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Abstract

This paper provides error analysis for distributed semi-supervised learning with kernel
ridge regression (DSKRR) based on a divide-and-conquer strategy. DSKRR applies kernel
ridge regression (KRR) to data subsets that are distributively stored on multiple servers to
produce individual output functions, and then takes a weighted average of the individual
output functions as a final estimator. Using a novel error decomposition which divides the
generalization error of DSKRR into the approximation error, sample error and distributed
error, we find that the sample error and distributed error reflect the power and limitation
of DSKRR, compared with KRR processing the whole data. Thus a small distributed
error provides a large range of the number of data subsets to guarantee a small general-
ization error. Our results show that unlabeled data play important roles in reducing the
distributed error and enlarging the number of data subsets in DSKRR. Our analysis also
applies to the case when the regression function is out of the reproducing kernel Hilbert
space. Numerical experiments including toy simulations and a music-prediction task are
employed to demonstrate our theoretical statements and show the power of unlabeled data
in distributed learning.
Keywords: learning theory, distributed learning, kernel ridge regression, semi-supervised
learning, unlabeled data, error decomposition

1. Introduction

Data from practical applications in medicine, finance, business and other fields are often
stored distributively across multiple servers (called local processors) and may not be shared
for reasons of preserving privacy. This requires privacy-preserving machine learning algo-
rithms to discover population-wide patterns of the data without revealing any individual’s
sensitive information. Distributed learning (Balcan et al., 2012; Yan et al., 2013; Li et al.,
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2015; Xie et al., 2016) provides a promising way to tackle privacy-preserving learning prob-
lems.

Let m be the number of local processors and Dj = {(xi,j , yi,j)}|Dj |
i=1 be the data subset

stored in the j-th local processor with 1 ≤ j ≤ m and D =
⋃m

j=1 Dj be the disjoint union of
{Dj}m

j=1, where |Dj | denotes the cardinality of Dj . Distributed learning firstly gets an esti-
mator fDj ,λ on each local processor based on Dj and some (regularization) parameter λ, and
then launches the individual estimators to a central processor to get a final estimator fD,λ.
To get an estimation for a new query point xtest, due to the purpose of privacy-preserving,
xtest is firstly transmitted to each local processor to get an estimation fDj ,λ(xtest), then
all fDj ,λ(xtest) with 1 ≤ j ≤ m are communicated to the central processor to synthesize
the final estimation fD,λ(xtest). Flows of training and testing for distributed learning are
exhibited in Figure 1. Distributed learning can thus be a privacy-preserving strategy in the
sense that except for a real number fDj ,λ(xtest), the individual’s data information in each
local processor is unknown to each other. The aim of statistics and learning theory is to
verify that fD,λ(xtest) is a good approximation of the unknown but definite output of xtext.

(a) Flow of training (b) Flow of testing

Figure 1: Training and testing of distributed learning for privacy-preserving

In this paper, we focus on the distributed kernel ridge regression (DKRR). Let (HK , ‖ ·
‖K) be the reproduced kernel Hilbert space (RKHS) induced by a Mercer kernel K on
a metric (input) space X . In a standard setting (Mann et al., 2009; Zhang et al., 2013;
Lin et al., 2016), DKRR is defined with a regularization parameter λ > 0 by

fD,λ =
m∑

j=1

|Dj |
|D| fDj ,λ, (1)

where

fDj ,λ = arg min
f∈HK





1
|Dj |

∑

(x,y)∈Dj

(f(x)− y)2 + λ‖f‖2
K



 , j = 1, . . . , m. (2)
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The optimal learning rate for DKRR was presented in (Zhang et al., 2015) under some
eigenfunction assumptions which were removed in (Lin et al., 2016) by using a novel integral
operator approach. In these existing results on rigorous analysis for DKRR, there are still
two critical problems which greatly hinder applications of DKRR in practice. One is that
the optimal learning rate is built upon a strict condition bounding the number of local
processors, making DKRR infeasible for large m. The other is that the target function
called regression function fρ is assumed to be in HK to achieve the optimal learning rate,
which is difficult to verify in practice.

The aim of the present paper is to consider distributed semi-supervised learning with
kernel ridge regression (DSKRR) and demonstrate that using additional unlabeled data in a
semi-supervised setting can overcome the aforementioned hurdles of DKRR. Let Dj ∪D̃j(x)
be the subset of the data for semi-supervised learning which is stored on the j-th local
processor, where D̃j(x) = {xj

1, . . . , x
j

|D̃j |}. Based on Dj ∪ D̃j(x), j = 1, . . . , m, we construct

a training set associated with Dj ∪ D̃j(x) as

D∗
j = {(x∗i , y∗i )}

|D∗j |
i=1

with

x∗i =
{

xi, if (xi, yi) ∈ Dj ,

x̃i, if x̃i ∈ D̃j(x),
and y∗i =

{ |D∗j |
|Dj |yi, if (xi, yi) ∈ Dj ,

0, otherwise,
(3)

and denote D∗ =
⋃m

j=1 D∗
j . Define DSKRR by

fD∗,λ =
m∑

j=1

|D∗
j |

|D∗|fD∗j ,λ. (4)

We revise the standard integral operator framework (Caponnetto and De Vito, 2007;
Smale and Zhou, 2007; Lin et al., 2016) to analyze the learning performance of algorithm
(4). The main tool is a novel error decomposition that decomposes the generalization error of
algorithm (4) into the approximation error, sample error and a new term called distributed
error. The approximation error, which reflects the difference between a data-free limit of
KRR and fρ, is standard. The sample error reflects the advantage of weighted averaging
in (4) in the sense of scaling the generalization error of individual fD∗j ,λ, j = 1, 2, . . . , m,

with an additional factor
|D∗j |
|D∗| . The distributed error describes the difference between the

distributed algorithm (4) and KRR processing the whole data in one single processor via
presenting a restriction to the number of local processors. We find that additional unlabeled
data play crucial roles in deducing a small distributed error and thus relaxing heavily the
restriction on m to achieve the optimal learning rate for DKRR. We also prove that DSKRR
leads to satisfactory estimates for the sample error when fρ /∈ HK , which is beyond the
standard setting with fρ ∈ HK in (Zhang et al., 2015; Lin et al., 2016). Experimental
studies are carried out to verify our theoretical analysis.

