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In this paper, we consider unregularized online learning algorithms in a Reproducing
Kernel Hilbert Space (RKHS). Firstly, we derive explicit convergence rates of the
unregularized online learning algorithms for classification associated with a general
a-activating loss (see Definition 1 below). Our results extend and refine the results
in [30] for the least square loss and the recent result [3] for the loss function with
a Lipschitz-continuous gradient. Moreover, we establish a very general condition on
the step sizes which guarantees the convergence of the last iterate of such algorithms.
Secondly, we establish, for the first time, the convergence of the unregularized
pairwise learning algorithm with a general loss function and derive explicit rates
under the assumption of polynomially decaying step sizes. Concrete examples are
used to illustrate our main results. The main techniques are tools from convex
analysis, refined inequalities of Gaussian averages [5], and an induction approach.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let the input space X be a complete metric space and the output space Y = {£1}. In the standard

framework of learning theory [10,11,23], one considers the problem of learning from a set of examples
z ={z = (z;,y;)) € X xY :i=12,...,T} which are independently and identically distributed (i.i.d.)
according to an unknown distribution p on Z = X x ).

In the task of classification, a univariate loss function ¢(yf(z)) measures the error when f(z) is used to

predict the true label y. In this case, one aims to find a predictor in a hypothesis space to minimize the

following true (generalization) error which is defined, for a function g : X — R, by
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In contrast to the task of classification, pairwise learning problems involve a pairwise loss function ¢((y —
y')f(z,a")) for a hypothesis function f : X x X — R. Notable examples of pairwise learning tasks include
bipartite ranking [1,9,19], similarity and metric learning [6,26], AUC maximization [35], minimum error
entropy principle [12-14], and gradient learning [16-18,31]. The aim of pairwise learning is to minimize the
true error which is defined, for a pairwise function f: X x X — R, by

EN =] oltw—v)f@2")dp(z,y)dp(', ).

ZXZ

In this paper, we consider online learning algorithms for both classification and pairwise learning tasks
in a Reproducing Kernel Hilbert Space (RKHS). Specifically, let G : X x X — R be a Mercer kernel,
i.e. a continuous, symmetric and positive semi-definite kernel, see e.g. [10,23]. According to [2], the RKHS
Hq associated with kernel G is defined to be the completion of the linear span of the set of functions
{G:(") = G(z,-) : x € X} with an inner product satisfying the reproducing property, i.e., for any z’, z € X,
(Gy,Gy)e = G(z,2'). Similarly, for pairwise learning, we assume that the pairwise function f : X x X - R
is from an RKHS defined on the domain X2 := X x X with a (pairwise) kernel K : X?x X2 — R. Throughout
this paper, we consider a specific family of loss functions called a-activating loss defined as follows.

Definition 1. A function ¢ : R — R™T is called an a-activating loss with some « € (0,1] if it is convex and
differentiable, ¢'(0) < 0, and L := supg . [¢'(5) — ¢'(s)[/]5 — s]* < oc.

Our definition of a-activating loss follows [28] where the concept of the activating loss was first intro-
duced. One can find in-depth discussions in [4,34] on loss functions for classification. Typical examples of
a-activating losses includes g-norm loss [8,34] ¢(s) = (1 — s)% = max{1l — s,0}? for the support vector
machine (SVM) classification with 1 < ¢ < 2, the least square loss ¢(s) = (1 —s)? and the logistic regression
loss ¢(s) =log(1 4 e~%).

The first purpose of this paper is to study the unregularized online learning algorithm for classification
associated with a general a-activating loss defined as follows.

Algorithm 1. Given the i.i.d. generated training data z = {z; = (x;,4;) : ¢ = 1,2,...,T}, the unregularized
online learning algorithm is given by g1 = 0 and, for any 1 <t < T,

g1 = gt — 1¢ (Yege(2))y: Ga, (1.1)
where {v; > 0:t € N} is usually referred to as the step size.

Online learning algorithms for classification or regression have drawn much attention [3,21,24,29,30,32].
Most of them focused on regularized online learning algorithms, i.e. gr11 = gr — ¥e(&' (Y9t (1))t G, + Agt)-
In particular, regularized online learning with a fixed A > 0 was studied in [21] for the least square loss and
in [32] for the general loss function, and in [24,29] for a time-varying regularization, i.e. A = A(¢) > 0.

Instead, we focus on deriving explicit convergence rates of the unregularized online learning algorithms
(i.e. A =0) with a general a-activating loss. Our results extend and refine those in [30] for the least square
loss and the recent result [3, Theorem 4] for the loss function with a Lipschitz-continuous gradient. In
contrast to the results [3,30] derived with the step sizes being chosen in a special form of O(t~?), we shall
establish a very general condition on the step sizes which guarantees the convergence of the last iterate gr41
of Algorithm 1. Moreover, in the contrast to the proof in [3], we will soon see below that our new proof here
is much simpler and more powerful to handle general loss functions.

The second purpose of this paper is to study the convergence of the last iterate of the following online
pairwise learning algorithm, which is associated with an a-activating loss function and the RKHS H .
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Algorithm 2. Given the i.i.d. generated training data z = {z; = (x;,y;) : ¢ = 1,2,...,T}, the unregularized
online pairwise learning algorithm is given by f; = fo =0 and, for any 2 <t < T,

t—1

3 6 (= ) e w) = ) Kooy (12)

j=1

Jt+1= [t — ;

Online pairwise learning involves non-i.d.d. pairs of examples, which introduces more difficulty than
the analysis in the univariate case. The research in this direction was recently conducted in [15,27,33].
In particular, in [15,27] the convergence of the average of the iterates (i.e. %ZtT:'gl f+) was established in
the linear case by following online-to-batch conversion approach similar to those in the univariate case [7].
Recent work [33] focuses on Algorithm 2 with the least square loss. However, the analysis techniques there
heavily depend on the nature of the least square loss (e.g. its derivative is a linear function) and do not
apply to the general loss function.

In this paper, we establish, for the first time, the convergence of the last iterate of the unregularized
pairwise learning algorithm (Algorithm 2) with a general loss function and derive explicit rates under
the assumption of polynomially decaying step sizes. Concrete examples are used to illustrate our main
results. The main techniques are tools from convex analysis and refined inequalities related to the Gaussian
averages [5].

2. Main results

In this section, we present our main results related to Algorithms 1 and 2. The following theorem states
a general convergence result for Algorithm 1.

