i V
k
i−1)

+
(
βi(V

k−1
i − V k

i ) + (Λki − Λk−1
i )

)
� σ′(W k

i V
k
i−1)

+
(
βiσ(W k−1

i V k−1
i−1 )− βiV k−1

i + Λk−1
i

)
�
(
σ′(W k

i V
k
i−1)− σ′(W k−1

i V k
i−1)

)
+
(
βiσ(W k−1

i V k−1
i−1 )− βiV k−1

i + Λk−1
i

)
�
(
σ′(W k−1

i V k
i−1)− σ′(W k−1

i V k−1
i−1 )

)]
V k
i−1

T

+
(

(βiσ(W k−1
i V k−1

i−1 )− βiV k−1
i + Λk−1

i )� σ′(W k−1
i V k−1

i−1 )
)

(V k
i−1 − V k−1

i−1 )T

− βih
k
i

2
(W k

i −W k−1
i )V k−1

i−1

T
.
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By Assumption 1 and Lemma 19, the above equality yields∥∥∥∥∂L(Qk)
∂Wi

∥∥∥∥
F

(103)

≤ 3C3γ
i−2

[
3βiC3γ

i−2

(
L2

1 + L0L2

√
ndi + 4L2C3γ

i−1 +
2

3
L3γ

)
‖W k

i −W k−1
i ‖F

+ βi

[
L2

1γ + (L1 + L2γ)(L0

√
ndi + 4C3γ

i−1)
]
‖V k

i−1 − V k−1
i−1 ‖F

+βiL1‖V k
i − V k−1

i ‖F + L1‖Λki − Λk−1
i ‖F

]
.

On
∥∥∥∂L(Qk)

∂W1

∥∥∥
F

: Similarly, by the optimality condition of (19) with i = 1,

λW k
1 +

[(
β1σ(W k−1

1 X)− β1V
k−1

1 + Λk−1
1

)
� σ′(W k−1

1 X)
]
XT +

β1h
k
1

2
(W k

1 −W k−1
1 )XT = 0,

which implies

∂L(Qk)
∂W1

= λW k
1 +

[(
β1σ(W k

1 X)− β1V
k

1 + Λk1

)
� σ′(W k

1 X)
]
XT

=
[(
β1(σ(W k

1 X)− σ(W k−1
1 X))− β1(V k

1 − V k−1
1 ) + (Λk1 − Λk−1

1 )
)
� σ′(W k

1 X)
]
XT

+
[(
β1σ(W k−1

1 X)− β1V
k−1

1 + Λk−1
1

)
� (σ′(W k

1 X)− σ′(W k−1
1 X))

]
XT

+
β1h

k
1

2
(W k−1

1 −W k
1 )XT .

The above inequality yields∥∥∥∥∂L(Qk)
∂W1

∥∥∥∥
F

≤ β1‖X‖F
(
‖X‖F · (L2

1 + L0L2

√
nd1 + 4L2C3) + 2L3C3

)
‖W k

1 −W k−1
1 ‖F

+ β1L1‖X‖F ‖V k
1 − V k−1

1 ‖F + L1‖X‖F ‖Λk1 − Λk−1
1 ‖F . (104)

On
∥∥∥∂L(Qk)

∂Vj

∥∥∥
F

(1 ≤ j ≤ N − 2): By the optimality condition of (20),

βj(V
k
j − σ(W k

j V
k
j−1)) +W k

j+1
T
[(

Λk−1
j+1 + βj+1(σ(W k

j+1V
k−1
j )− V k−1

j+1 )
)
� σ′(W k

j+1V
k−1
j )

]
− Λk−1

j +
βj+1µ

k
j

2
W k
j+1

T
W k
j+1(V k

j − V k−1
j ) = 0,

which implies

∂L(Qk)
∂Vj

= W k
j+1

T
[(

(Λkj+1 − Λk−1
j+1) + βj+1(σ(W k

j+1V
k
j )− σ(W k

j+1V
k−1
j )) + βj+1(V k−1

j+1 − V
k
j+1)

)
�σ′(W k

j+1V
k
j )
]

+W k
j+1

T
[(

Λk−1
j+1 + βj+1(σ(W k

j+1V
k−1
j )− V k−1

j+1 )
)
�
(
σ′(W k

j+1V
k
j )− σ′(W k

j+1V
k−1
j )

)]
+ (Λk−1

j − Λkj ) +
βj+1µ

k
j

2
W k
j+1

T
W k
j+1(V k−1

j − V k
j ).
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The above equality yields∥∥∥∥∂L(Qk)
∂Vj

∥∥∥∥
F

≤ βj+1γ
2
(

2C3γ
j(2L2 + L3) + L0L2

√
ndj+1

)
‖V k

j − V k−1
j ‖F (105)

+ βj+1L1γ‖V k
j+1 − V k−1

j+1 ‖F + ‖Λkj − Λk−1
j ‖F + L1γ‖Λkj+1 − Λk−1

j+1‖F .