2. Theoretical Assessments

The generalization ability of DSKRR will be analyzed in a standard learning theory frame-
work, in which the sample in D is assumed to be independently drawn from ρ, a Borel

3



Chang, Lin and Zhou

probability measure on Z := X × Y with Y = R and D̃(x) = ∪m
j=1D̃j(x) from ρX , the

marginal distribution of ρ. Our purpose is to estimate how the estimator fD∗,λ based on
D∗ approximates the regression function fρ(x) :=

∫
Y ydρ(y|x) with ρ(·|x) being the con-

ditional distribution of ρ induced at x ∈ X . Throughout this paper, we assume |y| ≤ M
almost surely for some constant M > 0 and X is compact, which implies ‖fρ‖∞ ≤ M almost
surely and κ :=

√
supx∈X K(x, x) < ∞.

As convergence may be as slow as one wants without imposing any restriction on the
distribution ρ (Györfy et al., 2002), we introduce the following regularity assumption on fρ.
Let LK be the integral operator on HK (or L2

ρX
with norm ‖ · ‖ρ‖) defined by

LKf =
∫

X
Kxf(x)dρX ,

where Kx is the function K(·, x) in HK . The regularity condition in this paper is

fρ = Lr
Khρ, for some r > 0 and hρ ∈ L2

ρX
, (5)

where Lr
K denotes the r-th power of LK : L2

ρX
→ L2

ρX
, a compact and positive oper-

ator. This regularity condition is standard in learning theory and has been used in a
large literature (Bauer et al., 2007; Caponnetto and De Vito, 2007; Smale and Zhou, 2007;
Caponnetto and Yao, 2010; Shi et al., 2011; Guo et al., 2016; Hu et al., 2015; Lin and Zhou,
2016).

To derive fast learning rates, we should also present some restrictions on the capacity of
HK . In this paper, we use the effective dimension N (λ) to measure the complexity of HK

with respect to ρX , which is defined to be the trace of the operator (LK +λI)−1LK , that is

N (λ) = Tr((λI + LK)−1LK), λ > 0.

We are in a position to present our main results, to be proved in Section 5. We first
consider the traditional case of fρ ∈ HK by imposing condition (5) with r ≥ 1/2.

Theorem 1 Assume |y| ≤ M almost surely and that (5) holds with 1/2 ≤ r ≤ 1. We have

max
{
E

[‖fD∗,λ − fρ‖2
ρ

]
, λE

[‖fD∗,λ − fρ‖2
K

]}

≤ C


λ2r +

m∑

j=1

|D∗
j |

|D∗|

(A2
D∗j ,λ

λ
+ 1

)2 (
λ2r−1A2

D∗j ,λ +
|D∗

j |
|D∗|A

2
Dj ,λ

)
 , (6)

where C is a constant independent of m, |Dj |, |D∗
j |, or λ and

AD,λ =
1

|D|
√

λ
+

√
N (λ)√
|D| . (7)

To obtain explicit learning rates, we quantify the increment of N (λ) with a parameter
0 < s ≤ 1 and a constant C0 > 0 as

N (λ) ≤ C0λ
−s, ∀λ > 0. (8)
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Condition (8) with s = 1 is always satisfied by taking C0 = Tr(LK) ≤ κ2. When 0 < s < 1,
condition (8) is more general than the eigenvalue decaying assumption in the literature
(Caponnetto and De Vito, 2007; Steinwart et al., 2009). Based on Theorem 1 and condition
(8), we derive the following optimal learning rate of algorithm (4).

Corollary 2 Assume |y| ≤ M almost surely, (8) with 0 < s ≤ 1 and (5) with 1/2 ≤ r ≤ 1.
If λ = |D|− 1

2r+s , |D1| = |D2| = · · · = |Dm|, |D∗
1| = |D∗

2| = · · · = |D∗
m|, and

m ≤ min
{
|D| 2r+2s−1

2r+s , |D∗||D|−s−1
2r+s

}
, (9)

then

E[‖fD∗,λ − fρ‖2
ρ] = O

(
|D|− 2r

2r+s

)
.

When |D∗| = |D|, the training set D∗ defined by (3) for DSKRR is the same as D for
DKRR. In such a situation (without using any unlabeled data), the output function fD∗,λ
produced by DSKRR algorithm (4) coincides with fD,λ generated by DKRR algorithm (1),
and the optimal learning rates stated in Corollary 2 are the same as those in (Lin et al., 2016;
Guo et al., 2016) achieved under the restriction m ≤ |D| 2r−1

2r+s given by (9). In particular,
for the special case of r = 1/2 (that is, fρ ∈ HK), the number of local processors m = O(1)
does not increase as the sample size |D| becomes large, which is very restrictive and limits
the use of distributed learning.

Corollary 2 tells us that additional unlabeled data can be used to relax the above
restriction on m. For the special case with r = 1/2 and s ≥ 1/2, when |D∗| = |D|1+ 1

1+s with
additional unlabel data of size |D|1+ 1

1+s − |D|, Corollary 2 asserts that the output function
fD∗,λ produced by DSKRR algorithm (4) achieves the optimal learning rates under the

restriction m ≤ |D| 1
1+s . This allows the number of local processors to increase as the sample

size |D| does. Thus our analysis demonstrates the usage of additional unlabeled data in
distributed learning, which is the first purpose of this paper.

The second purpose of this paper is to extend the range of r in (5) from r ≥ 1/2 for the
standard setting with fρ ∈ HK to 0 < r < 1/2 for considering the situation fρ /∈ HK .

Theorem 3 Assume |y| ≤ M almost surely and that (5) holds with 0 < r < 1/2. Let
0 < λ ≤ 1. We have

E
[‖fD∗,λ − fρ‖2

ρ

] ≤ C


λ2r +

m∑

j=1

|D∗
j |

|D∗|

(A2
D∗j ,λ

λ
+ 1

)2 (
λ2r−1A2

D∗j ,λ +
|D∗

j |
|D∗|A

2
Dj ,λ

)
 , (10)

where C is a constant independent of m, |Dj |, |D∗
j | or λ.

Theorem 3 yields the following optimal learning rate for algorithm (4) when fρ /∈ HK ,
which has not been given in the literature of distributed learning (Zhang et al., 2015;
Lin et al., 2016; Guo et al., 2016).
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Corollary 4 Assume |y| ≤ M almost surely, (8) with 0 < s ≤ 1 and (5) with 0 < r < 1/2.
If r + s ≥ 1/2, |D1| = |D2| = · · · = |Dm|, |D∗

1| = |D∗
2| = · · · = |D∗

m|, λ = |D|− 1
2r+s ,

|D∗| ≥ |D| s+1
2r+s and m satisfies (9), then

E[‖fD∗,λ − fρ‖2
ρ] = O

(
|D|− 2r

2r+s

)
.