Theorem 1. Assume that ¢ is a-activating with some 0 < a < 1 and let {g; : t =1,...,T + 1} be given by
Algorithm 1. If the step sizes satisfy that Y ;o Y < oo, then Tlim E[E(gT+1)] exists. If, furthermore,
— 00

gn = arginfyey, E(g) ezists and Y_,° 1 = oo, then lim E[E(gri1)] = inf E(g).
T—o0 g€Ha

By the above theorem, the step sizes can be chosen in the form of v; = ¢t~? with some 6 € (HLQ, 1), and
¢ > 0. Indeed, we can further derive the explicit convergence rate for the last iterate of Algorithm 1.

Theorem 2. Assume that ¢ is a-activating with some 0 < o < 1 and gy = arginfyey, E(g) exists. Choose
step sizes vy, = ct=? with some 0 € (1_%0, 1) and ¢ > 0. Then,
—min(2f 1—
E[E(gr4+1) — E(gn)] < CoanT (%,1-0),

where the constant Cp o 1 depends on 0, o, ¢ and ||gulla (see its explicit form in the proof).

From the above theorem, the maximal rate for a-activating losses is of the form O(T~a+2) which is
achieved by choosing v, = ct~+37. When « = 1, the rate is of O(T~3) which is consistent with that in [3].
We can directly get the following examples from the above theorems, since ¢(t) = (1 —t)4 with ¢ € (1,2]
is a (¢ — 1)-activating loss and ¢(t) = log(1 + e™t) is a l-activating loss.

Example 1. Let ¢(t) = (1 — )4 with 1 < ¢ < 2 and assume that gy = arginfyey, E(g) exists. Let
{g¢:t=1,...,T + 1} be given by Algorithm 1 with step sizes 7y = ct~? with some 6 € (%, 1), and ¢ > 0.
Then,

E[8(9T+1) - g(g'H):I = O(T—Inin( (q_21)671_9)).
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Example 2. Let ¢(t) = log(1+e~") and assume that gy, = arginfyeq, £(g) exists. Let {g, : t =1,...,T+1}
be given by Algorithm 1 with step sizes 7 = ¢t~ with some 6 € (%, 1), and ¢ > 0. Then,

E[(gr+1) — E(gn)] = O(Tmn(3:1-0)),

Now we turn our attention to the convergence rates of Algorithm 2.
Theorem 3. Assume ¢ is l-activating, and fy = arginf ey, g( ) exists. Let {fy :t = 1,...,T + 1} be
given by Algorithm 2 with step sizes v = ct—? with some 6 € (%, 1) and 0 < ¢ < 41;‘%+L' Then, for any
§ € (0,min(0 — 1,1 —0)), there holds

E[E(fr+1) — E(fu)] < Cosu Tmin(—i-3,1-0-9)
where the constant Cy 5.3 depends on 0,5 and || fyllc (see its explicit form in the proof).

If, moreover, the gradient of ¢ is uniformly bounded then the rate in the above theorem can further be
improved.

Theorem 4. Under the same assumptions of Theorem 3 and further assuming |¢'(s)| < B < oo for any

s € R, then, for any d € (O,min(%, 1—10)), we have

E[E(fri1) — E(fr)] < Copp T min(i=41-0-0),
where the constant Cp 5+ depends on 0,6 and || fx||c (see its explicit form in the proof).

From the above theorem, we see that the maximal rate for Algorithm 2 associated with an a-activating
loss is arbitrarily close to O(T*é). If, moreover, the gradient of the loss function ¢ is uniformly bounded
then the maximal rate is improved to (’)(T‘é). In particular, from the above theorem, we can immediately
get the following examples since ¢(t) = (1—¢)3 and ¢(t) = log(1+e~*) are both 1-activating loss functions,
and the gradient of ¢(t) = log(1 + e~!) is uniformly bounded by one.

Example 3. Let ¢(t) = (1 —¢)2 with 1 < ¢ < 2 and assume that fy = arginfrey, E(f) exists. Let
{g; :t=1,...,T + 1} be given by Algorithm 2 with step sizes v; = ¢t~ with some 0 € (%, 1) and ¢ > 0.
Then, for any § € (0, min(6 — 3,1 — 6)), there holds

E[E(fro1) — E(fw)] = O(T mintimimm0o)),

exists. Let {g; : t =1,...,T+1}

Example 4. Let ¢(t) = log(1+e~*) and assume that fy = arginf ey, g(f
(5,1), and ¢ > 0. Then, for any

be given by Algorithm 2 with step sizes v, = c¢t~? with some 0 €

o€ (O,min(%, 1-19)),

)
1

E[g(fT-i,-l) - g(f;_[)} = O(T* min(gfg’lfgf(;)).
3. Proofs of main results

We derive some useful properties of the a-activating loss function ¢, which play critical roles in proving
main theorems. Some of them may be of interest in their own rights.
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Proposition 1. Assume that ¢ : R — R is convex and its gradient is a-Holder continuous, i.e. L =
sup [¢'(3) — ¢'(s)|/|5 — s|* < co. Then, for any s,s € R, the following properties hold true.

s,s€R

a

(a) d(s) = d(5) = ¢'(3)(s —8) < HQ\S—SIH"

(b) ¢(5) = ¢(s) + ¢'(s) ) “ﬁ; |¢'(s) = ¢/ ()] ="
) (¢
) I

(s
(s -
(¢) (#/(s) = &'(3))(s = 3) = 255519/ (s) — /(3| ="

1
(d) If, moreover, ¢(s) > 0 for any s € R, then |¢'(s )| * < WLE o(s).

Proof. Part (a) directly follows from the fact that the assumption that |¢'(s) — ¢'(5)| < L|s — 3|* and the
fact

1

8(5) = 9(5) ~ 0 @)~ %) = [(@'(0s+ (1 0)5) = S )5 - .

0

For part (b), let ¢¥5(5) = ¢(5) — ¢'(s)s. Notice that ¢;(-) is convex, differentiable and its gradient
PL(5) = ¢'(8) — ¢'(s) is a-Holder continuous. In addition, ¢(-) achieves the minimum at s since ¥ (s) = 0.
Hence, for 6 = Li,

bs(s) < (5= NP (3) — ()] (3) — &/ (s)| =)
< wsm + L3 (~H(F(B) — ()| (3) — ¢/ (s)]'=")
+ L [ (@ (3) — ¢ ()]0 (3) — ¢/ (s) =0

14a

= 1s(5) — “ﬁ; () — ¢/ (5)] =
where the second to last inequality used the fact that t4(-) satisfies part (a). By the definition of 1)(+),

re-arranging the terms in the above estimation yields the desired result of part (b).
For part (c), switching the roles of 5, s in part (b) yields that

OéL77 1ta

0(5) 2 (3) + ¢ ()(s = ) + T 10/(5) = ¢/ B .