On
∥∥∥∂L(Qk)
∂VN−1

∥∥∥
F

: By the optimality condition of (11),

βN−1(V k
N − σ(W k

N−1V
k
N−2))− Λk−1

N−1 +W k
N
T
(

Λk−1
N + βN (W k

NV
k
N−1 − V k−1

N )
)

= 0,

which implies

∂L(Qk)
∂VN−1

= βN−1(V k
N − σ(W k

N−1V
k
N−2))− ΛkN−1 +W k

N
T
(

ΛkN + βN (W k
NV

k
N−1 − V k

N )
)

= Λk−1
N−1 − ΛkN−1 +W k

N
T

(ΛkN − Λk−1
N ) + βNW

k
N
T

(V k−1
N − V k

N ).

The above equality implies∥∥∥∥∂L(Qk)
∂VN−1

∥∥∥∥
F

≤ βNγ‖V k
N − V k−1

N ‖F + ‖ΛkN−1 − Λk−1
N−1‖F + γ‖ΛkN − Λk−1

N ‖F . (106)

On
∥∥∥∂L(Qk)

∂VN

∥∥∥
F

: Similarly, by the optimality condition of (12), we get∥∥∥∥∂L(Qk)
∂VN

∥∥∥∥
F

= ‖ΛkN − Λk−1
N ‖F . (107)

Moreover, for i = 1, . . . , N , by the update of Λki , we can easily yield∥∥∥∥∂L(Qk)
∂Λi

∥∥∥∥
F

= β−1
i ‖Λ

k
i − Λk−1

i ‖F . (108)

Substituting (102)-(108) into (101), and after some simplifications, we get∥∥∥∇L(Qk)
∥∥∥
F
≤ ᾱ

N∑
i=1

(‖W k
i −W k−1

i ‖F + ‖V k
i − V k−1

i ‖F + ‖Λki − Λk−1
i ‖F ) (109)

for some ᾱ > 0. By Lemma 20, substituting these upper bounds of ‖Λki − Λk−1
i ‖F (i =

1, . . . , N) into (109) and after some simplifications implies (100) for some constant b̄.
By (100), it is easy to derive

‖∇L̂(Q̂k)‖F ≤ ‖∇L(Qk)‖F +

N∑
i=1

4ξi‖V k
i − V k−1

i ‖F

≤ b
N∑
i=1

(‖W k
i −W k−1

i ‖F + ‖V k
i − V k−1

i ‖F + ‖V k−1
i − V k−2

i ‖F )

≤ b̂‖Q̂k − Q̂k−1‖F ,

where b = b̄+ 4 max1≤i≤N ξi and b̂ =
√

3Nb. This completes the proof.
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D.2 Proof of Theorem 5

Now we provide the detailed proof of Theorem 5 based on the above lemmas.
Proof [Proof of Theorem 5]

(a) By Lemma 19, the boundedness of {Qk} implies the sequence L(Qk) is lower
bounded, and so is L̂(Q̂k) by its definition (29). By Lemma 14, L̂(Q̂k) is monotonically
non-increasing, therefore, L̂(Q̂k) is convergent.

(b) Again by Lemma 19, Q̂k is bounded, and thus there exists a subsequence Q̂kj such
that Q̂kj → Q̂∗ as j →∞. Since L̂ is continuous by Assumption 1, then limj→∞ L̂(Q̂kj ) =
L̂(Q̂∗). This implies the continuity condition in the analysis framework formulated in (At-
touch et al., 2013) holds. Together with the sufficient descent (Lemma 14), relative error
(Lemma 21) and Kurdyka- Lojasiewicz (Lemma 13) properties, the whole sequence conver-
gence to a stationary point is derived via following (Attouch et al., 2013, Theorem 2.9).

(c) The O(1/K) rate can be easily derived by Lemma 14, Lemma 20 and Lemma 21.
Specifically, by Lemma 14, it is easy to show

1

K

K∑
k=2

(‖Wk −Wk−1‖2F + ‖Vk − Vk−1‖2F ) ≤ L̂(Q̂1)− L̂(Q̂∗)
aK

, (110)

which implies

1

K

K∑
k=2

N∑
i=1

‖V̂ k
i − V̂ k−1‖2F =

1

K

K−1∑
k=1

‖Vk − Vk−1‖2F ≤
a‖V1 − V0‖2F + (L̂(Q̂1)− L̂(Q̂∗))

aK
.

(111)

By (86) in Lemma 20, (110) and (111), there holds

1

K

K∑
k=2

N∑
i=1

‖Λki − Λk−1
i ‖2F ≤ C̄ ·

a‖V1 − V0‖2F + (L̂(Q̂1)− L̂(Q̂∗))
aK

, (112)

for some positive constant C̄. By (110)–(112), and Lemma 21, it implies

1

K

K∑
k=2

‖∇L̂(Q̂k)‖2F ≤ Ĉ ·
a‖V1 − V0‖2F + (L̂(Q̂1)− L̂(Q̂∗))

aK
,

for some positive constant Ĉ. This completes the proof.
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