3. Related Work and Discussion

As a state-of-the-art strategy to reduce the computational burden for some specified algo-
rithms, distributed and parallel computation has triggered enormous research activities in
the statistical and machine learning communities (Gillick et al., 2006). Distributed learning
with ridge regression (Zhang et al., 2013), gradient descent algorithms (Shamir and Srebro,
2014), online learning (Zinkevich et al., 2010) and spectral algorithms (Guo et al., 2016)
were proposed and their learning performances have been observed in many practical appli-
cations to be as good as that of a big processor which could handle the whole data, provided
the number of servers m is not very large. Some theoretical bounds for m were presented
in (Zhang et al., 2015; Lin et al., 2016; Guo et al., 2016; Blanchard and Mücke, 2016), as-
serting that the range of m depends on the regularity of fρ, which is difficult to verify in
practice. This key problem makes users select only a small m or take m as a parameter in
the learning process.

Compared with these results, there are two novelties of our results in this paper, though
adding unlabeled data in the learning process causes additional computations. On one
hand, if one takes m as a parameter in the learning process, the data should be re-divided
again and again and thus it requires a large amount of communications. Our result avoids
these re-division and communications in the sense that for a large range of m, if enough
unlabeled data are given, optimal learning rates can be achieved. On the other hand, for
some applications, data of small size (e.g. data in hospitals) are stored distributively across
a great number of processors and cannot be shared each other for preserving privacy. The
existing results (Zhang et al., 2015; Lin et al., 2016; Guo et al., 2016; Blanchard and Mücke,
2016) cannot tackle these problems in the sense that m is out of the range for the quantity
to guarantee the optimal learning rate. The result in this paper presents a possibility to
conquer this problem, provided there are additional unlabeled data.

We then compare our results with those in two closely related papers (Zhang et al.,
2015; Lin et al., 2016). The seminal work (Zhang et al., 2015) considered the learning per-
formance of algorithm (1) when r = 1

2 , i.e., (fρ ∈ HK). Using a matrix decomposition
approach, (Zhang et al., 2015) derived an optimal learning rate of order O(|D|−1/(s+1)) un-
der the assumption that for some constants k > 2 and A < ∞, the normalized eigenfunctions
{φ`}` of LK in L2

ρX
satisfy

‖ϕ`‖2k
L2k

ρX
= E

[
|φ`(x)|2k

]
≤ A2k, ∀` ∈ N. (11)

Condition (11) was removed in (Lin et al., 2016), by using a novel integral operator ap-
proach based on a second order decomposition of difference of operator inverses. However,
the analysis in (Lin et al., 2016) works only for r > 1/2. In our Corollary 2, we show that
the optimal learning rate for DSKRR can be achieved for all 1

2 ≤ r ≤ 1 without assuming
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condition (11), provided additional unlabeled data are used. At the first glance, our ap-
proach in algorithm (4) incurs additional computation due to the unlabeled data. However,
it is important for privacy-preserving learning when the data are stored in m (fixed) servers
with m > N

2r−1
2r+s and cannot be shared. Our result in Corollary 4 is new since optimal

learning rates for DKRR when fρ /∈ HK have not been provided in the existing literate of
distributed learning (Zhang et al., 2015; Lin et al., 2016; Guo et al., 2016).

Unlabeled data exist widely due to the expensive cost of label evaluation. Originally, un-
labeled data are considered to be non-informative and often given up. However, with deeper
understanding of semi-supervised learning, researchers recognize that unlabeled data can
be useful in some special applications (Zhu and Goldberg, 2009) such as manifold learning
(Belkin et al., 2006). In learning theory, it was found in (Caponnetto and Yao, 2010) that
using unlabeled data can overcome the limitation that the optimal learning rate for KRR
is only achievable for fρ ∈ HK . It was shown there that optimal learning rates for spectral
algorithms might be achieved even when fρ 6∈ HK , provided enough unlabeled data were
added in the training process. Similar results have been deduced for kernel-based conjugate
gradient descent in (Blanchard and Krämer, 2010; Blanchard and Mücke, 2016). Results
in the present paper show that unlabeled data also benefit distributed learning algorithms
by allowing more local processors while achieving optimal learning rates. Furthermore, us-
ing some ideas from (Caponnetto and Yao, 2010), we succeed in conquering the bottleneck
that optimal learning rates for distributed learning algorithms are achievable only when
fρ ∈ HK . The numerical experiments to be reported in the last section motivated the
last two authors (Lin and Zhou, 2016) to study the use of unlabeled data in distributed
kernel-based gradient descent algorithms. Our results in the present paper also motivated
a recent work (Guo et al., 2017) on error analysis for distributed manifold regularization
algorithms.

4. Error Decomposition

The main tool in our analysis is a novel error decomposition for DSKRR. For this purpose,
we introduce data-free limit and semi-supervised learning version of fDj ,λ as

fλ = arg min
f∈HK

{∫

X
(f(x)− fρ(x))2dρX + λ‖f‖2

K

}

and
f¦Dj ,λ = E∗[fDj ,λ] := E[fDj ,λ|Dj(x)].

The following proposition gives the error decomposition, whose proof is given at the end of
this section.

Proposition 5 Let fD,λ be defined by (1). We have

1
2
E[‖fD,λ− fρ‖2

ρ] ≤ ‖fλ− fρ‖2
ρ +

m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
ρ

]
+

m∑

j=1

|Dj |
|D| E

[∥∥∥f¦Dj ,λ − fλ

∥∥∥
2

ρ

]
,

(12)
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and if fρ ∈ HK ,

1
2
E[‖fD,λ−fρ‖2

K ] ≤ ‖fλ−fρ‖2
K +

m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
K

]
+

m∑

j=1

|Dj |
|D| E

[∥∥∥f¦Dj ,λ − fλ

∥∥∥
2

K

]
.