Adding part (b) and the above inequality implies part (c).

For part (d), the case for a = 1 was proved in [22]. We generalize their proof to the general case 0 < o < 1.
Indeed, we only need to prove the case ¢/(s) # 0. For any s € R, let r = 5 — (1 + a)L) "= |¢/(s)|= Ii/(fgl
By the mean-value theorem, there exists £ in the range (s,r) (if ¢'(s) < 0) or (r,s) (if ¢’(s) > 0) such that

¢(r) = ¢(s) + ¢'(§)(r — s). Hence,

0<d(r) = ¢(s) + ¢/ (s)(r — 5) + (¢ (&) — ¢/ (5))(r — 5)
< ¢(s) + ¢'(s)(r — s) + Llr — s[|¢ — 5[
< ¢(s)+ ¢ (s)(r — s) + Llr — s'T = ¢(s) — L==|¢/(s)| ="

which completes the proof of part (d). O
8.1. Proofs for the convergence of Algorithm 1

The main idea for proving the convergence of Algorithm 1 is to derive a recursive inequality for the
sequence {R; := E[E(gt) — E(gn)] : 1 <t < T+ 1} (i.e. the relationship between R;y; and R:), and then

Please cite this article in press as: Y. Ying, D.-X. Zhou, Unregularized online learning algorithms with general loss functions,
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apply induction based on this inequality. To this end, we need to establish the boundedness of the learning
sequence {g; : t =1,2,...,T+1} generated by Algorithm 1. Throughout the paper, we use the conventional
notion that Zj k ’yJH'D‘ = 0 whenever t < k. Denote k = sup,c» \/G(z, ).

Lemma 1. Let {g: : t =1,...,T + 1} be generated by Algorithm 1. Then,

E[E(gi11)] < (14 E(91)) exp(Aa Z 1+a,

j=1
where A, = L*(1 + é)aﬁ;Q(l-‘,—a)‘

Proof. Since ¢ is convex and ¢’ is of a-Ho6lder continuous, by part (a) and part (d) of Proposition 1 we have

(Yget1(z)) < y9:(2)y(ge41(x) = 9:(2)) + 5 19041 (2) — gel)|

(

NYGz, &' (ye9:(24))y:Ge,)a + 1+a|9t+1( T) — (95)|1+a
) LK2(1+0<) 1+a

)

)
(yge(z)) aen))
—76(0 (y9: (%)) yGas @' (Y29 (24))y: G, ) + 30— ¢ (yrge (1)) |+
— (0 (y9: (2))yGaa, &' (Y90 (20)) %G, ) + Aay TS (yege ()

Taking expectation of both sides of the above inequality with respect to z = (z,y) and samples {z1, ..., z:},
and noting that g; only depends on {z1,...,2;_1}, we have

A

E[E(ge1)] < E[E(g)] —E[]l [2 ¢ (yar (e yGwdp(w,y)Hé:

+ Ao *"’E[fz 6(yg:())|dp(a.y)]

< E[€(g)] = wE|ll [z ¢ (yge(2))yGadp(a, y)H
+ Aarite (E[fz Oyg(2))dp(z,y)])
= E[£(g1)] = nE|l| [z ¢'(yge (= )szdp(%y)Hé: + Aoy T (EE(90)])”
< (14 A E[E()] — 4E[l [ ¢ o (@)uGadp(e. )] + A (3)

Consequently,
E[€(ge+1)] < (1+ Aoy T)E[E(g0)] + Aari T

The above inequality implies that

E[8(9t+1)] < H§:1(1 + Aa71‘+a)5(91) + Aa Zj‘:l HZ:jJrl(l =+ Aa'Y/iJra)'YJl—i_a
< Loy (14 AayiT)E@GL) + 35y [They (1 + Aat ™) = TThmyar (1 + Aoy ™)
= T2 (1 + Aay} ™) E(g1) + Ty (1 + Aami ™) — 1]

< (1+&(g1) exp(Aa X5 7).

This completes the proof of the lemma. O

From the above lemma, we know that if > > =1 'yjl"'a < oo then, for any t € N, there holds

]E[g(gt+1)]

IA

(1+5(91))6XP(A S mj”"‘)
Do = (1—|—5(gl))exp(A > I%HQ) < . (3.2)

IN
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One typical example of step sizes is of the form v = 7 with some 0 € (= In this case, notice that

1+a? )

Z; 27J1+a — clto Z]: ]—9(1+a) _01+a(1+z] i 1+o¢))

2cl+a

1+n¢ @
< el 4 ffs700F s < Il < et (3.3)
Hence, for any t € N,
24,1t

We now turn our attention to estimating the boundedness of E[[|g; — gx %]

Lemma 2. Assume that gy = arginf,cy, E(g) exists and let the learning sequence {g; : t =1,...,T +1} be
generated by Algorithm 1. If ZJ 1 ij'a < 00, then

t
2a
E[llgis1 — gnll%] < llgrll% + BaDE" 42,
j=1

2a

where By = k2(1 + oc)QLl%aofHa .

Proof. Notice that, since gy = arginfycy £(9),

/¢>'(ygﬂ(af))nydp(x,y) =0.
By the definition of g¢y1 in Algorithm 1, E[||gi+1 — gu||%] is therefore bounded by

Elllg: — gnll%] — 2%E[(&' (yege(2¢)) %Gy, 9 — g3)c] + VPE[ ¢ (yege ()G, |1 2]
<Elllg: — gullE] = 2B (Yr9: ()9 G, s 9 — gr)c] + VP RE (|6 (yege (1))
= Elllg: — g2 1&] — 2%E[([[¢' (yg:(2))yGa — ¢ (ygn (2))yGaldp(z,y), 9: — g3) 6]

+ ik 2E[|¢I(yt9t(33t))|2]
<E[llge — gnll&] + 72 R°E[|¢ (yeg:(2:))]?]

< Elllge — gnll2) + 2252 (B (yege(e))| 5°]) 757 (3.5)

where the second to last inequality used the fact, by part (c¢) of Proposition 1,

([1¢' (yge(2)yGa — &' (yga (x))yGaldp(z, ), gt — gu)c
= [16'(yg:(x)) — &' (ygn(@))]y(g:(x) — g (x))dp(x,y) > 0.