(13)

The three terms on the right-hand side of (12) (or (13)) are the approximation error,
sample error and distributed error. The approximation error, independent of the sample,
describes the approximation capability of fλ. The sample error connects the synthesized
estimator (1) with the estimator (2). Compared with the sample error of the estimator (2),
E

[‖fDj ,λ − fλ‖2
ρ

]
, there is an additional |Dj |

|D| in our error decomposition, which reflects the
power of the weighted averaging in (1) and shows the reason why the distributed algorithm
(1) possesses similar learning performances as KRR processing the whole data D. Since
E∗[yi] = fρ(xi), it is easy to check that f¦Dj ,λ is the estimator derived from KRR with the
noise-free data {(xi, fρ(xi))}(xi,yi)∈Dj

. This implies

f¦Dj ,λ = arg min
f∈HK





1
|Dj |

∑

(x,y)∈Dj

(f(x)− fρ(x))2 + λ‖f‖2
K



 . (14)

The distributed error presented in Proposition 5 measures the limitation of the distributed
learning algorithm (1). Compared with the sample error E

[‖fDj ,λ − fλ‖2
ρ

]
of estimator

(2), the distributed error E

[∥∥∥f¦Dj ,λ − fλ

∥∥∥
2

ρ

]
focuses on the noise-free data and therefore

is smaller than E
[‖fDj ,λ − fλ‖2

ρ

]
. This makes algorithm (1) possess similar learning rates

as that of KRR with the whole data D. However, since there are only |Dj | samples, it

is impossible to get upper bounds asymptomatically as |D|−2r/(2r+s) for E

[∥∥∥f¦Dj ,λ − fλ

∥∥∥
2

ρ

]

when m is large. Thus, a restriction on m to guarantee the optimal learning rate is necessary.
To deduce a wide range of m, we need a tight bound for the distributed error. Noting

that f¦Dj ,λ is independent of the sample outputs, it motivates us to employ the unlabeled

part D̃j(x), j = 1, . . . , m of the data set D∗
j in designing the algorithm (4). In the following,

we combine the traditional integral operator approach (Smale and Zhou, 2004, 2005, 2007)
with a recently developed second order decomposition of operator inverses (Lin et al., 2016;
Guo et al., 2016) to derive a tight estimate for the distributed error of algorithm (4). Denote
the sampling operator SD : HK → R|D| (or L2

ρX
→ R|D|) by

SDf := {f(xi)}(xi,yi)∈D.

Its adjoint ST
D : R|D| → HK (or R|D| → L2

ρX
) is given by

ST
Dc :=

1
|D|

∑

(xi,yi)∈D

ciKxi , c ∈ R|D|.

Let LK,D be the data-dependent approximation of LK defined by

LK,Df = ST
DSDf =

1
|D|

∑

(x,y)∈D

f(x)Kx.
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Then it is easy to check (Smale and Zhou, 2007; Caponnetto and De Vito, 2007) that

fD,λ = (LK,D + λI)−1 ST
DyD, fλ = (LK + λI)−1 LKfρ (15)

and
f¦D,λ = (LK,D + λI)−1 LK,Dfρ, (16)

where I is the identity operator and yD := (y1, . . . , y|D|)T . The following proposition
presents error estimates for the sample and distributed errors.

Proposition 6 Let fDj ,λ, fλ and f¦Dj ,λ be defined by (15) and (16). We have

max{‖fDj ,λ − fλ‖ρ,
√

λ‖fDj ,λ − fλ‖K} ≤ Q2
Dj ,λ(PDj ,λ + SDj ,λ‖fλ‖K), (17)

and
max{‖f¦Dj ,λ − fλ‖ρ,

√
λ‖f¦Dj ,λ − fλ‖K} ≤ Q2

Dj ,λRDj ,λ,fλ−fρ , (18)

where
PD,λ :=

∥∥∥(LK + λI)−1/2(LKfρ − ST
DyD)

∥∥∥
K

,

QD,λ := ‖(LK + λI)1/2(LK,D + λI)−1/2‖,
SD,λ :=

∥∥∥(LK + λI)−1/2(LK − LK,D)
∥∥∥ ,

and with a bounded measurable function g on X ,

RD,λ,g :=

∥∥∥∥∥∥
(LK + λI)−1/2




∫

X
g(x)KxdρX − 1

|D|
∑

(x,y)∈D

g(x)Kx




∥∥∥∥∥∥
K

.

Proof Since

fDj ,λ − fλ = (LK,Dj + λI)−1ST
Dj

yDj − (LK + λI)−1LKfρ

= (LK,Dj + λI)−1(ST
Dj

yDj − LKfρ) + [(LK,Dj + λI)−1 − (LK + λI)−1]LKfρ,

and

‖f‖ρ = ‖L1/2
K f‖K = ‖L1/2

K (LK + λI)−1/2(LK + λI)1/2f‖K ≤ ‖(LK + λI)1/2f‖K

for any f ∈ L2
ρX

, it follows from A−1 −B−1 = A−1(B −A)B−1 for positive operators A,B
that

max
{
‖fDj ,λ − fλ‖ρ,

√
λ‖fDj ,λ − fλ‖K

}

≤ ‖(LK + λI)1/2(LK,Dj + λI)−1(ST
Dj

yDj − LKfρ)‖K

+ ‖(LK + λI)1/2[LK,Dj + λI)−1 − (LK + λI)−1]LKfρ‖K

≤ QDj ,λ‖(LK,Dj + λI)−1/2(ST
Dj

yDj − LKfρ)‖K

+ ‖(LK + λI)1/2(LK,Dj + λI)−1(LK − LK,Dj )(LK + λI)−1LKfρ‖K

≤ Q2
Dj ,λ‖(LK + λI)−1/2(ST

Dj
yDj − LKfρ)‖K

+ Q2
Dj ,λ‖(LK + λI)−1/2(LK − LK,Dj )‖‖(LK + λI)−1LKfρ‖K

≤ Q2
Dj ,λ(PDj ,λ + SDj ,λ‖fλ‖K).
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This completes the proof of (17). Now we turn to prove (18). Due to (15) and (16), we
have

f¦Dj ,λ − fλ = (LK,Dj + λI)−1LK,Djfρ − (LK + λI)−1LKfρ

= (LK,Dj + λI)−1(LK,Dj − LK)fρ + [LK,Dj + λI)−1 − (LK + λI)−1]LKfρ

= (LK,Dj + λI)−1(LK,Dj − LK)fρ + (LK,Dj + λI)−1[LK − LK,Dj ](LK + λI)−1LKfρ

= −(LK,Dj + λI)−1[LK − LK,Dj ](fρ − fλ).

Then

max{‖f¦Dj ,λ − fλ‖ρ,
√

λ‖f¦Dj ,λ − fλ‖K}
≤ ‖(LK + λI)1/2(LK,Dj + λI)−1[LK − LK,Dj ](fλ − fρ)‖K

≤ QDj ,λ‖(LK,Dj + λI)−1/2(LK,Dj − LK)(fλ − fρ)‖K ≤ Q2
Dj ,λRDj ,λ,fλ−fρ .

This completes the proof of Proposition 6.

If fρ ∈ HK , we have

RDj ,λ,fλ−fρ = ‖(LK + λI)−1/2(LK,Dj − LK)(fλ − fρ)‖K ≤ SDj ,λ‖fλ − fρ‖K .