1
Also, by part (d) of Proposition 1, we have |q5’(ytgt(xt))|HTa (L d(y:g:(x¢)). Putting this back

[e%

IA

into (3.5), we know from (3.2) that

2a

Elllger1 — g3llE] < Elllge — gnllz] +vis 2““"7“”[1E(5(9t))] e

alta

Ellg: — gullg] + i 2“”1%@ )

which directly yields the desired result. This completes the proof of the lemma. O
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_ 2a
Denote Do = |lgull% + BaD® Z(;il ’yjz. Then, if the step sizes are in the form of v, = 5 with

e (1+a’ )7 then, by (34),

2a 1 .
E[llg: — gnll%] < lgnlE + 2BaD&" 3521 57

2c
_ 2 T+
Doo < |lgullg; + 22 5ph=—. (3.6)

IN

We are now in a position to prove the main theorems for Algorithm 1.

Proof of Theorem 1. By (3.1) and (3.2), we have

E[E(gi+1)] <E[E(g:)] - %E[II /¢’(y9t(w))nydp(x7y)llé] + Aa(14 Doo)yi +e. (3.7)

The above inequality implies that
E[E(gi+1)] < E[E(g:)] + Aa(l + Do)yt

Consequently, for any fixed ¢t < T,
E[E(gr+1)] <E[E(g:)] + Aa(l + Do Zv““

This means that lim7_E[E(gr1)] < E[€(g:)] + Aal(l + DOO)Z;’Ot%Ha’ which also implies, since
S22 T < oo, that

im0 B[E(gr41)] < lim, oo {E[€(g1)] + Aa(1+ Do Zwi*“}—llmmo [£(g1)]-

Hence, € := lim;_, o, E[S(gt)] exists and, apparently, infgyey, £(g) < e < Dy < oo where the last inequality
follows from equation (3.2). This completes the proof for the first part of the theorem.

Now it remains to prove, if we further assume that gy = arginfg ey, £(g) exists and Zj’;l v; = oo, that
e = infyen, £(g). Let us assume, on the contrary, that ey = ¢ — infgep, E(g) > 0. Let Ry := E[E(g)] —
infyey, £(g) for any ¢ € N. In this case, there exists ¢; such that, for any ¢ > ¢, R, > 5. However, from
(3.7), we know that

Rip1 <Ry — %E[H/¢’(ygt($))szdp($,y)HZ] + Aa(14 Do)yt (3-8)

By the convexity of ¢,

E(ge) — E(gn) < [z ¢ (yge(x))y(ge(2) — gu(x))dp(z,y)
([5 ¢ (yge(2))yGadp(z,y), 9t — 93

1
< Il [z &' (yge (@) yGadp(z, 9) 1] * lg: — g2l c-

A

— 2a
Also, observe that Do, = |lgu||% + BaDad® Z] 173 < oo, since Z] 1 ~yj1+a < oo and «a < 1. This implies
that
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R? R?
E[ /¢'(ygt(w))medp(m,y) 2} > > =t
y lo) = 25— gulie] > B

Putting this back into (3.8) yields that

Rip1 < Ry — %R} /Doc + Aa(1 + Do)y 7. (3.9)
This means that
liTlqT—><>o 23;1 'YtR%/Doo <R’ +Aa(1 )Zt 1'71+a
< R+ Aol 4 Doo) Y02, 77 <

However, Zt e R? /Dy > 5 Zt +, Y, which implies, by the assumption that e = oo, that

hmTaoo Z ’Yth /D > 4— Z Y& =

Oot t1

This leads to a contradiction. Hence, ¢ = lim;_, o, R; = 0. This completes the proof the theorem. O
We now turn our attention to proving Theorem 2 by an induction based on the recursive inequality (3.9).

Proof of Theorem 2. We prove the theorem from the recursive inequality (3.9). Since v, = ;5 with some

0 e (1+a’]‘) inequalities (3.4) and (3.6) hold true. Let 8 = min(2Z,1 — ), and choose
2c mln(g 9) min(1+g),l) _00 D
D= {Dm, : 25 ) (28D 20:) 2o | JAL(1+ Do aDm}.
max (Doo) ( ) B + \/ 1+ )e
Denote

20D1
to = | 2(==)e+5 | .
’ {(Dm) J

By the definition of D and £, we know that D > 2= and 0 < § + 3 < 1 which further implies that t, > 4.
Since
'}

|

D> maX{Dm, (gc )mm(% 0)(25Dw)min(1+%,

we have

D D
E[£(g:) — £(gn)] < Do < 5 < 75, Vi <ty
0
Now we assume that R; < t% for some t € N and ¢t > t; and we are going to prove that R;y; < —(tﬁ)ﬁ by
induction.
N D40
To this end, let F(x) := x — v42?/Do and notice that F is increasing when z € (0, Z2L]. Observe

N i
that t > tg > (QDC—D) 9+ which implies that t% € (0, D ) Combining this with (3.9) and the induction

assumption R, < Z (ie. R, € (0, DQL@JG)), we have
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Riy1 € F(R) + Aa(1+ Do)yt ™ < F(B) + Aa(1 + Do)y e
< D [1 — (2 - Aa(1+%oo)c1+“ t2570a)t7975}

S 5 Do
<D [1 B (% _ Aa(1+%oo)cl+a)t_9—5}7 (3.10)

where the last inequality used that fact 23 —6a < 0. By the definition of D, D > DT‘” + \/Aa (14 Doo)c® Do
which implies that % - M > 1. Putting this back into (3.10) yields that

R

\ /\

2] <!

m|b

-

Dit—1, D, t s D
() =505 T+ 1P

where the second inequality used the fact that 8 + 5 < 1. This completes the proof of the theorem. O
3.2. Proofs for the convergence of Algorithm 2

In this subsection, we prove the main theorems related to Algorithm 2. The main idea is to derive a
recursive inequality on the sequence {R; := E[E(f;) — E(fn)] : 1 <t < T +1} (i.e. the relationship between
Ri11 and Ry), and then conduct a smart induction based on this inequality. To do this, let us establish
some useful lemmas. Denote & = sup, zcxxx VK ((7,7), (z,7)).

Lemma 3. Assume ¢ is 1-activating and fy = arginf repy, g(f) exists. Let {fy : t =1,...,T+1} be generated
by Algorithm 2. Then

t
B[l fear = ullic] < [Ifullic + 2033+ ) exp((2+ 328'L%) Y 3),
j=2

where o = [ [0/ = D fuler. D)Ko [ ol )o@ D).
zZ Z

Proof. E[||fis1 — ful%] is bounded by

t—1
E(ll fe — fullk] + (tz—*l)zE[HZ; &' ((ye — yi) fe(xe, 25) (e — Yi) Kz, ) ||i(]
Jj=
t—1

— ZLR[> ¢ (e — yi) fr(we, ) (e — ) (Fe(@e, 25) — Frlr,25))]. (3.11)

=1

Noting that //¢’((y — ) (2, 7)) K (55 dp(x,y)dp(Z,y) = 0, we have
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ED (e — ) Folarn ) e — ) (i (o) — Fral ;)]
j=1
t—1
= —]E[Z[éﬁ/((yt —yi)fe(we, v5)) — & (e — i) fre(@e, @) (e — y) (fe(@e, 25) — fru(ae, 25))]

J

=

t—1

—E[> &' ((ve = yi) fre(@e, ) (e — y3) (e (e, 25) — frule, 25))]
j=1
Z(b' — i) fa(@e, 25)) (e — y5) (Fr (e, 25) — fi(@e, 25))]

—

Jj=
t—

Z¢ Yy = i) (@, 2)) (Y = Y1) Ko,y fu = f1) ]

D=

< 2T — b < (¢ = DEllf — full3] + 2.

_ 2
Also, E[[|3202) ¢/ (v — y;) (24, 2)) (Wt — 4j) K (1.0,)|| 5] can be bounded by

||z — ) folwn25) = & (e — up) Foulee ) W0 — 1) Koy |13
+ Q]E[HZ O ((ye — ) fru(e, 25)) (ye — yj)K(wt,xj)Hi(]

< B2RLA(t = 1) fi — full +8(t — D)o,
Putting these two estimates into (3.11), we have

(847 +2)03,

E[llfis - fulli] < (1 + G2RAL2 + 22)B[If — fulli] + 212

Therefore,

E[|fr1 = frll] < [Tj=o(1 + (B2R*L* + 2)77) I fel%

+ 03 30y Ty (14 (32R4 L2 + 2)07) [897 + +24]

exp((32E4L2+2)z o) Il

+ sty Yy [[They (1+ (328 L2 + 2)92) — [They (1 + (327112 + 2)02)|
+ UH ijz Hk:j+1(1 + (32R1L% + 2)’Yk)jT1

< exp((2+ 3271 L%) X0, 77) [l fli + 203,(3 + Int)].

IN

This completes the proof of the lemma. O
From the above lemma, we know if 74 = ;5 with some 6 € (%, 1). Then,

2+ 32R1L2)c?
B[~ fuli] < Boi= exp(EIE LI e 42033+ ), (3.12)
The next lemma estimates the boundedness of the learning sequence under the RKHS norm.

Lemma 4. Let ¢ be 1-activating and {f; : t = 1,...,T + 1} be given by Algorithm 2. If vk> < i for any
t € N then
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I ferrllx < Dy = Cy

where Cy = /Lsg if there exists so € R such that ¢'(so) = 0, and Cy = /26(0) + w otherwise.
Proof. Write

nnm&—umm+unwz L0 (e = v Felwe, ©)) 9 = Y) K o [
— BT (e — ) felwe, ) (e — y5) ol 25)
HﬁM+ﬁﬂZtﬂM%Wﬂ%7%m&me
=26/ (g = ) e, ) (e = vy) e, ,)|
< el + e Supscr [4(6 (5)) 32 — 26/ (s)s].

Therefore, the desired result follows directly from the following claim:

~ 1

sup[4(¢/(s))*ver® — 24/ (s)s] < C3, if yR? < —. (3.13)
seR 4L

To prove (3.13), we discuss the following two cases.

Case 1: ¢'(s) < 0 for any s € R. Firstly, consider s > 0. By the convexity of ¢, —s¢’(s) < ¢(0)—o(s) < ¢(0).

In addition, ¢'(0) < ¢'(s) < 0. Hence, for s > 0, there holds

(¢'(0))?
L

40 (5))*uh® = 2¢/(s)s < 4(¢/(5))*1R” + 26/(0) < +2¢(0). (3.14)

Secondly, consider s < 0 which implies s¢’(0) > 0. Since ¢'(-) is Lipschitz continuous, part (c¢) of
’ ’ 2 / / 2
Proposition 1 implies that (¢/(s) — ¢/(0))s > 2 (S)_L¢ @) — ¢ (5)‘_L‘¢ @D” Therefore, for s < 0, we have

A(¢ (5))*1eR® — 2(¢'(s) — ¢(0))s
4(¢/(8))2%%2 _ 2(|¢'(5)|£|¢'(0)|)2
(¢l(5))2 _ 2(|¢/(S)|—|¢/(0)|)2

A(¢' () 1R? — 29/ (s)s

INIA

IN

—ﬂW@IﬂMH) + AL < 2O (3.15)

Combining the above estimates (3.14) and (3.15) yields that

s [4(6/(5))? ~ 26()s] < 20(0) + 2

Case 2: ¢'(s1) > 0 for some s; € R. Since ¢’ is increasing and ¢’(0) < 0 by assumption, therefore s; must
be positive and there exists sgp > 0 such that ¢'(sg) = 0. Hence, by part (b) of Proposition 1, we have

A(¢!(5))?uR? — 29 (s)s = 4(¢'(s))*nR? — 2(¢(s) — ¢'(s0)) (s — s0) — 2509 (5)
< A (9))*uR® — F(/(s) — ¢/ (50))% — 2509/ (5)

(4R — 3)(¢'())* — 2509/ (s)

—12(¢(5))* = 2509/ (s) = —1.(¢/(s) + Lso)® + L(s0)?,

IN

which implies that
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sup [4(8(5))?7eR* — 26 (5)s] < L(s0)*.

Combining the estimates in the above two cases yields (3.13). This completes the proof of the lemma. O

From the above lemma, we know that if v = 5 with € (0,1) then

Ifellx < Cy

V1i—10

t—1
Sy < Vel 150 (3.16)
j=2

The analysis for Algorithm 2 also needs the concept of Rademacher averages [5]. Let F be a class of
uniformly bounded functions. The (empirical) Rademacher average R, (F) over F is defined by

uplzalf(zj> ’

R.(F):=E, |s
ferm =
where {z; : j = 1,2,...,n} are independent random variables distributed according to some probability
measure and {o; : j =1,2,...,n} are independent Rademacher random variables, i.e. P(o; =1) = P(o; =

-1)= % Another useful complexity to describe the capacity of F is the Gaussian average which is defined
by

1 n
Gn(F) :=E, |sup — gif(zi) |,
)=k sy 15 0us(5)

where {g; : j = 1,2,...,n} are independent Gaussian N (0, 1) random variables. The following inequality
(e.g. [20, Remark 2.26]) describes the relationship between the above complexity averages:

POnll) < . (P) < Gu(P). (3.17)

Here, p > 0 and p > 0 are absolute constants independent of F' and n.
We begin with stating the well-known comparison principles for Gaussian process (e.g. [25]) which will
be used to prove a useful property of Gaussian averages.