This implies that the distributed error can be bounded byQ2
Dj ,λSDj ,λ‖fλ−fρ‖K . Comparing

with the sample error estimate (17) for an individual local processor, there is an additional
term ‖fλ−fρ‖K in the distributed error estimate, since PDj ,λ, and SDj ,λ are asymptotically
equal due to Lemma 9 in Section 5. This together with Lemma 8 below shows that the
distributed error estimate is essentially smaller than the sample error estimate for local
processors under (5) with r > 1/2, and presents the reason why DSKRR performs similarly
as KRR on the whole data set D, provided m is not so large.

Recall the definitions of QDj ,λ, RDj ,λ,fλ−fρ and SDj ,λ. These three quantities are in-
dependent of the outputs. Thus, the distributed error estimate decreases when additional
unlabeled data are given. This explains why unlabeled data can enlarge the range of m to
guarantee the optimal learning rates for DSKRR. On the other hand, it follows from the def-
inition of PD,λ that the sample error estimate depends heavily on the labels corresponding
to unlabeled data. But (3) implies that for each fixed 1 ≤ j ≤ m,

ST
D∗j

yD∗j =
1
|D∗

j |
∑

(x∗,y∗)∈D∗j

y∗Kx∗ =
1
|D∗

j |
|D∗

j |
|Dj |

∑

(x,y)∈Dj

yKx = ST
Dj

yDj .

Then PD∗j ,λ = PDj ,λ for each 1 ≤ j ≤ m, which implies that the sample error estimate does
not increase when the unlabeled data are added and shows the necessity of re-weighting of
y in our definition in (3).

Thus, the unlabeled data in algorithm (4) can reduce the distributed error estimate
without increasing the sample error estimate. The following proposition which can be
deduced directly from Propositions 5 and 6, shows the detailed error decomposition for
algorithm (4).

10
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Proposition 7 Let fD∗,λ be defined by algorithm (4). If condition (5) holds with 0 < r ≤ 1,
then for 1/2 ≤ r ≤ 1,

1
2

max
{
E[‖fD∗,λ − fρ‖2

ρ], λE[‖fD∗,λ − fρ‖2
K ]

}

≤ max{‖fλ − fρ‖2
ρ, λ‖fλ − fρ‖2

K}+
m∑

j=1

|D∗
j |2

|D∗|2 E
[
Q4

D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)2
]

+
m∑

j=1

|D∗
j |

|D∗|E
[
Q4

D∗j ,λS2
D∗j ,λ‖fλ − fρ‖2

K

]
(19)

while for 0 < r < 1/2,

E[‖fD∗,λ − fρ‖2
ρ] ≤ ‖fλ − fρ‖2

ρ +
m∑

j=1

|D∗
j |2

|D∗|2 E
[
Q4

D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)2
]

+
m∑

j=1

|D∗
j |

|D∗|E
[
Q4

D∗j ,λR2
D∗j ,λ,fλ−fρ

]
. (20)

We end this section by proving Proposition 5.
Proof of Proposition 5 For the sake of brevity, we only prove (12), since (13) can be
derived by using the same method. Due to the triangle inequality and the elementary
inequality (a + b)2 ≤ 2a2 + 2b2 for a, b > 0, we have

E[‖fD,λ − fρ‖2
ρ] ≤ 2‖fλ − fρ‖2

ρ + 2E[‖fD,λ − fλ‖2
ρ]. (21)

It follows from
∑m

j=1
|Dj |
|D| = 1 that

‖fD,λ − fλ‖2
ρ =

∥∥∥∥∥∥

m∑

j=1

|Dj |
|D| (fDj ,λ − fλ)

∥∥∥∥∥∥

2

ρ

=
m∑

j=1

|Dj |2
|D|2 ‖fDj ,λ − fλ‖2

ρ +
m∑

j=1

|Dj |
|D|

〈
fDj ,λ − fλ,

∑

k 6=j

|Dk|
|D| (fDk,λ − fλ)

〉

ρ

.

Taking expectations gives

E
[‖fD,λ − fλ‖2

ρ

]
=

m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
ρ

]

+
m∑

j=1

|Dj |
|D|

〈
E[fDj ,λ]− fλ, E[fD,λ]− fλ − |Dj |

|D|
(
E[fDj ,λ]− fλ

)〉

ρ

.

But
m∑

j=1

|Dj |
|D|

〈
EDj [fDj ,λ]− fλ, E[fD,λ]− fλ

〉
ρ

=
〈
E[fD,λ]− fλ, E[fD,λ]− fλ

〉
ρ

=
∥∥E[fD,λ]− fλ

∥∥2

ρ
.

11
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We see that E
[‖fD,λ − fλ‖2

ρ

]
equals

m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
ρ

]−
m∑

j=1

|Dj |2
|D|2

∥∥E[fDj ,λ]− fλ

∥∥2

ρ
+

∥∥E[fD,λ]− fλ

∥∥2

ρ
.

Furthermore, by the Schwarz inequality and
∑m

j=1
|Dj |
|D| = 1, we have

‖E[fD,λ]− fλ‖2
ρ =

∥∥∥∥∥∥

m∑

j=1

|Dj |
|D|

(
E[fDj ,λ]− fλ

)
∥∥∥∥∥∥

2

ρ

≤
m∑

j=1

|Dj |
|D|

∥∥E[fDj ,λ]− fλ

∥∥2

ρ
.

Then

E
[‖fD,λ]− fλ‖2

ρ

] ≤
m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
ρ

]
+

m∑

j=1

|Dj |
|D|

∥∥E[fDj ,λ]− fλ

∥∥2

ρ
.

Inserting the above inequalities into (21), we find

1
2
E[‖fD,λ − fρ‖2

ρ] ≤ ‖fλ − fρ‖2
ρ +

m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
ρ

]
+

m∑

j=1

|Dj |
|D|

∥∥E[fDj ,λ]− fλ

∥∥2

ρ
.

According to Jensen’s inequality, we obtain

∥∥E[fDj ,λ]− fλ

∥∥2

ρ
≤ E

[∥∥∥f¦Dj ,λ − fλ

∥∥∥
2

ρ

]
,

which implies

1
2
E[‖fD,λ − fρ‖2

ρ] ≤ ‖fλ − fρ‖2
ρ +

m∑

j=1

|Dj |2
|D|2 E

[‖fDj ,λ − fλ‖2
ρ

]
+

m∑

j=1

|Dj |
|D| E

[∥∥∥f¦Dj ,λ − fλ

∥∥∥
2

ρ

]
.

This completes the proof of Proposition 5.