Lemma 5. Let {Xp : 6 € O} and {Yp : 0 € O} be two zero-mean Gaussian processes indexed by the same
countable set © and suppose that

Eq[(Ye — Y5)’] < E¢[(Xo — Xp)°], V8.0 ¢€0.
Then,

Eq [St;p Y] < E, [Sl;p Xo].

We now can derive the following property related to the Gaussian average.

Lemma 6. Let F;(8) be a set of functions indexed by parameters § = (01,62) € ©1 x Og, H;(61), and
J;(02) be a set of functions indexed, respectively, by parameter 81 € ©1, and 0, € Oq. Assume, for any
0 = (01,02),0 = (01,02) € ©1 x Oq, that
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|E5(0) = F3(0)|* < [H;(01) = H;(01)]” + |J;(62) — J;(62) .

Then,
Eg[  sup 9iFi(0)] <Eg[ sup » g;H;(01)] +Eg sup > g;J;(62)].
¥ (91,92)661 X Oo ; 91661 Z ’ 92602 Z ’
Proof. Let g1, ..., g2, be 2n independent A/ (0, 1) Gaussian variables. Introduce two Gaussian processes:

n

Xo = Zngj(e) and Y = Z[ngj(91) + gnyiJi(02)].
Then, Ey[(Xo — X5)%] = Y27_, [F;(0) — F;(0))?, and Eg[(Yy — Y5)*] = X7_, [(Hj(61) — Hj(61))* + (J;(62) —
J;(62))?]. According to Lemma 5, we have

sup ] < E4lsup i(01) + n
GGGZQJ 06@ Zgj 1) Zg +i.
< Ey[sup ¥ gjH;j(01)]+Ey[sup Y gni;J;(02
91691 Z ! 02€02 Jz; = )}
n n
= By sup Y g;H;(01)] + Byl sup Y g;J;(62)].
01€01 5 02602 ;7
This completes the proof of the lemma. O
Denote
My = sup [¢(u)]. (3.18)

|u|<2&D;

We also need to bound the following term defined by

Ay = VE(f)) - —Z/¢ Y= yi) [e(@, )Y — y;) K (3,2;)dp(Z, Y),

le

where VE (ft) denotes the functional derivative of & () at f; given by

= ﬂ &' (7 = ) 1@, 2)) (7 = v) K 3.2)dp(2)dp(2).

ZXZ

Using Lemma 6, we can prove the following estimation.

Lemma 7. Let ¢ be 1-activating, and {f; :t =1,...,T + 1} be given by Algorithm 2. If y&* < {- then, for
any t > 2,

8V2u(LED, + M])F
Vvi—1
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Proof. For any fixed Z = (,y) and z = (z,y), denote {7 (2, ;) = ¢'(Y—v;) f(Z, x;)) (Y —y;) (T, x;). Since

YR? < 7=, by Lemma 4, || f;||x < D;. Notice

1Al = sup [{[ /(@ v) i@ 2)@ ~ »)h(F 2)dp(=)dp(Z)

IRk <1

— 5 5 [ (@ — i) i@ ) (5 — ) h(@, ) dp(F, §)]

IA

swp ([ /(57— 9)F (@ 0)(F = »)h(F,x)dp(=)dp(2)

I1£1l g <Dy
Ilhll g <1

- 123 1 Zqﬁ/((g*yj)f(%’xj))(,yvfyj)h(%7xj)dp(%7@]

= [ sw [BggaEe) - o S )] do(2) (3.19)

I1£1l g <Dt t
Z  rlg<t

For any fixed Z = (Z, %), by the standard symmetrization technique [4], from the above inequality we have

N 1 t—1 B
sup  [E.&5n(2,2) — oy PTTICED]
j=1

151l i <Dy
inil <1
<2E.E, sup —Zagffh Z,2j)
[1£]1 <Dy
il e <1
=
<2uE.E; sup —Zgjgfh Z,25), (3.20)
1711<Dy
il e <1

where the last inequality follows from (3.17). Let ©1 = {f € Hx : |fllx < D:} and ©5 = {h € Hg :
||l < 1}. Then, for any f, f € ©; and h, h € Oy, there holds

650(Z,2) = €5 a(Z.2) P < (AVRLR|f (x,25) — fl,25)])* + (2V2M] |, 25) — h(x, z;)])*.

Applying Lemma 6 with F;(0) = &¢n(2,2) with 01 = f, 0 = h, H;(61) = 4\/§L75f(ac,xj), and J;(02) =
2V2MP h(x, x;) yields that

Ey| sup —Zggffh z ZJ):|

I £1<Dy¢ t
Ihll g <1

_ 1
< 4V2LREy[ sup — Zg;f(% x;)] + 2\/§Mt¢E sup Zgj z, ;)]
is<p, t~ 155 i<t t

~ 1
=4V2LKE, sup <—Zng(z,zj),f>K+2\/§Mf’Eg sup <ﬁzng(m,a:j)ah>K
i<pe t =15 Inlx<1 t =14

<4\/_L“DtIE [F=; 123 191 (z,x;) ||K+2\/_M¢E Ht 12:] 19ngzj)HK

1/2 - 1/2
S 4\/_LI£Dt (EgHm Zj:l gj (z,xj) ||K) + 2\/_M¢ (]E || t—1 Z] 1 ng(l,mJ)”%()

< 4V2(LED+MP)R
- t—1 :

Putting the above estimation, (3.19), and (3.20) together yields the desired result. O
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Denote, for any t € N, R; = E[g (f)— & (f#)]. We derive the following recursive inequality for R; which
is critical for proving Theorem 3.

Lemma 8. Let ¢ be a 1-activating loss, {fi :t =1,...,T 4+ 1} be given by Algorithm 2. Then, for any t > 2,

R2  16V2ur2 M (LEDy + M),
+
By t—1

Riy1r < Ry — e + 8LE E (M7)?. (3:21)

Proof. By part (a) of Proposition 1, we have

(Y = 9) fer1(z,2)) < o((y —9) felz, 7)) + (¢ ((y S (@, 2)(y = Y K@z frer — fr)x
+ 2L iy (2,7) = fi(, 3)[".

Therefore, letting A; = Vg(ft) — =T - 1 20 (v — yi) fe(@, 25))(y — vj) K@z, dp(z,y), we know that
E[E(fi41)] is bounded by

E[E(fo)] — E(VE(fe), 25 S0y [2 ¢ (v — ) Fi(@, ) (1 — 1) K w0,y dp(@, ) K
+ 2R (S 6 (e — i) fo(n ) e — )])
EIE(f)] — wEIIVE(f)I%] + E(VE(f), Ak
+ LR[S 6 (e — yi) fi(we 2;)P]
EIE(f)] = EIIVESIZ] + HE[IVEf)llxc A ]
+ LR (g — yp) e 2y)) 2]
+ LR[S 6 (e — yi) fi(we 7))
EIE(f)] = EIIVEf)II%] + 2Ry MPE[| Al x ]
+ SR [ |6/ (e — yy) o (e, ) 2] (3.22)

Notice
[y 16 (e — )l e )P) < (VP2 (3:23)
j=1

By the convexity of ¢, & (fr) — ( fn) < (VE (ft), ft — f3) which, combined with Lemma 3, implies that

71 E[(g(ft) - g(fH))Q] R?
E[[|[VE(f)% t
IIVE(f)llx] = E(lf, = Tl > t
Combining the above inequality, (3.22) and (3.23) together, by noting R; = E[g’(ft) — g(fﬂ)], we have

Rz ) 163202 M2 (LED, + M)y
g, T—1

Riyr < Ry — + BLE E (M7)?.
This completes the proof of the lemma. 0O

From (3.21), in analogy to the proof used in Theorem 1, one can easily see that a sufficient condition to
guarantee the convergence of E[E(f;)] to £(f3) can be stated as follows:
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g s D) ?\2
Yo Z[ M{" Dy 4+ (M{)*)n 200 7%\2
Y~ o, ( A2 (MP) } < . (3.24)
= Int — Vi—1

This sufficient condition is not as neat as its counterpart to guarantee the convergence of Algorithm 1
as given by Theorem 1. Observe that the randomized gradient 1; Z;;ll & ((ye — yj) felxe, x5)) (ye —
Yi) K (z,.2;) in Algorithm 2 is not an unbiased estimator of the true gradient [[, . ¢'((y —¥') fi(z,2"))(y —
V') K (z,0)dp(w,y)dp(x’',y"), even conditioned on {z1,22,...,2:1}. This fact may partly explain why our
techniques can not be used to derive a similar sufficient condition as the one for Algorithm 1 which is stated
in Theorem 1.

Lemma 9. For any x,v,a > 0, there holds

alnz < Vac—f—aln(%).

Proof. The lemma directly follows from the inequality in [21], i.e. e7¥* < (i)ax_“. O
We are now in a position to prove Theorem 3 by induction.

Proof of Theorem 3. Denote ay = || fx||% + 602, and for any § € (0, min(d — 3,1 —9)), let

27
-0 1
= mi 16— .
£ = min( 5 T 6—0)>0
Now let
D := Cy 3 = max{Dy, Ds, D3}, (3.25)

1 2+325*L%)c?
where Dl = 3¢ eXp((20—71))a/H,

S BEDG4B) N\ B ~9 (243281 L?)?
Dy =2 0 (E) 2Lk exp(72671 )aH

403, LR exp((EHZILDE) | (o 4 gori12)c29 348 B 2 r~np 1 —7o5
+ ( ) ["@ s (2 e ol LRP0 a4y, )]

0+5
- 243254 L2)c? v
X %%Mzexp(%)ﬂﬂJfﬁln(ﬁ)]} ’

and
2 (2 + 32r*L?)c? 402 1 . - 3LE\/cC, 2
Dy = Zexp(~ o2 )0 A 2] 4+ 8R2(LeR? + 4v2u) (=2 416/ (0)]) .
s = e (I o + S I ]+ 8 (L 42 (U 416/ 0)
Let ty = LQ( ((2+3224DL2)62) )ﬁj Since D > zicexp(m‘?;#)ag{ and 0 + § < 1, we have tg > 2.
exp(~——5g=7 ~ Jan
Notice o
Rto = E[g(fto) - g(f?-t)] < QL%QE(HftO - fHH%() < QLEQEto

2LK? exp(%) lan + 203, Intg)]

IN

~ 24328112)c2
~ 243254 L2)c2? 202, L2 exp(ZH325°L7)c" _6
2LR? exp(FHG 2 Y ag + = 2= pats

~472\.2
+ 402 L2 exp(ZE2E L)) In2 + Lo n(22)). (3.26)

Please cite this article in press as: Y. Ying, D.-X. Zhou, Unregularized online learning algorithms with general loss functions,
Appl. Comput. Harmon. Anal. (2015), http://dx.doi.org/10.1016/j.acha.2015.08.007

IN




YACHA:1070

18 Y. Ying, D.-X. Zhou / Appl. Comput. Harmon. Anal. e e e (e e ee) e 0o eo—0ee
=472),.2 741.2).2 B
) ) A2 L2 exp( 23284 L2)c 9 exp ((2H32E4L2)e? 725 o
Applying Lemma 9 with a = —2% p(a 2t ), v = 2_1_5( p( 2 ) H) and x = D#+s

implies that

=472y.2 3054 72y,.2 B
402 LE2 exp( 243257 L7)c” 0 2 exp((2E32RT L)y o CEwe 0
H (6 20—1 ) In D75 < 2717ﬁ( P( 22)71 ) H) Do+B

402, Li2 oxp( (243274 L2)e? 42\ 2
4 ( o3, LR® exp (22 )) [(2+32m L7)c6

0 (20—-1)(0+5)

__B_
+ ln(23+5c% 03, Lr20~ ay,"*" )]
Putting this estimation back into (3.26), we have, for any t < #,

- - RAL2) 2
Ry < 2Ln2EtO < 2LR? exp(%)aﬂ
~ 243284 L2)c? e
+4U72{L/<2exp(7( T ) )In2 + —941_/3 ln(a)]

(243274 L2)c2 B
4+ 9-1-8 (2 eXP(T)aH> P pats
c

403, LR? exp(EHEDE) (o gori 1220 348 B o r~0p 1 —7hE
+ ) [“@r s (2 e o3 LR0 a0y, )]

o ( (243254 L2)c? B o
< 2*5(28 p(72g—1 )an) P pets < tg <D (3.27)
where, in the last to third inequality, we have used the fact that D > Ds.