5. Proofs

According to Proposition 7, to prove Theorems 1 and 3, we only need to bound ‖fλ− fρ‖ρ,
‖fλ−fρ‖K , QD∗j ,λ, PDj ,λ, RD∗j ,λ,g and SD∗j ,λ. The following two lemmas present bounds for
these quantities. The first one can be found in (Smale and Zhou, 2007), which estimates
the approximation error of algorithm (4).

Lemma 8 Assume (5) with 0 < r ≤ 1. There holds

‖fλ − fρ‖ρ ≤ λr‖hρ‖ρ. (22)

Furthermore, if 1/2 ≤ r ≤ 1, then we have

‖fλ − fρ‖K ≤ λr−1/2‖hρ‖ρ. (23)

12
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The second lemma presents bounds for QD∗j ,λ, PDj ,λ, RD∗j ,λ,g and SD∗j ,λ. In particular,
(24) was proved in (Guo et al., 2016), (25) and (27) were given in (Lin et al., 2016) and
(26) can be found in (Caponnetto and De Vito, 2007). Recall the quantity AD,λ defined by
(7).

Lemma 9 Let D be a sample drawn independently according to ρ and 0 < δ < 1. If |y| ≤ M
almost surely, then each of the following estimates holds with confidence at least 1− δ,

Q2
D,λ ≤ 2

(
2(κ2 + κ)AD,λ log 2

δ√
λ

)2

+ 2, (24)

SD,λ ≤ 2(κ2 + κ)AD,λ log(2/δ), (25)
PD,λ ≤ 2M(κ + 1)AD,λ log(2/δ), (26)

RD,λ,g ≤ 2‖g‖∞(κ + 1)AD,λ log(2/δ). (27)

We can now use Proposition 7 and the above lemmas to prove our main results.
Proof of Theorem 1 As r ≥ 1/2, Lemma 8 implies that

max
{
‖fλ − fρ‖ρ,

√
λ‖fλ − fρ‖K

}
≤ λr‖hρ‖ρ. (28)

For an arbitrary fixed j ∈ {1, . . . , m}, it follows from Lemma 9 that there exist three

subsets Z |D
∗
j |

1,δ , Z |D
∗
j |

2,δ and Z |D
∗
j |

3,δ of Z |D∗j | with measures at least 1− δ/3 such that for D∗
j ∈

Z |D
∗
j |

1,δ ∩ Z |D
∗
j |

2,δ ∩ Z |D
∗
j |

3,δ there holds

Q2
D∗j ,λ ≤ 2

(
2(κ2 + κ)AD∗j ,λ log 6

δ√
λ

)2

+ 2,

SD∗j ,λ ≤ 2(κ2 + κ)AD∗j ,λ log
6
δ
,

PDj ,λ ≤ 2M(κ + 1)ADj ,λ log
6
δ
.

This together with

‖fλ‖K = ‖(LK + λI)−1LKfρ‖K ≤ ‖fρ‖K ≤ ‖Lr−1/2
K ‖‖L1/2

K hρ‖K ≤ κ2r−1‖hρ‖ρ

yields that with confidence at least 1− δ, there holds

Q2
D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)

≤ 16(κ + 1) log3 6
δ




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




[
MADj ,λ + κ2r‖hρ‖ρAD∗j ,λ

]
.

Using the probability to expectation formula

E[ξ] =
∫ ∞

0
Prob [ξ > t] dt (29)

13



Chang, Lin and Zhou

for nonnegative random variables to ξ1 = Q4
D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)2 and

Prob [ξ1 > u] = Prob
[
ξ

1
2
1 > u

1
2

]
≤ 6 exp

{
−[16B(D∗

j , λ)]−
1
3 u

1
6

}

for u ≥ 256 log6 6B(D∗
j , λ)2, we have

E
[
Q4

D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)2
]
≤ 256 log6 6B(D∗

j , λ)2

+ 6
∫ ∞

0
exp

{
−[16B(D∗

j , λ)]−
1
3 u

1
6

}
du = 256(6 + log6 6)B2(D∗

j , λ)
∫ ∞

0
u6−1 exp {−u} du,

where

B(D∗
j , λ) := (κ + 1)




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




(
MADj ,λ + κ2r‖hρ‖ρAD∗j ,λ

)
. (30)

Due to the expression
∫∞
0 ud−1 exp {−u} du = Γ(d) for Gamma functions with d > 0, we

have
E

[
Q4

D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)2
]
≤ 256(6 + log6 6)5!B2(D∗

j , λ). (31)

According to Lemma 9, there exist two subsets Z |D
∗
j |

1′,δ and Z |D
∗
j |

2′,δ of Z |D∗j | with measures

at least 1− δ/2 such that for D∗
j ∈ Z

|D∗j |
1′,δ ∩ Z |D

∗
j |

2′,δ there holds

Q2
D∗j ,λSD∗j ,λ‖fλ − fρ‖K

≤ 4(κ2 + κ) log
4
δ




(
2(κ2 + κ)AD∗j ,λ log 4

δ√
λ

)2

+ 1


AD∗j ,λ‖fλ − fρ‖K . (32)

Since r ≥ 1/2, plugging (23) into (32), with confidence at least 1− δ, there holds

Q2
D∗j ,λSD∗j ,λ‖fλ − fρ‖K

≤ 4κ(κ + 1)λr−1/2‖hρ‖ρ log
4
δ




(
2(κ2 + κ)AD∗j ,λ log 4

δ√
λ

)2

+ 1


AD∗j ,λ.

The same method as that in deriving (31) yields

E
[
Q4

D∗j ,λS2
D∗j ,λ‖fλ − fρ‖2

K

]

≤ 256κ2(κ + 1)2(4 + log6 4)5!‖hρ‖2
ρλ

2r−1




(
2(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

A2
D∗j ,λ. (33)
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Inserting (28), (31), (30) and (33) into (19), we obtain

max
{
E[‖fD∗,λ − fρ‖2

ρ], λE[‖fD∗,λ − fρ‖2
K ]

} ≤ 2λ2r‖hρ‖2
ρ

+512κ2(κ + 1)2(4 + log6 4)5!‖hρ‖2
ρλ

2r−1
m∑

j=1

|D∗
j |

|D∗|




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

A2
D∗j ,λ

+512(6 + log6 6)5!(κ + 1)2
m∑

j=1

|D∗
j |2

|D∗|2




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

×
[
MADj ,λ + κ2r‖hρ‖ρAD∗j ,λ

]2
.

Then (6) follows from AD∗j ,λ ≤ ADj ,λ and the above estimate with

C := 2‖hρ‖2
ρ + 512(6 + log6 6)5!(κ + 1)2[(κ + 1)2 + 1]2 max

{
κ2‖hρ‖2

ρ, (M + ‖hρ‖ρκ
r)2

}
.

This completes the proof of Theorem 1.
Proof of Corollary 2 Let λ = |D|− 1

(2r+s) . Since r + s ≥ r ≥ 1/2, we obtain from (7), (8)
and |D1| = · · · = |Dm| that

ADj ,λ ≤ m|D|− 2r+s−1/2
2r+s +

√
C0m|D|−

r
2r+s ∀j = 1, . . . , m. (34)

Since |D∗
1| = · · · = |D∗

m|, we have

AD∗j ,λ ≤ m|D∗|−1|D| 1
4r+2s +

√
C0m|D∗|−1/2|D| s

4r+2s , ∀ j = 1, . . . , m. (35)

This implies

λ−1/2AD∗j ,λ ≤ m|D∗|−1|D| 2
4r+2s +

√
C0m|D∗|−1/2|D| s+1

4r+2s .

Due to (9), we have
λ−1/2AD∗j ,λ ≤

√
C0 + 1. (36)

Plugging (34), (35), (36) and (9) into (6) and noticing
|D∗j |
|D∗| = 1

m and m ≤ |D| 2r+2s−1
2r+s , we

obtain
E[‖fD∗,λ − fρ‖2

ρ] ≤ C|D|−2r/(2r+s) + 8C(
√

C0 + 2)6|D|−2r/(2r+s).

This completes the proof of Corollary 2.
Proof of Theorem 3 The proof is almost the same as that of Theorem 1. The only
difference is that when 0 < r < 1/2, we have

‖fλ‖K = ‖(LK + λI)−1LKfρ‖K ≤ ‖(LK + λI)−1L
1/2+r
K ‖‖L1/2

K hρ‖K ≤ λr−1/2‖hρ‖ρ (37)

and
‖fλ − fρ‖∞ ≤ ‖fλ‖∞ + ‖fρ‖∞ ≤ κ‖fλ‖K + M ≤ M + κλr−1/2‖hρ‖ρ. (38)

Since 0 < r < 1/2, we also see from Lemma 8 that

‖fλ − fρ‖ρ ≤ λr‖hρ‖ρ. (39)
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It follows from (37), (27) and the same method as that for deriving (31) that

E
[
Q4

D∗j ,λ(PDj ,λ + SD∗j ,λ‖fλ‖K)2
]
≤ 512(6 + log6 6)5!(κ + 1)2




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

×
[
MADj ,λ + κλr−1/2‖hρ‖ρAD∗j ,λ

]2
. (40)

Combining (38) and (27) with the same method as that for deriving (33) yields

E
[
Q4

D∗j ,λR2
D∗j ,λ,fλ−fρ

]
(41)

≤ 512(κ + 1)2(4 + log6 4)5!(M + κλr−1/2‖hρ‖ρ)2




(
2(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

A2
D∗j ,λ.

Inserting (39), (40) and (41) into (20), we have

E
[‖fD∗,λ − fρ‖2

ρ

] ≤ 2λ2r‖hρ‖2
ρ + 1024(κ + 1)2(4 + log6 4)5!(M + κλr−1/2‖hρ‖ρ)2

×
m∑

j=1

|D∗
j |

|D∗|




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

A2
D∗j ,λ

+1024(6 + log6 6)5!(κ + 1)2
m∑

j=1

|D∗
j |2

|D∗|2




(
(κ2 + κ)AD∗j ,λ√

λ

)2

+ 1




2

×
[
MADj ,λ + κλr−1/2‖hρ‖ρAD∗j ,λ

]2
.

Together with the restrictions 0 < λ ≤ 1 and 2r < 1, this yields (10) with

C := 2‖hρ‖2
ρ + 1024(6 + log6 6)5!(‖hρ‖ρ + M)2(κ + 1)4[(κ2 + κ)2 + 1]2.

This completes the proof of Theorem 3.
Proof of Corollary 4 Due to r + s ≥ 1/2 and (9), we get (34), (35) and (36). Inserting
(34), (35), (36) and (9) into (10), we obtain from |D∗| ≥ |D| 1+s

2r+s that

E[‖fD∗,λ − fρ‖2
ρ] ≤ C|D|−2r/(2r+s)

+ C((
√

C0 + 1)2 + 1)2
m∑

j=1

|D∗
j |

|D|
[

1
m
A2

Dj ,λ + λ2r−1A2
D∗j ,λ

]

≤ [C + 2C((
√

C0 + 1)2 + 1)2((1 +
√

C0)2)]|D|−
2r

2r+s ,

where we have used |D∗| ≥ |D| 2r+s+1
2r+s in the last inequality. This completes the proof of

Corollary 4.
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6. Experimental Verifications

In this section, we report experimental studies to justify the statements in Section 2. We
employ two criteria for the comparison. The first criterion is the global error (GE) which is
the mean square error of a testing set with N = |D| examples used in the training flow. GE
provides a baseline to assess the performance of DSKRR. The second criterion is the average
error (AE) which is the mean square error of algorithm (4). Regularization parameters in
all experiments are selected by the 5-fold cross-validation.

6.1 Toy simulations

In this part, we carry out three simulations to verify our theoretical statements. The
first two simulations are devoted to verifying Corollaries 2 and 4, respectively. The last
simulation focuses on the relation between the generalization performance of algorithm (4)
and the size of unlabeled data to show the power of unlabeled data in distributed learning.

Simulation 1: We generate N = 5000 examples for training. The inputs {xi}N
i=1

are independently drawn according to the uniform distribution on the (hyper-)cube [0, 1]d

with d = 1 or d = 3. The corresponding outputs are generated from the regression models
yi = gj(xi)+εi, i = 1, . . . , N, j = 1, 2, where εi is the independent Gaussian noise N (0, 1/5),

g1(x) :=
{

x, 0 < x ≤ 0.5,
1− x, 0.5 < x ≤ 1,

(42)

and

g2(x) := h2(‖x‖2) :=
{

(1− ‖x‖2)6(35‖x‖2
2 + 18‖x‖2 + 3), 0 < ‖x‖2 ≤ 1, x ∈ R3,

0, ‖x‖2 > 1.
(43)

We also generate 500 test examples {(x′i, y′i)}500
i=1 with {x′i} drawn independently according

to the uniform distribution and y′i = gj(x′i), j = 1, 2. The number m of local processors
varies from 2 to 60. The SN ∈ {0, 2000, 4000, 6000, 8000, 10000} unlabeled examples {x̃i}SN

i=1

are independently drawn according to the uniform distribution on the (hyper-)cube [0, 1]d.
It can be found in (Wu, 1995; Schaback and Wendland, 2006) that g1 ∈ W 1