We can now prove the theorem by induction. Due to (3.27), Ry < t% certainly holds true for ¢ < ¢y. Now
assume R; < t% for some t > tg.

To estimate Ry 1, note, by the assumption on ¢, that M = SUD|,, | <07 B, ¢/ (u)| < 2LED; + |¢/(0)], and
v < =% since 6 > 1/2, the recursive inequality (3.21) becomes

Vit
Rt+1 S Rt _ ’YtIE%‘_f + 32‘/§“E2M’?\(/ngﬁt+Mt¢)’Yt + 8LCR4£/AZ4£¢)2,W
2 s " ~1n ’
< R;— %% + Sﬂz(Lmz""lﬁ“)%L”DtH(b D% (3.28)

Consider the function F(z) = x — %2—21 which is increasing if = € |0, 2%] By the definition of ¢y, it is also

easy to verify, for any ¢t > to, that

>

t°E, E,
< =
tﬁ - 2c 2’)/t

Therefore, by recalling (3.16), i.e. D, < @fg +3°, we have

=2 =2 ~2 / 2
Rij1 < F(Ry) 4 Sk +4ﬁﬂ><j§*ﬂ Di+[¢'(0))*v
85 (LeR? +4v/21) (BLE® Di+¢' (0))* e
Vit

< Dt P — D 4 dgts 2, (3.29)

< F(3)+

where

3LR?\/cCy
1-6

2

dy = 8K*(Lck? + 4v2p) ( +1¢'(0)])".

In addition, since 0 < § < min(6 — %, 1 —0), applying Lemma 9 with z = t°,a = 1, and v = § implies that

Please cite this article in press as: Y. Ying, D.-X. Zhou, Unregularized online learning algorithms with general loss functions,
Appl. Comput. Harmon. Anal. (2015), http://dx.doi.org/10.1016/j.acha.2015.08.007




YACHA:1070

Y. Ying, D.-X. Zhou / Appl. Comput. Harmon. Anal. e e e (e e ee) o0 e—0oee 19

1 1 2. 1
) )

Combining the above inequality with (3.12) yields that

2 + 32R4L2)c?

2 2‘V4L2 2 4 2
Et Se}(r)(( +3 K )C O-H

1
20 — 1 )[a%+20’%1nt)] SeXp(%T)[a’H‘F 5 In S}té = b975t6.

From the above inequality and (3.29), and noticing % —0+4+28+6<0,0+P+6 <1, we have

Ripyr < B1- bCBD&t—f’ B=5 4 dayh-20+5)
=Z1- (bcei do 13— 0+20+6)4=0—0]
< B1- (2 - $)r~~]
< Dh-t0f0) < B1-17Y
<FL-e+07] < (3.30)
where the last to fourth inequality used the fact that ;== — 7% > 1 since D > D3 2bz,5 tdy > %(1,975 n

\/ bg;; 4 Lo, ‘5d9) This completes the proof of the theorem. O

We turn our attention to the proof of Theorem 4.

Proof of Theorem 4. For any § € (0, min(%,1 —6)), and let

.0 0
ﬁ:mln(z—§,1—9—5)>0

Let Dy, Do and ty be the same as those introduced in the proof for Theorem 3. Choose D := 6’9,577.1 =
IIl&X{l)l7 DQ, Dg}, where

~ 2 (2 + 32r1L?)c? 403, 1 — _ \/cCy —

Since |¢/(s)] < B for any s € R, M{ < B holds true uniformly. Hence, for any ¢t < t, =
<

_1
12( (2+3§§?L2)62 )77 |, there holds Ry < t% D . Assume that, for some t > to, R, < 2. We will
eXP(T)GH (]

prove that Ry < ﬁ by induction. To this end, observing that Mt‘b < B holds true uniformly, we know
from the recursive inequality (3.28) that

Risr < Ry — v, Et 4 32v/2ui? M \(/Lzﬁf)t—&-Mf))'yt I 8LCE4%§>)2’W
~2
< R, — ’Ytlg + 8K B[4prnDt—\i-/(i4\fu+L(% )B}'yt .

Recalling (3.16) again, i.e. D; < \\/fiig +'3", we have

F(Ry) + 8%23[4\/§HLEI~)H:/(E4\/§#+LCE2)B}%

+ det (3.31)

Riq

IN

IN

Dt~ ’B_’Yt

where
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dy = 8%23(4\/§ML%\/\/1% + (4V2p + LeR?)B).

In analogy to the argument in the proof of Theorem 3, from the above inequality and (3.31), and noticing
—2+28+6<0,0+B+6<1, we have

Rip1 < B[l — 2470070 4 day=5+7]
_ D D dg;—8428+6)\1—0—B—5
= 51— (g2 — Bt =207
D D do \1—0—B—6
< B[1- (2 - %)r=01]
< Bl1- 0= < B1- o7
—1

S tQB [1 - (t + 1) } S (tﬁ)ﬁa (3.32)

where the last to fourth inequality used the fact that D > 53 = Zb% + gg, which means that bcg_(; — % >1

This completes the proof of the theorem. O
4. Conclusion

In this paper, we considered the unregularized online learning algorithms in the RKHSs for both classifica-
tion and pairwise learning problems associated with general loss functions. We established their convergence
and derived explicit convergence rates with polynomially decaying step sizes. This is in contrast to most of
studies which mainly focused on regularized online learning [21,24,29,32]. Our novel results are obtained by
using tools from convex analysis, refined properties of Gaussian averages and a simple induction approach.
Below, we discuss some directions for future work.

Firstly, the rates for Algorithm 1 and Algorithm 2 are suboptimal. For instance, in the special case of the
least-square loss, it was proved in [30] that Algorithm 1 can achieve O(T ~2InT ) if f, € He. However, by
Theorem 2, the rate is only of (’)(T‘% ). It remains an open and challenging question on how to improve the
rates for unregularized online learning algorithms with general loss functions. Secondly, our main theorems
assume that gy = arginfyey . £(g) and fy = arginf ey, g(f) exist. However, we know from [30,33] that
this assumption can be removed for the least-square loss. It is a clearly important future work to discuss
when this assumption can also be removed for general loss functions. Thirdly, the techniques in this paper
rely on some smoothness assumptions of the loss function. Consequently, they can not directly be applied to
the popular hinge loss. It remains an open question to us how to establish the convergence of unregularized
online learning algorithms associated with the hinge loss. Lastly, our results are established in the form of
expectation. It would be interesting to prove the almost surely convergence of the last iterate of Algorithms 1
and 2.
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