1 and g2 ∈ W 4
3 ,

where Wα
d denotes the α-order Sobolev space on [0, 1]d. Furthermore, it is easy to see that

g1 /∈ W 2
1 and g2 /∈ W 5

3 . If we define K1(x, x′) = 1+min(x, x′) and K2(x, x′) = h3(‖x−x′‖2)
with

g3(x) := h3(‖x‖2) :=
{

(1− ‖x‖2)4(4‖x‖2 + 1), 0 < ‖x‖2 ≤ 1, x ∈ R3,
0, ‖x‖2 > 1,

(44)

then we know (Wu, 1995; Schaback and Wendland, 2006) that K1 and K2 are reproducing
kernels for W 1

1 and W 2
3 , respectively. Obviously, g1 ∈ HK1 and g2 ∈ HK2 . The N + SN

sample points are evenly distributively stored in m local processors and algorithm (4) is
applied to the training set. The testing results of GEs and AEs are recorded and shown in
Figure 2.

In Figure 2, AE curves are recorded by different SN . When m is not too large, as shown
in Figure 2, AEs are always comparable to GEs. Furthermore, there exists an upper bound
of the number of local processors, mSN (e.g., m100,00 ≈ 30), lager than which AE curves
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Figure 2: Performances of algorithm (4) with different scale of |D∗| when fρ ∈ HK

increase dramatically. This result confirms Corollary 2 which indicates that DSKRR can
achieve the optimal learning rate as long as m is not too large. Moreover, when we add more
unlabeled data into the training set, i.e., increasing SN , the upper bound mSN increases
and AEs decrease (e.g., the AE curve for SN = 100, 00 is almost below all the other curves).
This shows the power of adding unlabeled data into training data, as condition (9) shows.

Simulation 2: We generate a training set from the regression model yi = g3(xi)+εi, i =
1, . . . , N with N = 5000, where the inputs {xi}N

i=1 are independently drawn according
to the uniform distribution on [0, 1]3. We also generate 500 test examples {(x′i, y′i)}500

i=1

with x′i drawn independently according to the uniform distribution and y′i = g3(x′i). The
number of servers m varies from 2 to 90 and the number of unlabeled examples is SN ∈
{0, 2000, 4000, 6000, 8000, 10000}. We utilize K3(x, x′) = h2(‖x−x′‖2) as the kernel. It can
be found in (Wu, 1995; Schaback and Wendland, 2006) that K3 is a reproducing kernel for
W 4

3 . Obviously, g3 /∈ HK3 . GEs and AEs are recorded and shown in Figure 3.
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Figure 3: Performances of algorithm (4) with different scale of |D∗| when fρ /∈ HK
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This simulation shows similar results as Simulation 1. The only difference is that the
regression function g3 /∈ HK3 . This demonstrates the statement of Corollary 4, saying that
even when the regression function is not in the RHKS, the optimal learning rate of algorithm
(4) can be achieved. Based on Simulations 1 and 2, we find that adding unlabeled data into
the training set can essentially improve the learning performance of algorithm (1).

Simulation 3: The experimental setting of this simulation is the same as that in
Simulation 1. We generate N = 500 observations as a training set and 50 observations as
a testing set. Here, we fix the size of local processors to be m = 10 and vary the number
of unlabeled data SN from 50 to 10000. The aim is to describe the relation between the
generalization ability of algorithm (4) and the size of unlabeled data. The simulation results
are reported in Figure 4.
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Figure 4: Relation between generalization error and the size of unlabeled data

In Figure 4, we construct two straight lines (black and blue lines) as base lines for
comparisons. The black straight line is the GE, while the blue line is the AE value with
SN = 0. We change the size of unlabeled data and apply algorithm (4) on the training set.
It is shown in Figure 4 that the AE’s curve decreases dramatically and can achieve the GE
value when we add about 10N unlabeled data. However, when we add more unlabeled data
into the training data, the AE curve begins to increase slowly. This phenomenon indicates
two important observations. On one hand, adding unlabeled data into the training set can
essentially improve the learning performance of DSKRR. On the other hand, if the size of
unlabeled data is too large, the optimal learning rate has reasonable probabilities to be
broken out. From our simulations, we suggest that SN ≤ 10N . Here, we need to mention
that for stabilizing the AE’s curve, the simulation is repeated 10 times. The drawn curve
is the average values of AE.

All these simulations verify our theoretical statements in Section 2 and show the power
of unlabeled data in distributed semi-supervised learning.

6.2 Real data experiment

In this part, we focus on the Million Song data (Bertin-Mahieux et al., 2011) that describes
a learning task of predicting the year in which a song is released based on audio features
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associated with the song. The dataset consists of 463, 715 training examples and 51, 630
test examples. Each example is a song released between 1922 and 2011, and the song is
represented as a vector of timbre information computed about the song. Each sample point
consists of a pair (xi, yi) ∈ [0, 1]d × [1922, 2011] with d = 90.

For the Million Song data, we normalize the feature vectors x so that the timbre
signals have mean 0 and standard deviation 1. We also give a feature weight vector
W = (w1, . . . , wd)> for setting xij := wjxij . Here we choose wj = 1 if j ≤ 12 and wj = 0.2

if 12 < j ≤ 90. Finally, we use the Gaussian kernel K(x, x′) = exp
{
−‖x−x′‖22

2β2

}
in our

experiments with bandwidth parameter β = 6 and regularization parameter λ = N−1/2.

For each feature Xj = (x1j , . . . , xNj)>, we denote xmin
j = min{x1j , . . . , xNj} and

xmax
j = max{x1j , . . . , xNj}. Then we generate the unlabeled data x̃ij , j = 1, . . . , SN ,

independently from the uniform distribution U [xmin
j , xmax

j ]. It should be noted that the
distributions for the labeled data and unlabeled data are different, making the learning
task a so-called mismatch problem. Algorithm (4) is applied to the training examples with
six partitions m ∈ {300, 500, 700, 900, 1100, 1300}. Finally, we plot AE curves of DSKRR
with 3 different sizes of unlabeled samples in Figure 5. As exhibited in Figure 5, DSKRR
has better performance when SN increases if m ≥ 300. This phenomenon confirms the
observation that adding unlabeled data into training examples can improve the order of m,
as condition (9) shows.
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Figure 5: Performance of DSKRR with unlabeled data on Million Song data
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G. Blanchard and N. Krämer. Optimal learning rates for kernel conjugate gradient regres-
sion. Advances in Neural Information Processing Systems, 226-234, 2010.
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